
Bounds Checking: An Instance of Hybrid Analysis

Troels Henriksen, Cosmin E. Oancea
HIPERFIT, Department of Computer Science, University of Copenhagen (DIKU)

athas@sigkill.dk, cosmin.oancea@diku.dk

Abstract
This paper presents an analysis for bounds checking of array sub-
scripts that lifts checking assertions to program level under the
form of an arbitrarily-complex predicate (inspector), whose run-
time evaluation guards the execution of the code of interest. Sepa-
rating the predicate from the computation makes it more amenable
to optimization, and allows it to be split into a cascade of sufficient
conditions of increasing complexity that optimizes the common-
inspection path. While synthesizing the bounds checking invari-
ant resembles type checking techniques, we rely on compiler sim-
plification and runtime evaluation rather than employing complex
inference and annotation systems that might discourage the non-
specialist user. We integrate the analysis in the compiler’s reper-
toire of Futhark: a purely-functional core language supporting map-
reduce nested parallelism on regular arrays, and show how the high-
level language invariants enable a relatively straightforward analy-
sis. Finally, we report a qualitative evaluation of our technique on
three real-world applications from the financial domain that indi-
cates that the runtime overhead of predicates is negligible.

Categories and Subject Descriptors D.1.3 [Concurrent Pro-
gramming]: Parallel Programming; D.3.4 [Processors]: Compiler

General Terms Performance, Design, Algorithms

Keywords subscripts bounds checking, autoparallelization, func-
tional language

1. Introduction
While massively parallel hardware is mainstream, e.g., GPU, the
problem of enabling real-world applications to be readily written
by the non-expert user at satisfying level of abstraction, and in a
portable manner that offers efficiency comparable to hand-tuned
code across various parallel hardware, is still far from being solved.

Futhark is a core array language and compiler infrastructure
aimed at effectively expressing, extracting and optimizing (mas-
sive) parallelism. Its design captures a meaningful middle ground
between the functional and imperative paradigms: One the one
hand, Futhark is purely-functional and supports regular arrays, (tu-
ples,) and nested parallelism by means of a set of second-order ar-
ray combinators (SOAC), that have an inherently parallel seman-
tics, e.g., map-reduce. The higher-order invariants allow powerful

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Array’14,, June 13th, 2014, Edinburgh, UK..
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-nnnn-nnnn-6/13/14. . . $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

restructuring transformations that are unlikely to be matched in an
imperative context. For example the SOACs’ compositional algebra
allows producer-consumer fusion to be applied at program level,
and to succeed, without duplicating computation, even when a pro-
ducer is used in multiple consumers [11].

On the other hand, several real-world applications1 we have
examined [14] exhibit destructive updates to array elements in-
side dependent loops, i.e., cross-iteration dependencies, which
would be inefficient, or difficult to analyze if expressed with an
array deep-copy semantics inside tail-recursive calls. In this regard
Futhark provides (do) loops and in-place updates that retain the
pure-functional semantics: A loop is a special form of a tail recur-
sive call, just as a map is a special form of a do loop. An in-place
update “consumes” the input array and creates a new array, but
under the static guarantee, verified via uniqueness types (inspired
by Clean[3]), that any array may be consumed at most once. It fol-
lows that the update takes time proportional to the size of the array
element. Finally, loops and in-place updates provide the mean to
transition, within the same core language, to a lower-level IR that:

• uses seamlessly the same compiler repertoire, and furthermore
• can benefit from imperative optimizations that enhance locality

of reference and parallelism, e.g., loop interchange, tiling, etc.

This paper presents a bounds-checking analysis for array sub-
scripts in Futhark. The technique is to separate/lift the checking
assertions from the code of interest, and to model them as an exact
predicate of arbitrary complexity that guards at runtime the exe-
cution of the code of interest. The code of interest is typically the
outermost map, loop, etc. The exact predicate is split into a cas-
cade of sufficient conditions of increasing time complexities, that
are evaluated at runtime until one succeeds (if none statically sim-
plify to true). We see our technique as a pragmatic compromise
between language and compiler solutions to bounds checking:

Type-checking solutions involve no runtime overhead but either
significantly restrict the language or require complex inference sys-
tems, e.g., dependent types, and thorough annotations of program
invariants that might not be accessible to the non-specialist user.

Compiler solutions gather program invariants in an abstract-set
representation and attempt to remove each assertion individually,
e.g., via Presburger or interval arithmetic, as in range analysis [2,
5]. However, often enough, static disambiguation fails for reasons
as simple as the use of symbolic constants of unknown range.

In comparison, our technique lifts the bounds-checking invari-
ant at program level but neither restricts the language nor places
any burden on the user. While the analysis (only) guarantees to pre-
serve the work and depth [?] asymptotic of the original program,
in practice the runtime overhead of predicates is negligible in most
cases. The intuition is that subscript computation is typically well
separable from, and a very cheap slice of, the original computation.

1 Our kernels from financial and image processing domain measure in the
range of hundred/thousand lines of compact code.

loop (x = a,..) =
for i < n do
g(x,..)

in body

⇒

fun {t,..} f(int i, int n, t x,..) =
if i >= n then {x, ..}
else f(i+1, n, g(x, ..))

let x = f(0, n, a)
in body

Figure 1. Loop to recursive function

Separating the predicates provides clean executer code and more
opportunities for optimizing the inspector (predicate): For example,
indirect accesses may create a predicate whose representation is a
loop that is invariant, and thus hoistable, across an outer loop. This
would require non trivial analysis, e.g., distribution of a dependent
loop, if the predicate was not separated from code. Organizing the
predicate as a cascade of sufficient conditions allows the analysis
to bypass hindrances related to control flow and ranges imprecision
and to effectively optimize the common-path predicate.

