

U N I V E R S I T Y O F C O P E N H A G E N
D E P A R T M E N T O F C O M P U T E R S C I E N C E

Master’s Thesis

Dandan Xue

Formalizing the implementation of
Streaming NESL

Supervisor: Andrzej Filinski

Submitted on: 24 October 2017

Revised version: 8 November 2017

Abstract

Streaming NESL (SNESL) is an experimental, first-order functional, nested data-
parallel language, employing a streaming execution model and integrating with a
cost model that can predict both time and space complexity. Practical experiments
have demonstrated good performance of SNESL’s implementation and provided em-
pirical evidence of the validity of the cost model.

In this thesis, we first extend SNESL to support recursive functions. This requires
non-trivial extensions to SNESL’s target language, SVCODE, and the flow graph of
its streaming dataflow model to be dynamically completed at runtime. Two execu-
tion models of the extended SVCODE, the NESL-like eager one, and the streaming
one, are given.

Then we show the formalization of the semantics of a subset of the source and
target languages, followed by a proof of the translation correctness and work cost
preservation.

Contents

Preface 3

1 Introduction 4
1.1 Background . 4
1.2 Nested data parallelism . 4
1.3 NESL . 5
1.4 SNESL . 6

1.4.1 Types . 7
1.4.2 Values and expressions . 7
1.4.3 Primitive functions . 8
1.4.4 Cost model . 9

2 Implementation 12
2.1 High-level interpreter . 12
2.2 Value representation . 19
2.3 SVCODE . 20

2.3.1 SVCODE Syntax . 20
2.3.2 Xducers and control stream 21

2.4 Translating SNESL1 to SVCODE . 24
2.4.1 Expression translation . 24
2.4.2 Built-in function translation 27
2.4.3 User-defined function translation 30

2.5 Eager SVCODE interpreter . 31
2.5.1 Dataflow . 31
2.5.2 Cost model . 31

2.6 Streaming SVCODE interpreter . 32
2.6.1 Streamability . 32
2.6.2 Processes . 33
2.6.3 Scheduling . 35
2.6.4 Cost model . 36
2.6.5 Recursion . 36
2.6.6 Deadlock . 38
2.6.7 Examples . 40

3 Formalization 41
3.1 SNESL0 . 41

3.1.1 Syntax . 41
3.1.2 Typing rules . 42

1

3.1.3 Semantics . 43
3.2 SVCODE0 . 44

3.2.1 Syntax . 44
3.2.2 Instruction semantics . 45
3.2.3 Xducer semantics . 46
3.2.4 SVCODE0 determinism . 48

3.3 Translation . 52
3.4 Value representation . 54
3.5 Correctness . 55

3.5.1 Definitions . 55
3.5.2 Correctness proof . 63

3.6 Scaling up . 73

4 Conclusion 74

2

Preface

This is a revised version of my original Master’s thesis, which was completed under
the supervision of Andrzej Filinski at the Computer Science Department of the
University of Copenhagen (DIKU), and officially submitted on the 24th of October,
2017.

The revision is mainly about the correction of the work cost of the general com-
prehension expression shown in Chapter 3.1.3, which is a problem found before the
submission but ran out of time to fix. As a consequence, the proof of cost preserva-
tion in the corresponding proof case of Theorem 3.27 is also corrected. Some other
trivial changes or corrections of minor mistakes that have been found are made as
well. All these revisions are made before the defense of the thesis.

3

Chapter 1

Introduction

1.1 Background

Parallel computing has drawn increasing attention in the field of high-performance
computing. Today, it is widely accepted that Moore’s law will break down due to
physical constraints, and future performance increase must heavily rely on increasing
the number of cores, rather than making a single core run faster.

Typically, a parallel computation can be completed by splitting it into multiple
subcomputations executing independently. The theoretical maximum number of
these subcomputations is called the parallel degree. In practice, it is common that
this theoretical parallel degree cannot be fully exploited because of the limitation of
physical resources.

Parallelism can be expressed or employed in different aspects, such as algorithms,
programming languages or hardware, which all have made tremendous progress in
recent decades.