Finally, our technique is an instance of hybrid analysis, which
denotes a class of transformations that extract statically data-
sensitive invariants from the program and aggressively special-
izes the program based on the result of the runtime evaluation of
those invariants. Such analyses, reviewed in Section 4, include op-
timization of the common-execution path in JIT compilation [1],
inspector-executor and dependence analysis of array subscripts in
automatic parallelization [9, 15–18]. A significant problem how-
ever is that, in the imperative context, supporting anything but the
simplest, O(1) predicate quickly requires “heroic” efforts.

In this context we report a non-heroic infrastructure that allows
arbitrarily shaped/complex predicates to become first-class citizens
of the Futhark compiler: predicates are extracted to program level,
are aggressively simplified statically, retain the parallelism of the
original code, and compose well with the rest of the code. The
relatively-simple analysis is enabled by high-level invariants of our
functional language. A qualitative evaluation on three real bench-
marks supports the claim that in practice the runtime overhead is
negligible. The rest of the paper is organized as follows: Section 2
briefly introduces Futhark in an informal manner, Section 3 demon-
strate the main steps of the analysis, and Sections 4 and 5 review
the related work and conclude.

2. Informal Introduction To Futhark
Futhark2 is a mostly-monomorphic, statically typed, strictly evalu-
ated, purely functional language, whose syntax resembles the one
of SML. Futhark’s type system provides (i) basic types int, real,
bool, char, (ii) n-ary tuple types, which use curly bracket no-
tation, e.g., {α, β, γ}, and (iii) multi-dimensional array types,
which use the bracket notation, e.g., [α]. Arrays of tuples are
transformed to tuples of array as in NESL [4], and the resulting ar-
rays are checked to be regular. For example array [{[4],[1.0]},
{[5,3],[2.0]}], which belongs to type [{[int],[real]}], is
illegal because the first array of its tuple-of-array representation
{[[4],[5, 3]], [[1.0],[2.0]]} ∈ {[[int]],[[real]]}
is irregular, i.e., the size of the first and second row differs 1 6= 2.

Most array operations in Futhark are achieved through built-in
second-order array constructors and combinators (SOACs), e.g.,

• replicate(n,e) creates an array of outermost size n whose
elements are all e (e can be an array), and has type {int,α}→[α].

• iota(n) constructs the array containing the first n natural num-
bers, i.e., [0,1,..,n-1] and has type int → [int],

2 Futhark (more accurately “Fuþark”) are the first six letters of the runic
alphabet. In our language they correspond to the six SOACs: map, reduce,
scan, filter, redomap, multireduce. (The latter is not supported yet.)

• map(f,[a1,..,an]) results in [f(a1),..,f(an)], and has
type {α → β, [α]} → [β]. The result must be a regular
array, whose outermost size matches the one of the input array,

• reduce(⊕,e,[a1,..,an]) requires ⊕ to be a binary asso-
ciative operator (unchecked), results in e⊕a1⊕..⊕an, and has
type {α→α→α,α,[α]} → α. The semantics also requires
that ⊕’s arguments and results have the same shape (if arrays),

• zip, unzip, filter, scan, etc., with the usual semantics.

Anonymous and curried functions are permitted only inside
SOAC invocations (since Futhark is first-order), and parentheses
may be omitted when currying if no curried arguments are given.

Finally, Futhark supports three types of bindings:

• the usual let id = e1 in e2 binds a fresh variable named
id to the value of expression e1 in the expression e2. Pattern
matching for tuples is supported as let {id1,..,idk}=...

• the do-loop syntax is shown in the left side of Figure 1: n is
the loop count, i takes values in [1..n], x is a loop-variant
variable, and the body of the loop is the call to g(x,..).
The loop has the semantics of the tail-recursive function call
f(0,n,a), shown on the right side of Figure 1.

• let b = a with [i1,..,ik] <- v in body denotes an
in-place update: It makes available in body a new array vari-
able b, which is semantically a deep copy of array a but with
the element at index [i1,..,ik] updated to v. In addition, it
statically checks that no variable that aliases a is used on any
execution path following the creation of b. Thus, the common
shortcut syntax is: let a[i1,..,ik] = v in body.

The (last) let-with binding guarantees that an in-place update
is possible, i.e., at runtime cost proportional to the size of the ele-
ment a[i1,..,ik], by “consuming” a. This behavior is extended
across call sites via uniqueness types: In a function fun *[α]
f(*[β] a, γ b) = body the star before the type of parameter
a declares that a is subject to an in-place update, a.k.a. consumed,
inside body. The type checking will verify, at any callsite of f, that
any variable that aliases the corresponding actual parameter of f is
dead after the call. The star before the result type indicates that the
type checking of f must verify that the result of f does not alias
any of the non-unique arguments of f, in our case b. This invariant
is used in type checking the call sites of f. In short, the uniqueness-
type mechanism supports in-place updates at program level by the
means of simpler, intra-procedural analysis.

The compilation pipeline is outlined in Figure 2: Type checking
is performed on the original program to ensure that error messages
use programmer’s names, but during normalisation, all bindings are
renamed to be unique - shadowing is not permitted in the internal
representation. In general, the internal representation is A-normal
form [19], which can intuitively be considered similar to three-
address-code statements, e.g., the only direct operands to functions,
SOACs and operators are variables or constants. Additionally, we
flatten all tuples, and rewrite all arrays-of-tuples to tuples-of-arrays,
implying that the tuple type constructor cannot appear inside an
array type [4]. Finally, all tuple-patterns are expanded to explicitly
name every element of the tuple, with the implication that no
variable is ever itself bound to a tuple value. These properties make
data-dependencies more precise and explicit, thus enabling easier
writing of transformation rules on the syntax tree.

The simplification stage consists of classical optimisations
such as inlining, copy propagation, constant folding, common-
subexpression elimination and dead-code removal, but also more
complex transformations, such as hoisting invariant variables out of
loops, and simplifying loops with loop-invariant bodies to closed
forms. These simplification rules are critical for optimising the

Simplification engine

Typechecking

Normalisation

Size analalysis

Bounds optimisation

Fusion

Loop?

Source programOptimized program

Simplification

Inlining

Apply
simplification rules

Dead code remover

Common sub-
expression elimination

Hoisting

Figure 2. Compiler pipeline

fun [[real]] main(int N,int M,[int,M] X,*[[real,M],M] A)=
1. map (fn *[real] ({*[real],int} e) =>
2. let {a, i} = e in
3. loop(a) = for j < N do
4. let a[j] = a[X[j]] * 2.0 in a
5. in
6. map (fn real (int j) =>
7. if (j <= i-2*N) && (X[j] = j)
8. then a[i*j] else 0.0
9. ,iota(N))
10. ,zip(A,iota(M)))

Figure 3. Running example: a contrived Futhark program.

predicates described in Section 3.1. Producer-consumer fusion is
then applied aggressively, but without duplicating computation.
This algorithm is presented in detail elsewhere [10, 11].

3. Bounds Checking Analysis
Figure 3 presents the running example used in this section. The

main function, which is the program entry point, receives as input
two integers N and M, and two arrays: X is a vector of integers of size
M, and A is an M×M matrix of real numbers. (The arguments of main
are currently read from standard input.) The program zips each
array row with its corresponding index, i.e., zip(iota(M),A) ≡
[..,{i,A[i]},..], i∈[0..M-1], and maps the resulting array
via the anynymous function defined by fn. This function:

• uses pattern matching to un-tuple the input, i.e., let {a,i}=..
binds vector a to the ith row of A, and i∈[0..M-1], then

• executes a (dependent) loop which updates in-place the first
N elements of a to values that depend on an element of a ob-
tained via the indirect array X. Since a is “consumed” inside the
loop, a’s corresponding formal-parameter type must be marked
unique, i.e., *, in both the anonymous and main functions.

• Finally, the result of the outer anonymous function is a vector of
size N obtained by mapping each element j ∈ [1..N] via the
inner anonymous function, which returns a[i*j] if a condition
is met or 0.0 otherwise. Thus the result of the program is a
matrix with M rows and N columns.

Examining the running example in Figure 3, one may deduce
that the loop bounds checking requires N≤M, due to access a[j],
and also X[j]≥0 ∧ X[j]<M, ∀j∈[0..N-1], due to the indirect-

fun [[real]] main(int N,int M,[int,M] X,*[[real,M],M] A)=
1. let p1 = loop (b=True) for j < N do //≡ map-reduce
2. let c = if j >= M then False
3. else (X[j] >= 0) && (x[j] < M)
4. in b && c in
5. let p2 = p1 && (N < M + 1) in
6. let p3 = p2 && (M<2*N+2 || M*N<2*M+N-1 || ...) in
7. let p = if p3 then True
8. else ... exact predicate ... in
9. let c = assert(p) in
10. <c>map(fn *[real] ({*[real],int} e) =>
11. ... original code ...
12. , zip(A,iota(M)))

Figure 4. Running example: Expected Predicate.

array access a[X[j]]. Note that both validity conditions are invari-
ant to the outer map, and furthermore the latter condition is fully
parallel and can be expressed as a map-reduce computation. The
inner map exhibits the access a[i*j] and a human would assume
that its validity, i.e., i*j<M is unlikely to depend on the condition
X[j]=j, and as such, eliminating the variables i and j of known
bounds from the inequality would produce an O(1) sufficient con-
dition involving only symbolic constants N and M, which it is likely
to succeed in most cases. Figure 4 shows the predicate that is ex-
pected to succeed: the inspector loop at lines 1− 4 corresponds to
the executor loop at lines 3 − 4 (in Figure 3), which is invariant
to and has been hoisted-out from the outermost map. Lines 5 and 6
in Figure 4 are the O(1) sufficient conditions for the array indexes
X[j] and a[i*j] at lines 7 and 8 in Figure 3, respectively.

Since the compiler must be conservative, lines 7 and 8 (in Fig-
ure 4) cascade the sufficient-condition and the accurate predicates,
but the latter is unlikely to be executed on any reasonable data sets.

Finally, the if j>=M branch at line 2 is necessary to ensure that
the access X[j] is within bounds, i.e., assertions are implemented
via ifs, and <c>map... on line 10 denotes the assertion under
which the execution of the original program is safe. Note that (i)
without separating the validity test from the original code the loop
would still contain the a[i] update, which would prevent the loop
to be hoisted outside the outer map, and (ii) that the loop inspector
can be easily recognized as a map-reduce computation, albeit it
corresponds to a dependent executor loop.