1.2 Nested data parallelism

Data parallelism deals with parallelism typically by applying parallel operations on
data collections. The observation is that the loop structure occurs quite frequently
in algorithms and usually accounts for a large proportion of the running time, which
has a high potential for each iteration being executed in parallel.

Nested data parallelism allows data-parallelism to be nested. In nested data-
parallel languages, function calls can be applied to a set of data that can be not
only flat or one-dimension arrays, but also multi-dimension, irregular or recursive
structures. So these languages can implement parallel algorithms, including nested
loops and recursive ones, more expressively and closer to the programmer’s intuition.

On the other hand, at such a high level, compilation becomes more complicated
to achieve a performance close to the code written directly in low-level ones. Also,
predicting the performance are more difficult because the details of the concrete
parallel execution are usually implicit or hidden to the programmer.

Some languages, such as NESL [Ble95, BHC+93, BG96] Proteus [PP93, PPW95]
and Data Parallel Haskell [CLPJ+07, PJ08, LCK+12], have pioneered NDP signifi-
cantly and demonstrated its advantages and importance.

4

1.3 NESL

NESL is a first-order functional nested data-parallel language. The main construct
to express data-parallelism in NESL is called apply-to-each, whose form, shown
below, looks like a mathematical set comprehension (or a list comprehension in
Haskell):

{f(x) : x in e}
As its name implies, it applies the function f to each element of e, and the compu-
tation will be executed in parallel. As an example, adding 1 to each element of a
sequence [1, 2, 3] can be written as the following apply-to-each expression:

{x+ 1 : x in [1, 2, 3]}

which returns [2,3,4].
The strength of this construct is that it supports nested function application on

irregular data sets. Continuing with the example above, the adding-1 operation can
also be performed on each subsequence of a nested sequence [[1,2,3],[4],[5,6]], written
as:

{{y + 1 : y in x} : x in [[1, 2, 3], [4], [5, 6]]}
giving [[2,3,4],[5],[6,7]].

The low-level language of NESL’s implementation model is VCODE [BHC+93],
which uses vectors (i.e., flat arrays of atomic values such as integers or booleans)
as the primitive type, and its instruction set performs operations on vectors as a
whole, such as summing. The technique flattening nested parallelism [BS90] used in
the implementation model translates nested function calls in NESL to instructions
on vectors in VCODE.

From the user’s perspective, the first highlight of NESL is that the design of this
language makes it easy to write readable parallel algorithms. The apply-to-each
construct is more expressive in its general form:

{e1 : x1 in seq1 ; ... ; xi in seqi | e2}

where the variables x1, ..., xi possibly occurring in e1 and e2 are corresponding el-
ements of seq1, ..., seqi respectively; e2, called a sieve, performs as a condition to
filter out some elements. Also, NESL’s built-in primitive functions, such as scan
[Ble89], are powerful for manipulating sequences. An example program of NESL for
splitting a string into words is shown in Figure 1.1.

5

� �
1 -- split a string into words (delimited by spaces)

2 function str2wds(str) =

3 let strl = #str; -- string length

4 spc_is = { i : c in str , i in &strl | c == ’ ’}; -- space

indices

5 word_ls = { id2 - id1 -1 : id1 in [-1] ++ spc_is; id2 in

spc_is ++[strl]}; -- length of each word

6 valid_ls = {l : l in word_ls | l > 0}; -- filter multiple

spaces

7 chars = {c : c in str | c != ’ ’ } -- non -space chars

8 in partition(chars , valid_ls); -- split strings into words� �� �
1 -- a running example

2 $> str2wds("A NESL program . ")

3 [[’A’], [’N’, ’E’, ’S’, ’L’], [’p’, ’r’, ’o’, ’g’, ’r’, ’a’, ’m’],

[’.’]] :: [[char]]� �
Figure 1.1: A NESL program for splitting a string into words

Another important idea of NESL is its intuitive, language-based, high-level cost
model [Ble96]. This cost model can predict the performance of a NESL program
from two measures: work, the total number of operations executed in this program,
and depth, or step, the longest chain of sequential dependency in this program.
From another point of view, the work cost can be viewed as a measurement of the
time complexity of the computation executed on a machine with only one processor,
and the step cost corresponds to the time complexity on an ideal machine with an
unlimited number of processors.