The remainder of this section presents the three main stages of
analysis: Section 3.1 describes the transformation that synthesizes
at program level an exact predicate, which models the subscript-
within-bounds invariant. Section 3.2 describes a top-down (com-
piler) pass that (i) gathers (symbolic) range information for pro-
gram variables, and (ii) uses those to compute sufficient conditions
for each scalar relation that contributes to bounds checking. For
example, inside the inner map of Figure 3, j∈[0,N-1] and X[j]
requires relation j < M to hold, which generates the sufficient con-
dition N < M+1. Finally, Section 3.3 presents how sufficient condi-
tions for the exact predicate are extracted at program level.

3.1 Synthesizing The Exact Predicate
Several of the rules that implement the transformation are shown
in Figure 5. To simplify notation, we assume that we generate code
for the user language, but the program input is in the A-normalized
compiler representation, i.e., blocks of bindings except for the last
expression of a then/else or loop or (anonmous) function, etc.,
which is a (tuple of) variable(s). We also assume that freshVar()
generates a fresh variable name and getPredicate(f) returns the
(same) name of the function that is the translation of function f.

The application of Efun to a function f constructs the predicate
translation of f, whose (i) name is fp=getPredicate(f), (ii)
arguments are the same as the original, but (iii) the result type is

Efun(fun β f (α a) = body) ≡
fun {bool,α} fp(α a) = let p=True in Eexpp (body)

where p=freshVar(), and fp=getPredicate(f);

Eexpp (let a[i1,..,ik] = v in body) ≡
let q = .. && ik >= 0 && ik < size(k-1,a) in
let p = p && q
let <q>a[i1,..,ik] = v in Eexpp (body)

where q=freshVar(), a is an array var,
size(j,a)=size of dim j of a and v is a var/ct;

Eexpp (let b = f(a) in body) ≡
let {q,b}=fp(a) in let p=p&&q in Eexpp (body)

where q=freshVar() and fp=getPredicate(f);

Eexpp (let b = map(f, a) in body) ≡
let {q,b}=unzip(map(fp, a) in body
let p = p&& reduce(op &&,True,q) in Eexpp (body)

where q=freshVar() and fp=getPredicate(f);
a is an array variable.

Eexpp (a) ≡ {p,a}

Figure 5. Transformation rules for the exact predicate.

fun [[real]] main(int N,int M,[int,M] X,*[[real,M],M] A)=
0. let A' = copy(A) in
1. let {ps, rs} = unzip (
2. map (fn {bool,*[real]} ({*[real],int} e) =>
3. let p = True in
4. let {a, i} = e in
5. loop(p,a) = for j < N do
6. let p1 = (j >= 0) && (j < M) in
7. let p = p && p1 in
8. let p1c = assert(p1) in
9. let p2 = (<p1c>X[j]>=0) && (<p1c>X[j]<M) in
10. let p = p && p2 in
11. let <p1>a[j] = <p2>a[<p1>X[j]]*2.0 in
12. {p,a}
13. in let {ps, rs} = unzip (
14. map(fn {bool,real} (int j) =>
15. let p = True in
16. let p3 = (j >= 0) && (j < M) in
16 let p3c = assert(p3) in
18. let p = p && p3 in
19. if (j<=i-2*N) && (<p3c>X[j]=j) in
20. then let p5 = (j*i >= 0) && (j*i<M) in
21. then let p5c = assert(p5) in
22. {p && p5, <p5c>a[j*i]}
23. else {p, 0.0}
24. ,iota(N)))
25. in { p && reduce(op &&, True, ps), rs }
26. , zip(A',iota(M)))) in
27. let p = reduce(op &&, True, ps) in ...

Figure 6. Exact predicate before simplification.

a single bool value, denoting the predicate, and the original result
type. The body of the function starts by creating a fresh bool
variable named p = freshVar() that is initialized to True and
used in the expression generated by Eexpp (body).
Eexpp (e) translates an expression to the predicated form, and

places the result in the last instance of the variable named p, whose
name is reused, e.g., let p = p && q in To translate an in-
place update we create a fresh boolean variable q that verifies that
the subscript is within range, we add the contribution of q to p, i.e.,
p = p && q, protect the indexed array with assertion q, and trans-
late the body. Note that the representation guarantees that i1..ik
and v are variables/constants, hence they are left unchanged.

fun [[real]] main(int N,int M,[int,M] X,*[[real,M],M] A)=
1. let p = if (M >= 0) then
2. loop(p=True) = for j < N do
3. let p1 = (j >= 0) && (j < M) in
4. let p = p && p1 in
5. let p1c = assert(p1) in
6. let p2 = (<p1c>X[j]>=0) && (<p1c>X[j]<M) in
7. p && p2 in
8. else True in
9. let ps1 =
10. map (fn bool (int i) =>
11. let ps2 =
12. map(fn bool (int j) =>
13. let p = True in
14. let p3 = (j >= 0) in
15. let p4 = (j < M) in
16. let p5 = p3 && p4 in
17. let p5c = assert(p5) in
18. let p = p && p5 in
19. if (j<=i-2*N) && (<p5c>X[j]=j) in
20. then let p6 = (j*i >= 0) in
21. let p7 = (j*i < M) in
22. p && p6 && p7
23. else p
24. ,iota(N))
25. in p && reduce(op &&, True, ps2)
26. ,iota(M))
27. let p = p && reduce(op &&, True, ps1) in ...