With this work-depth model, as demonstrated in [Ble90], the user can derive the
asymptotic time complexity T of a NESL program executed on a machine with P
processors as

T = O(work/P + depth)

However, a problem NESL suffers from is its inefficient space-usage. This is
mainly due to the eager semantics that NESL uses for supporting random access in
parallel execution. That is, during the execution of a NESL program, sufficient space
must be provided for storing the entire evaluation values including the intermediate
ones. For example, computing the multiplication of two matrices of size n-by-n will
need at least n3 space to store the intermediate element-wise multiplication result,
which is a huge waste of space when n is large.

1.4 SNESL

Streaming NESL (SNESL) [MF13] is a refinement of NESL that attempts to improve
the efficiency of space usage. It extends NESL with two features: a streaming
semantics and a corresponding cost model for space usage. The basic idea behind
the streaming semantics may be described as: data-parallelism can be realized not
only in terms of space, as NESL has demonstrated, but also, for some restricted

6

cases, in terms of time. When there is no enough space to store all the data at the
same time, computing them chunk by chunk may be a way out. This idea is similar to
the concept of piecewise execution in [PPCF96], but SNESL makes the chunkability
exposed at the source level in the type system and the cost model instead of a
low-level execution optimization, and the chunk size should be proportional to the
number of processors (10 ∼ 100 typically) and fit in cache.

1.4.1 Types

The types of a minimalistic version of SNESL defined in [MF13] are as follows (using
Haskell-style notation):

π ::= bool | int | char | real | · · ·
τ ::= π | (τ1, ..., τk) | [τ]
σ ::= τ | (σ1, ..., σk) | {σ}

Here π stands for the primitive types and τ the concrete types, both originally
supported in NESL. The type [τ], which is called sequences in NESL and vectors
in SNESL, represents spatial collections of homogeneous data, and must be fully
allocated or materialized in memory for random access. (τ1, ..., τk) are tuples with
k components that may be of different types.

The novel extension is the streamable types σ, which generalizes the types of data
that are not necessarily entirely materialized at once, but rather in a streaming fash-
ion. In particular, the type {σ}, called sequences in SNESL, represents collections
of data computed in terms of time, which means the elements of a sequence are
produced and consumed over time. So, even with a small size of memory, SNESL
could execute programs which are impossible in NESL due to space limitation or
more space efficiently than in NESL.

For the sake of clarity, we will from now on use the terms consistent with SNESL

1.4.2 Values and expressions

The values of SNESL are as follows:

a ::= T | F | n (n ∈ Z) | · · ·
v ::= a | (v1, ..., vk) | [v1, ..., vl] | {v1, ..., vl}

where a is the atomic values or constants of types π, and v are general values which
can be a constant, a tuple of k components, a vector or a sequence of l elements.
Here, as part of our notation, we use k to range over “small” natural numbers
(related to program size), while l are potentially “large” ones (related to data size).

The expressions of SNESL are shown in the following figure.

7

e ::= a (constant)

| x (variable)

| (e1, ..., ek) (tuple)

| let p = e1 in e2 (let-binding)

| ϕ(e1, ..., ek) (built-in function call)

| {e1 : p in e0} (general comprehension)

| {e1 | e0} (restricted comprehension)

p ::= x | (p1, ..., pk) (pattern matching)

Figure 1.2: Syntax of SNESL expressions

As an extension of NESL, SNESL keeps a similar programming style of NESL.
Basic expressions, such as the first five in Figure 1.2, are the same as they are in
NESL. The apply-to-each construct in its general form splits into the general and
the restricted comprehensions: the general one now is only responsible for expressing
parallel computation, and the restricted one can decide if a computation is necessary
or not, working as the only conditional in SNESL. Also, these comprehensions extend
the semantics of the apply-to-each from evaluating to vectors (i.e., type [τ]) to
evaluating to sequences (i.e., type {σ}). A notable difference between them is that
the free variables of e1 (except for those bound by p) in the general comprehension
can only be of concrete types, while they can be of any types in the restricted one.

Note that SNESL, as described in [Mad16], does not include programmer-defined
functions. In the implementation, functions can be defined, but effectively treated
as macros during compilation. In particular, they cannot be recursive.

1.4.3 Primitive functions

SNESL also refines the primitive functions of NESL to separate sequences and vec-
tors. The primitive functions of SNESL are shown in Figure 1.3.

ϕ ::= ⊕ | append | concat | zip | iota | part | scan⊗ | reduce⊗ | mkseq
(1.1)

| length | elt (1.2)

| the | empty (1.3)

| seq | tab (1.4)

⊕ ::= + | − | × | / | % | == | <= | not | · · · (scalar operations)

⊗ ::= + | × | max | · · · (associative binary operations)

Figure 1.3: SNESL primitive functions

The scalar functions of ⊕ and ⊗ should be self-explanatory from their conven-
tional symbols or names. The types of the other functions and their brief descriptions

8

are given in Table 1.1.
The functions listed in (1.1) and (1.2) of Figure 1.3 are originally supported

in NESL, doing transformations on scalars and vectors. In SNESL, list (1.1) are
adapted to streaming versions with slight changes of parameter types where neces-
sary. By streaming version we mean that these functions in SNESL take sequences
as parameters instead of vectors as they do in NESL, as we can see from Table 1.1,
thus these functions can execute in a more space-efficient way.

Functions in (1.2), i.e., length and elt, are kept as their vector versions in SNESL.
These two exploit vectors that are fully materialized, thus have constant time cost.
On the other hand, while analogous functions can be defined for sequences (using
other primitives), they have cost proportional to the length of the sequence.

List (1.3) are new primitives in SNESL. The function the, returning the sole
element of a singleton sequence, together with restricted comprehensions can be
used to simulate an if-then-else expression:

if e0 then e1 else e2 ≡ let b = e0 in the({e1 | b}++{e2 | not(b)})

The function empty, which tests whether a sequence is empty or not, only needs to
check at most one element of the sequence instead of materializing all the elements.
Therefore, it works in a fairly efficient way with a constant complexity both in time
and space.

Finally, functions listed in (1.4) connects the concrete types and streams, mak-
ing it possible to turn every NESL program into a SNESL one by adding suitable
seq/tab calls.

The SNESL program for string splitting is shown in Figure 1.4. Compared with
the NESL counterpart in Figure 1.1, the code of SNESL version is simpler, because
SNESL’s primitives make it good at streaming text processing. In particular, this
SNESL version can be executed even with a chunk size of one element.� �

1 -- partition a string to words (delimited by spaces)

2 -- SNESL version

3 function str2wds_snesl(str) =

4 let flags = { x == ’ ’ : x in str};

5 nonsps = concat ({{x | x != ’ ’} : x in v})

6 in concat ({{x | not(empty(x))}: x in part(nonsps , flags ++

{T})})� �
Figure 1.4: A SNESL program for splitting a string into words

1.4.4 Cost model

Based on the work-depth model, SNESL develops another two components for esti-
mating the space complexity [MF13]. The first one is the sequential space S1, that
is, the minimal space to perform the computation, corresponding to run the program
with a buffer of size one. The other is the parallel space S∞, the space that needed
to achieve the maximal parallel degree, and it corresponds to assuming the program
executes with an unlimited memory as NESL does. In [Mad16], the first component
is refined further to allow vectors to be shared across parallel computations.

With this extended cost model, the user can now estimate the time complexity of
a SNESL program using the same concepts as for NESL, and the space complexity

9

Function type Brief description

append : ({σ}, {σ}) → {σ} append two sequences; syntactic sugar:
infix symbol “++”

concat : {{σ}} → {σ} flatten a sequence of sequences

zip : ({σ1}, ..., {σk}) → {(σ1, ..., σk)} convert k sequences into a sequence of k-
component tuple

iota : int → {int} generate an integer sequence starting from
0 to the given argument minus one; syn-
tactic sugar: prefix symbol “&”

part : ({σ}, {bool}) → {{σ}} partition a sequence into subsequences
segmented by Ts in the second argument;
e.g., part({3, 1, 4}, {F, F, T, F, T, T}) =
{{3, 1}, {4}, {}}

scan⊗ : {int} → {int} performs an exclusive scan of ⊗ operation
on the given sequence

reduce⊗ : {int} → int performs a reduction of ⊗ operation on
the given sequence

mkseq : (

k︷ ︸︸ ︷
σ, ..., σ) → {σ} make a k-component tuple to a sequence

of length k

length: [τ] → int return the length of a vector; syntactic
sugar: prefix symbol “#”

elt: ([τ], int) → τ return the element of a vector with the
given index; syntactic sugar: infix symbol
“!”