Figure 7. Exact predicate after simplification.

The translation of a function-call binding is obtained by per-
forming a call to the predicate translation of the function, adding
the predicate contribution of the function using &&, and translating
the remaining expression. Finally, a binding of map(f,a), where a
is an array variable: (i) calls map(fp, a), where fp is the predi-
cated translation of f, (ii) conjugates the predicate-contribution ar-
ray via reduce(op &&, True), because each array element needs
to be safely processed, (iii) adds the result of the reduction to p and
translates the remaining expression.

In rule Eexpp (a), a is a variable/constant, which is the result of
a block of let bindings. As such the rule simply tuples the predicate
p with the original result a. The rest of the rules are similar.

The translation starts with the body of main, which requires first
that all unique parameters of main are copied and their names sub-
stituted in the translation. Otherwise the uniqueness invariant might
be violated because the same unique array might be consumed both
in the predicated translation and in the original code. This however
does not affect the asymptotic complexity since the arguments of
main are typically read from a file anyway. A user-language ver-
sion of the exact-test predicate is shown in Figure 6. Note that (i)
both the inner and outer maps result in an extra boolean array which
is reduced with the and operator (&&), (ii) the loop has an extra
boolean variant parameter, and (iii) all indexing operations have
been asserted via their corresponding predicate.

After aggressive dead-code removal and simplification, the re-
sulting code is similar to the one in Figure 7. Note that (i) all refer-
ences to the unique (copied) array A' have been removed, and that
(ii) the loop has been hoisted outside the outer map, and cannot
be asymptotically simplified further due to the indirect access, e.g.,
X[j] < M, that cannot be proven in a cheaper way. The next sec-
tions focus on optimizing the common inspector path of let ps1
= map (fn bool (int i) => ... In particular, factors such as
p6 and p7, depend only on symbols i and j, of known ranges
[0,M-1] and [0,N-1], whose gaussian-like elimination will pro-
duce an O(1) sufficient condition for the outermost map.

3.2 Sufficient Conditions for Scalar Relational Expressions
The second phase of the analysis performs a compiler pass that

• extracts (simple) ranges for program variables, e.g., induction
variables of loops, maps, branch conditions, etc,. and

• uses those ranges to eliminate the symbols for which both
ranges exists from the predicate factors of interest, e.g., p5, p6.

The top-down analysis maintains three symbol tables:

• EV : Id → (Int, ScalExp) maintains for each integral vari-
able (i) the lexicographic order in which the variable appears
in the program and (ii) its aggressively expanded scalar ex-
pression. The representation uses a simple scalar language,
ScalExp, that supports value, variable, unary negation, binary
plus, minus, multiply, division, and nary Min/Max constructors.

• RV : Id → (Int, ScalExp ∪ Udef, ScalExp ∪ Udef)
maps each integral variable to a triplet formed by (i) an integer
denoting the lexicographic order in which the variable appears
in the program, and (ii) the lower/upper known ranges of that
variable, where Udef is the undefined range, i.e., [−∞,∞].

• SR : Id → ([[ScalExp]] ∪ Udef), the result of this analy-
sis stage maps a boolean variable to an expression in disjunc-
tive normal form (DNF) in which each integral scalar expres-
sion e corresponds to the bool expression e < 0. For exam-
ple [[M*N<2*M, M>0], [3*N*M>M*M, N>0]] corresponds
to (M*N<2*M ∧ M>0) ∨ (3*N*M>M*M ∧ N>0).

While more refined solutions are possible [2], we currently
gather simple range invariants, for example from loops and iota
parameters passed to map, and filter the ranges based on branch
conditions. In the example in Figure 7, iota(M) is passed as the
array parameter to the outer map which semantically means that
just inside the outer anonymous function
RV ={M → {1,1,Udef}, i→{10,0,M-1}}, i.e., M > 0, oth-
erwise iota(M) is empty, and i∈[0,M-1] since i is an element of
iota(M)=[0,..,M-1]. The priority of i, i.e., the first element of
the tuple, is greater than that of M signaling that M appears before i
in the program and hence its value cannot depend on i.

Just before the if branch in the inner anonymous function
RV ={N→{0,1,Udef}, M→{1,1,Udef}, i→{10,0,M-1},
j→{15,0,N-1}}, where j and N have been similarly added. On
the then branch, we use the factor j<=i-2*N of the branch con-
dition to refine the range of j, i.e., the variable with the highest
priority among those that appear in the expressions. The latter guar-
antees that variable elimination process will eventually terminate,
since the lexicographical order respects the program dependency
graph (DAG). The other condition, X[j]=j is not useful because
the range refinement of j would still depend on j. The range of j
inside the then branch becomes: j∈[0, Min(i-2*N,N-1)].

When analysis reaches one of the factors of the predicate, e.g.,
p5, it uses the bindings in EV to construct an expanded relational
(scalar) expression of the form e < 0. In the case of p6, the relation
is -i*j - 1 < 0. At this point it computes the set of variables in
e, e.g., i, j, and lookups their ranges in RV to find candidates
for elimination. If at least one of the bounds is defined, the variable
is kept, otherwise it is removed from the set. The candidates are
ordered by inverse order of priority, such that the “most dependent”
variable is the first candidate for elimination. Our integral simplifier
attempts to bring the expression to a “normal” form in which
the Min/Max operators are at the outermost level and their inner
expressions are in the sum-of-product form. This is however not
possible if a Min/Max has a factor of unknown sign.