the : {σ} → σ return the element of a singleton sequence

empty : {σ} → bool test if the given sequence is empty

seq : [τ] → {τ} stream a vector as a sequence

tab : {τ} → [τ] tabulate a sequence into a vector

Table 1.1: SNESL primitive functions

10

with the following formula

S = O(min(P · S1, S∞))

where P is the number of processors.

11

Chapter 2

Implementation

In this chapter, we will first talk about the high-level interpreter of a simplified
SNESL language but with the extension of user-defined functions to give the reader
a more concrete feeling about SNESL. Then we introduce the streaming target lan-
guage, SVCODE, with respect to its grammar, semantics and primitive operations.
Translation from the source language to the target one will be explained to show
their connections. Finally, two interpreters of SVCODE, an eager one and a stream-
ing one, will be described and compared, with emphasis on the latter to demonstrate
the streaming mechanism.

2.1 High-level interpreter

In this thesis, the high-level language we have experimented with is close to the
SNESL introduced in the last chapter but without vectors, and we will call this lan-
guage SNESL1. As our first goal is to extend SNESL with user-defined (recursive)
functions, it is safe to do so because removing vectors should not affect the com-
plexity of the problem too much; we believe that if the solution works with streams,
the general type in SNESL, it should work with vectors as well.

Besides, only two primitive types of SNESL, int and bool, are retained in
SNESL1. Tuples are also simplified to pairs.

The types of SNESL1 are as follows.

π ::= bool | int
τ ::= π | (τ1, τ2) | {τ}
φ ::= (τ1, ..., τk) → τ

In SNESL1, concrete types are either primitive types, or binary trees (i.e., nested
pairs) of primitive types. We give its definition as follows:

Judgment τ concrete

π concrete
τ1 concrete τ2 concrete

(τ1, τ2) concrete

Figure 2.1: Concrete types

12

The values in SNESL1 are:

a ::= T | F | n
v ::= a | (v1, v2) | {v1, ..., vl}

The abstract syntax of SNESL1 is given in Figure 2.2.

t ::= eval e | d t (top-level term)

e ::= a (constant)

| x (variable)

| (e1, e2) (pair)

| {e1, ..., ek} (k≥1) (primitive sequence)

| {}τ (empty sequence of type τ)

| let x = e1 in e2 (let-binding)

| ϕ(e1, ..., ek) (built-in function call)

| {e1 : x in e0 using x1, ..., xk} (general comprehension)

| {e1 | e0 using x1, ..., xk} (restricted comprehension)

| f(e1, ..., ek) (user-defined function call)

d ::= function f(x1 : τ1, ..., xk : τk) : τ = e (user-defined function)

Figure 2.2: Abstract syntax of SNESL1

In addition to the simplifications mentioned before, we also made the following
changes or extensions on expressions from SNESL:

• For comprehension expressions, the free variables (except x) of the comprehen-
sion body e1 are collected as a list added after the keyword using. This task
can simply be done by the front end of the compiler; we do this for presenting
the details of implementation more conveniently.

• Added primitive sequence expression (including the empty one with its type
explicitly given). They work as a replacement of the function mkseq.

• Added user-defined functions which allow recursions. Since type inference is
not incorporated in the interpreter, the types of parameters and return values
need to be provided when the user defines a function.

The typing rules for the expressions of SNESL1 are given in Figure 2.3. The type
environment Γ is a mapping from variables to types:

Γ ::= [x1 7→ τ1, ..., xk 7→ τk]

and Σ from the identifiers of user-defined functions to their types:

Σ ::= [f1 7→ φ1, ..., fk 7→ φk]

13

Judgment Γ ⊢Σ e : τ

(a : π)
Γ ⊢Σ a : π

(Γ(x) = τ)
Γ ⊢Σ x : τ

Γ ⊢Σ e1 : τ1 Γ ⊢Σ e2 : τ2
Γ ⊢Σ (e1, e2) : (τ1, τ2)

Γ ⊢Σ e1 : τ · · · Γ ⊢Σ ek : τ

Γ ⊢Σ {e1, ..., ek} : {τ} Γ ⊢Σ {}τ : {τ}

Γ ⊢Σ e1 : τ1 Γ[x 7→ τ1] ⊢Σ e2 : τ

Γ ⊢Σ let x = e1 in e2 : τ

Γ ⊢Σ e1 : τ1 · · · Γ ⊢Σ ek : τk (ϕ : (τ1, ..., τk) → τ)
Γ ⊢Σ ϕ(e1, ..., ek) : τ

Γ ⊢Σ e0 : {τ0} [x 7→ τ0, (xi 7→ τi)
k
i=1] ⊢Σ e1 : τ

((Γ(xi) = τi, τi concrete)
k
i=1)Γ ⊢Σ {e1 : x in e0 using x1, ..., xk} : {τ}

Γ ⊢Σ e0 : bool [(xi 7→ τi)
k
i=1] ⊢Σ e1 : τ

((Γ(xi) = τi)
k
i=1)Γ ⊢Σ {e1 | e0 using x1, ..., xk} : {τ}

Γ ⊢Σ e1 : τ1 · · · Γ ⊢Σ ek : τk (Σ(f) = (τ1, ..., τk) → τ)
Γ ⊢Σ f(e1, ..., ek) : τ

Figure 2.3: Typing rules of SNESL1 expressions

The typing rules for built-in operations (using the judgment ϕ : (τ1, ..., τk) → τ)

are given in their detailed descriptions later.
The typing rules of SNESL1 should be straightforward except those for compre-

hensions. For the general comprehension, the input sequence e0, as well as the whole
expression, must be a sequence. The types of the free variables of the comprehen-
sion body e1, i.e., x1, ..., xk, are all required to be concrete. That is, they cannot be
sequences or contain any sequence component. However, they can be of any types
in restricted comprehension. We will explain this later.

Figure 2.4 shows the typing rules for SNESL1 values, and Figure 2.5 gives the
rules for checking whether a top-level term is well-typed.

14

Judgment v : τ

n : int T : bool F : bool

v1 : τ1 v2 : τ2
(v1, v2) : (τ1, τ2)

v1 : τ · · · vl : τ

{v1, ..., vl} : {τ}

Figure 2.4: Typing rules of SNESL1 values

Judgment ⊢Σ t : τ

[] ⊢Σ e : τ

⊢Σ eval e : τ

[x 7→ τ1, ..., xk 7→ τk] ⊢Σ[f 7→(τ1,...,τk)→τ0] e : τ0 ⊢Σ[f 7→(τ1,...,τk)→τ0] t : τ

⊢Σ function f(x1 : τ1, ..., xk : τk) : τ0 = e t : τ

Figure 2.5: Well-typed top-level terms

The high-level semantics of SNESL1 is given in Figure 2.6. The evaluation envi-
ronment ρ is in the form:

ρ ::= [x1 7→ v1, ..., xk 7→ vk]

and the context Φ for looking up user-defined functions:

Φ ::= [f 7→ d1, ..., fk 7→ dk]

The evaluation rules are also straightforward except for the comprehensions. In
the general comprehension, the input sequence e0 gets evaluated first, generating a
sequence of l elements. These l elements are used to substitute the bound variable
x in the comprehension body e1; so e1 will be evaluated l times with different sub-
stitutions of x but with the same value of its free variables x1, ..., xk. As mentioned
before, these free variables x1, ..., xk can only be of concrete types, because their
values are repeatedly used l times here, which requires these values must be already
materialized before the evaluation. If any of them is a stream, then the entire stream
must be allocated for each of the l evaluations of e1.

For the restricted comprehension, the guard expression e0 first gets evaluated: if
it is a T, e1 will be evaluated, generating a singleton sequence; otherwise, e1 will not
be evaluated, and the comprehension only returns an empty sequence. Here, since
e1 will be evaluated at most once, there will be no problem if any free variable of e1
is a stream.