Figure 8 shows the main “inference” rules for eliminating vari-
ables. The first one assumes a sum-of-product form and attempts to
find a Min/Max factor that uses i, the symbol to be eliminated. If

SC(i)(terms + a*Max(b1, ..i.., bn) < 0) ≡
(SC(i)(a ≤ 0) ∧ (∧n

k=1 SC(i)(a*bk+terms < 0)))∨
(SC(i)(a ≥ 0) ∧ (∨n

k=1 SC(i)(a*b1+terms < 0)))
if variable i appears inside the Max expression;

SC(i)(a * i + b < 0) ≡
(SC(i)(a ≤ 0) ∧ SC(i)(a * l + b < 0))∨
(SC(i)(a ≥ 0) ∧ SC(i)(a * u + b < 0)))

Figure 8. Extracting sufficient conditions for scalar relations.

this is found, it decomposes the problem based on the sign of the
Min/Max factor a. If no such Min/Max exists than the second rule
is attempted: e is brought to the form e = a*i + b by dividing
each term of e by i; if the division succeeds then the divided term
contributes to a, otherwise, the undivided term contributes to b. If
the separation succeeds, i.e., i does not appear in b, then the prob-
lem is decomposed again. Otherwise, i is removed from the list of
candidates, and the process continues until no candidates remain.

For the predicate p6, the first to-be-eliminated variable is
j∈[0,Min(i-2*N,N-1)]. The second rule of Figure 8 results in:
SC(j)(-i*j-1<0) ≡ (SC(j)(-i≤0) ∧ SC(j)(-1<0)) ∨

(SC(j)(-i≥0) ∧ SC(j)(-i*Min(i-2*N,N-1)-1<0)).
The first term simplifies to true via the second rule:
SC(j)(-i≤0) ≡ SC(j)(-i-1<0) ≡ SC(j)(0-1<0)

Finally, the predicate obtained after simplifying e < 0 is
brought to DNF form. After this pass, SR ≡{p3→[[True]],
p4→[[N-M-1<0]], p6→[[True]], p7→[[M-2<0], [M-2*N
-2<0], [N-2<0], [M*N-2*M-N+1<0]]}.

3.3 Cascading Sufficient-Condition Predicates
The last stage of the analysis extracts sufficient conditions for the
exact test at program level. Our implementation currently covers
only O(1) and O(N) predicates, where typically, N is the count of
the outermost recursion, because cases that requires more effort are
rare in practice. The analysis consists of a top-down pass that

• computes, for each variable, the recurrences, e.g., SOAC, loops,
etc., in which that variable is variant, and

• uses this information to select a set of recurrences Lv={l1..lq},
of maximal nest depth k (in our case k=1), such that any factor
of the exact predicate, e.g., p7 in Figure 7, has at least one term
of its DNF form that is variant only to recurrences in Lv .

The idea is that, if all the factors of the accurate predicate have
such terms, which are only variant to recurrences in Lv , then a
sufficient condition of nest depth k for the accurate predicate can
be built by taking the conjunction of the sufficient-condition terms.

We start with Lv = ∅ and, at each encountered factor of the big
predicate, we add variant loops to Lv as long as there are no more
than k loops that share a common execution path, i.e., are nested.
With Lv available, we perform a second pass that:

• replaces every factor of the exact predicate with the disjunction
of its DNF terms variant only in Lv , e.g., let p4 = N-M-1<0,

• if the condition of an if expression is only Lv variant, then the
if is preserved, otherwise it is translated to the conjunction of
the (sufficient-condition) predicates of the two branches3,

• updates the assertions that guard array indexing inside the pred-
icate, to refer to the sufficient-conditions of the factor, and fur-
thermore, translates those assertions to if branches such that

3 But only if the lifted code is simple enough to guarantee that an error
cannot occur, e.g., division by zero, and fail otherwise.

fun int xorInds(int bits_num, int n, [int] dir_vs) =
let bits = iota (bits_num) in
let inds = filter (testBit(grayCode(n)), bits) in
let dirs = map(fn int (int i)=>dir_vct[i], inds) in
reduce(op ^, 0, dirs)

Figure 9. Pattern in P0

an error is reported only if none of the predicates evaluates to
true. In particular, this is necessary on platforms that do not
support an assertion system, e.g., OPENCL.

• finally, cascades the predicates obtained for k=0,1.. and runs
the simplification engine to obtain the desired time complexity4.

The transformed code for out working example is similar to the
one in Figure 4: the successful predicate requires negligible O(N)
work (in comparison with O(N× M) of the original computation).

3.4 Evaluation and Discussion
We use for testing three real-work kernels from financial domain:
P0 is a real-world pricing kernel for financial derivatives [14], P1 is
a calibration of interest rate via swaptions, which computes some
of the parameters of P0, and P2 implements stochastic volatility
calibration via Crank-Nicolson finite differences solver [13].

P1 is the largest benchmark, but it is very regular, and the
bounds-checking analysis succeeds statically.

P2 has the structure of an outer convergence loop, of count T ,
that contains SOAC nests of depth three and of count K × M × N,
e.g., 1024 × 256 × 256. The SOAC nest exhibits (i) several ar-
rays that are assumed to hold at least two elements, i.e., indexed on
[0] and [1], and (ii) several stencil-like subscripts, e.g., let a[i]
= if i < N-1 then (a[i] + a[i+1])/2 else a[i], where
N is the array size. (The latter requires the range of i to be nar-
rowed to [0,N-2] inside the then branch.) With our technique,
the successful predicate has complexity O(1). In comparison, the
classical technique would result in O(T× K× N×M) checks.