The built-in functions of SNESL1 correspond to a subset of SNESL’s ones shown
in Figure 1.3 but without mkseq, and the vector-related ones. In addition, the
function scan and reduce are also taken a specific verison: restricted ⊗ to +, for
simplicity, as shown in Figure 2.7.

15

Judgment ρ ⊢Φ e ↓ v

ρ ⊢Φ a ↓ a (ρ(x) = v)
ρ ⊢Φ x ↓ v

ρ ⊢Φ e1 ↓ v1 ρ ⊢Φ e2 ↓ v2
ρ ⊢Φ (e1, e2) ↓ (v1, v2)

ρ ⊢Φ e1 ↓ v1 · · · ρ ⊢Φ ek ↓ vk
ρ ⊢Φ {e1, ..., ek} ↓ {v1, ..., vk} ρ ⊢Φ {}τ ↓ {}

ρ ⊢Φ e1 ↓ v1 ρ[x 7→ v1] ⊢Φ e2 ↓ v
ρ ⊢Φ let x = e1 in e2 ↓ v

ρ ⊢Φ e1 ↓ v1 · · · ρ ⊢Φ ek ↓ vk (ϕ(v1, ..., vk) ↓ v)
ρ ⊢Φ ϕ(e1, ..., ek) ↓ v

ρ ⊢Φ e0 ↓ {v1, ..., vl} ([x1 7→ ρ(x1), ..., xk 7→ ρ(xk), x 7→ vi,] ⊢Φ e1 ↓ v′i)li=1

ρ ⊢Φ {e1 : x in e0 using x1, ..., xk} ↓ {v′1, ..., v′l}

ρ ⊢Φ e0 ↓ F

ρ ⊢Φ {e1 | e0 using x1, ..., xk} ↓ {}

ρ ⊢Φ e0 ↓ T [x1 7→ ρ(x1), ..., xk 7→ ρ(xk)] ⊢Φ e1 ↓ v1
ρ ⊢Φ {e1 | e0 using x1, ..., xk} ↓ {v1}

(ρ ⊢Φ ei ↓ vi)ki=1 [x1 7→ v1, ..., xk 7→ vk] ⊢Φ e0 ↓ v
(
Φ(f) = function

f(x1 : τ1, ..., xk : τk) : τ = e0

)
ρ ⊢Φ f(e1, ..., ek) ↓ v

Figure 2.6: Semantics of SNESL1

16

ϕ ::= ⊕ | appendτ | concatτ | iota | partτ | scan+ | reduce+ | theτ | emptyτ

⊕ ::= + | − | × | / | % | <= | == | not | · · · (scalar operations)

Figure 2.7: Primitive functions in SNESL1

The types and semantics of these built-in functions remain the same as they are
described in Table 1.1; we complement that brief version with more details where
necessary and examples here.

• appendτ : ({τ}, {τ}) → {τ} , appends one sequence to the end of another;
syntactic-sugared as the infix symbol ++.

Example 2.1.� �
1 > {3,1} ++ {4}

2 {3,1,4} :: {int}

3

4 > {{3 ,1} ,{4}} ++ {{}int} ++ {{1 ,5}}

5 {{3 ,1} ,{4} ,{} ,{1 ,5}} :: {{int}}� �
• concatτ : {{τ}} → {τ}, concatenates a sequence of sequences into one, that is,
decreases the nesting-depth by one.

Example 2.2.� �
1 > concat ({{3 ,1} ,{4}})

2 {3,1,4} :: {int}

3

4 > concat ({{{3 ,1} , {4}}, {{1}}})

5 {{3 ,1} ,{4} ,{1}} :: {{int}}� �
• iota : int → {int}, generates a sequence of integers starting from 0 to the given
argument minus 1; syntactic-sugared as the symbol &; if the argument is neg-
ative, then reports a runtime error.

Example 2.3.� �
1 > &10

2 {0,1,2,3,4,5,6,7,8,9} :: {int}

3

4 > &0

5 {} :: {int}� �
• partτ : ({τ}, {bool}) → {{τ}}, partitions a sequence into subsequences ac-
cording to the second boolean sequence where a F corresponds to one element
of the first argument and a T indicates a segment separation; so the number of
Fs is equal to length of the first argument, and the number of Ts is equal to

17

the length of the returned value, and this argument must end with a T. If the
second argument does not satisfy these requirements, a runtime error will be
reported.