The most interesting program is P0. It features the pattern dis-
cussed in this paper, in which a dependent inner loop features an
indirect indexing which is invariant to two outer loops, that have
a combined loop count in the range of 106. The successful predi-
cate/inspector contains one loop, whose runtime is negligible with
respect to the the executor/computation runtime.

Another interesting code from P0, corresponding to Sobol
number generation, is depicted in Figure 9: The code filters
iota(bits_num), where bits_num is a symbolic constant, either
32 or 64. It follows that the range of all elements of the result inds
is [0,bits_num-1]. The inds array is next used as an indirect
array, i.e., map(fn int (int i)=>dir_vct[i], inds) returns
the values corresponding to the indices inds of array dir_vs.
The check for dir_vct[i] succeeds statically, because (i) array
dir_vct is known statically to have size bits_num, and (ii) i is
an element of inds, and as such has range [0, bits_num-1].

In conclusion, for the three examined kernels, our analysis
solves most of the bounds checking statically, but several impor-
tant, deeply nested cases have required predicate separation and
sufficient conditions that resulted in negligible runtime overhead.
However, there are examples in which the subscript values de-
pend on the computation, e.g., histogram computation. Such cases
are ill suited for our analysis, in that it would double the original
work. A solution to this problem is to develop a cost model that,
for example, would use the traditional method whenever sufficient
conditions of “negligible” overhead cannot be extracted. Finally,
while on cache based (SMP) systems naive bounds checking might

4 The resulted sufficient-condition predicate is guaranteed to be simplified
to code exhibiting at most nests of depth k, because the predicate result is
variant only to recurrences in Lv . The compiler asserts this invariant.

still work well enough, the main motivation for this work has been
GPU architectures: In the absence of hardware support for asser-
tions, the computation would need to be protected with a cascade
of if branches. This would make the resulting code less amenable
to subsequent optimizations, and would also significantly impact
performance.

4. Related Work
The main inspiration for this paper has been the work done in the
context of automatic parallelization of imperative languages, such
as Fortran, where the significant benefit of running the code in par-
allel has led to aggressive techniques that combine static with dy-
namic analysis. For example, inspector-executor techniques [18],
computes “mostly” at runtime a schedule of dependencies that al-
lows the executer to run in parallel. Since the inspector overhead
was significant, analysis has shifted towards static analysis, e.g.,
Presburger arithmetic is extended with uninterpreted-symbol func-
tions [17], and the resulting irreducible Presburger formulas are
presented to the user for verification as simple predicates.

Other work summarizes at program level array accesses, either
via systems of affine inequations or as a program in a language
of abstract sets, and summaries are paired with predicates that are
evaluated at runtime to minimize overheads [9, 15]. However, pro-
viding support for arbitrary predicates and summaries, requires in
the imperative context many helper intermediate representations
and even an entire optimization infrastructure for these new lan-
guages, which has been informally characterized as “heroic effort”.

Futhark takes the view that a simple, array functional language,
but with a richer algebra of invariants might be better suited to sup-
port such aggressive analysis, because for example the language
already provides the necessary support for predicates, and any im-
provements in the analysis support would directly benefit user code.
After all, summary, predicate and SSA languages are functional.

Futhark is similar to SAC [7] in that it provides a common
ground between functional and imperative domains. For example,
SAC uses with and for loops to express map-reduce and de-
pendent computation, respectively. Recent work on SAC proposes
“hybrid-array types” [8] as a mean to express explicitly certain
constraints related to the structural properties or values of argu-
ment/result arrays. Similar with our work, hybrid arrays rely on
the compiler infrastructure to prove constraints mostly statically,
and avoids the pitfall of dependent types by compiling unverified
constraints to dynamic checks. The (other) direction of verifying
via dependent types array related invariants has been studied in
Qube [20], an experimental (simplified) offspring of SAC.

An approach to statically optimising checks can be found in
[21], which extends an ML-like language with a restricted variant
of dependent types. Type-checking then involves statically proving
that array accesses are in-bounds, and as a result making runtime
bounds-checking unnecessary. Not all bounds checks can be stati-
cally eliminated, e.g. indirect indexes, and for these the program-
mer must leave explicit bounds checks in the program. These would
still be amenable to optimisation utilising the techniques outlined
in this paper. In contrast to the technique presented in this paper, the
dependent types approach demands that the programmer annotate
the source program, although this also carries the benefit that size
constraints can be expressed in function- and module signatures.

Another technique [12] extracts a a slice of the input program
computing the shape of intermediate results, such that static evalu-
ation of this slice will reveal any shape errors (e.g. out-of-bounds
accesses) in the original program. This guarantees discovery of all
out-of-bounds indexing, but at a cost: the shape of the result of any
operation must depend solely on the shape of its input. That is, the
shape of a structure in a program must not depend on the data, thus
banning operations like iota and replicate.

Finally, another approach, taken by languages in the APL family,
is to extend the language operators in a way that guarantees that
out-of-bounds indices cannot occur [6]. This typically introduces
non-affine indexing that might hinder subsequent optimizations.

5. Conclusions and Future Work
This paper has presented an instance of hybrid analysis for check-
ing subscript within bounds invariants. The approach enables ag-
gressive hoisting by separating the predicate from the computation,
and optimizes the common-execution path of the predicate by ex-
tracting and cascading a set of sufficient conditions that are eval-
uated at runtime, in the order of their complexity until one suc-
ceeds. We have shown that such an aggressive analysis is relatively
straightforward in Futhark, and that it successfully solves several
real-world applications under negligible runtime overhead.

Acknowledgments
We thank the Array’14 reviewers for the excellent feedback. This
research has been partially supported by the Danish Strategic Re-
search Council, Program Committee for Strategic Growth Tech-
nologies, for the research center ’HIPERFIT: Functional High
Performance Computing for Financial Information Technology’
(http://hiperfit.dk) under contract number 10-092299.

References
[1] M. R. Arnold, S. Fink, D. P. Grove, M. Hind, , and P. F. Sweeney. A

Survey of Adaptive Optimization in Virtual Machines. Proceedings of
IEEE, 92(2):449–466, 2005.

[2] H. Bae and R. Eigenmann. Interprocedural Symbolic Range Propa-
gation for Optimizing Compilers. In Procs. Lang. Comp. Par. Comp.
(LCPC), pages 413–424, 2005.

[3] E. Barendsen and S. Smetsers. Conventional and Uniqueness Typing
in Graph Rewrite Systems. In Found. of Soft. Tech. and Theoretical
Comp. Sci. (FSTTCS), volume 761 of LNCS, pages 41–51, 1993.

[4] G. E. Blelloch, J. C. Hardwick, J. Sipelstein, M. Zagha, and S. Chat-
terjee. Implementation of a Portable Nested Data-Parallel Language.
Journal of parallel and distributed computing, 21(1):4–14, 1994.

[5] W. Blume and R. Eigenmann. Symbolic Range Propagation. In Procs.
Int. Parallel Processing Symposium, pages 357–363, 1994.

[6] M. Elsman and M. Dybdal. Compiling a subset of apl into a typed
intermediate language. In Procs. Int. Workshop on Lib. Lang. and
Comp. for Array Prog. (ARRAY). ACM, 2014.

[7] C. Grelck and S.-B. Scholz. SAC: A Functional Array Language for
Efficient Multithreaded Execution. Int. Journal of Parallel Program-
ming, 34(4):383–427, 2006.

[8] C. Grelck and F. Tang. Towards Hybrid Array Types in SAC. In 7th
Workshop on Prg. Lang., (Soft. Eng. Conf.), pages 129–145, 2014.

[9] M. W. Hall, S. P. Amarasinghe, B. R. Murphy, S.-W. Liao, and M. S.
Lam. Interprocedural Parallelization Analysis in SUIF. Trans. on
Prog. Lang. and Sys. (TOPLAS), 27(4):662–731, 2005.

[10] T. Henriksen. Exploiting functional invariants to optimise parallelism:
a dataflow approach. Master’s thesis, DIKU, Denmark, 2014.

[11] T. Henriksen and C. E. Oancea. A T2 Graph-Reduction Approach
to Fusion. In Procs. Funct. High-Perf. Comp. (FHPC), pages 47–58.
ACM, 2013. ISBN 978-1-4503-2381-9.

[12] C. B. Jay and M. Sekanina. Shape checking of array programs. In
Procs. In Computing: the Australasian Theory Seminar, 1997.

[13] C. Munk. Introduction to the Numerical Solution of Partial Differen-
tial Equations in Finance. 2007.

[14] C. Oancea, C. Andreetta, J. Berthold, A. Frisch, and F. Henglein.
Financial Software on GPUs: between Haskell and Fortran. In Funct.
High-Perf. Comp. (FHPC’12), 2012.

[15] C. E. Oancea and L. Rauchwerger. Logical Inference Techniques for
Loop Parallelization. In Procs. of Int. Conf. Prog. Lang. Design and
Impl. (PLDI), pages 509–520, 2012.

[16] C. E. Oancea and L. Rauchwerger. A Hybrid Approach to Proving
Memory Reference Monotonicity. In Int. Lang. Comp. Par. Comp.
(LCPC’11), volume 7146 of LNCS, pages 61–75, 2013.

[17] W. Pugh and D. Wonnacott. Constraint-Based Array Dependence
Analysis. Trans. on Prog. Lang. and Sys., 20(3):635–678, 1998.

[18] L. Rauchwerger, N. Amato, and D. Padua. A Scalable Method for Run
Time Loop Parallelization. Int. Journal of Par. Prog, 26:26–6, 1995.

[19] A. Sabry and M. Felleisen. Reasoning about programs in continuation-
passing style. SIGPLAN Lisp Pointers, V(1):288–298, Jan. 1992. .

[20] K. Trojahner and C. Grelck. Descriptor-free representation of arrays
with dependent types. In Procs. Int. Conf. on Implem. and Appl. of
Funct. Lang. (IFL), pages 100–117, 2011. ISBN 978-3-642-24451-3.

[21] H. Xi and F. Pfenning. Eliminating Array Bound checking Through
Dependent Types. SIGPLAN Not., 33(5):249–257, 1998. .

http://hiperfit.dk

	Introduction
	Informal Introduction To Futhark
	Bounds Checking Analysis
	Synthesizing The Exact Predicate
	Sufficient Conditions for Scalar Relational Expressions
	Cascading Sufficient-Condition Predicates
	Evaluation and Discussion

	Related Work
	Conclusions and Future Work