Example 2.4.� �
1 > part({3,1,4,1,5,9}, {F,F,T,F,T,T,F,F,F,T})

2 {{3 ,1} ,{4} ,{} ,{1 ,5 ,9}} :: {{int}}

3

4 > part ({{3 ,1} ,{4} ,{}int , {1,5}}, {F,F,T,F,F,T})

5 {{{3 ,1} ,{4}} ,{{} ,{1 ,5}}} :: {{{int}}}� �
• scan+ : {int} → {int}, performs an exclusive scan of addition operation on the
given sequence, that is, assuming the argument is {n1, n2, .., nk}, to compute
{0, n1, n1 + n2, ..., n1 + ... + nk−1}. This scan operation has its general form
in full SNESL, where it supports more associative binary operations with a
specific identity element a0 such that a0 ⊗ a = a⊗ a0 = a for all a.

Example 2.5.� �
1 > scanPlus ({3,1,4,1})

2 {0,3,4,8} :: {int}

3

4 > scanPlus ({} int)

5 {} :: {int}� �
• reduce+ : {int} → int, performs a reduction of addition operation on the given
sequence, i.e., computes its sum. Again, this function also has its general form
in full SNESL, where it computes a1⊗a2⊗...⊗ak for an argument {a1, a2, ..., ak}.

Example 2.6.� �
1 > reducePlus ({3,1,4,1})

2 9 :: int

3

4 > reducePlus ({} int)

5 0 :: int� �
• theτ : {τ} → τ , returns the element of a singleton sequence; if the length of
the argument is not exactly one, reports a runtime error.

Example 2.7.� �
1 > the ({3})

2 3 :: int

3

4 > the ({(3 ,1)})

5 (3,1) :: (int ,int)� �
18

• emptyτ : {τ} → bool, tests if the given sequence is empty; if it is empty,
returns a T, otherwise returns a F.

Example 2.8.� �
1 > empty ({3,1,4,1})

2 F :: bool

3

4 > empty ({} int)

5 T :: bool� �
2.2 Value representation

At the low level, a value of SNESL1 is represented as either a primitive stream (i.e.,
a collection of primitive values), or a binary tree structure with stream leaves. The
idea of this representation comes from [Ble90]. The primitive stream a⃗ (of l elements
a1, ..., al) and the stream tree w have the following forms:

a⃗ ::= ⟨a1, ..., al⟩

w ::= a⃗ | (w1, w2)

The representation also relies on the high-level type of the value. We use the
infix symbol “▷” subscripted by a type τ to denote a type-dependent representation
relation.

• A primitive value is represented as a singleton primitive stream:

Example 2.9.
3 ▷int ⟨3⟩
T ▷bool ⟨T⟩

• A non-nested/flat sequence of length n is represented as a primitive data stream
with an auxiliary boolean stream called a descriptor, which consists of n number
of Fs followed by one T.

Example 2.10.
{3, 1, 4} ▷{int} (⟨3, 1, 4⟩, ⟨F, F, F, T⟩)

{T, F} ▷{bool} (⟨T, F⟩, ⟨F, F, T⟩)
{} ▷{int} (⟨⟩, ⟨T⟩)

• For a nested sequence with a nesting depth d (or a d-dimensional sequence), all
the data are flattened to a data stream, but d descriptors are used to maintain
the segment information at each depth. (Thus a non-nested sequence is just a
special case of d = 1).

Example 2.11.

{{3, 1}, {4}} ▷{{int}} ((⟨3, 1, 4⟩, ⟨F, F, T, F, T⟩), ⟨F, F, T⟩)

{}{int} ▷{{int}} ((⟨⟩, ⟨⟩), ⟨T⟩)

19

• A pair of high-level values is a pair of stream trees representing the two high-
level components respectively.

Example 2.12.
(1, 2) ▷(int,int) (⟨1⟩, ⟨2⟩)

({T, F}, 2) ▷({bool},int) ((⟨T, F⟩, ⟨F, F, T⟩), ⟨2⟩)

• A sequence of pairs can be regarded as a pair of sequences sharing one descriptor
at the low level:

Example 2.13.

{(1, T), (2, F), (3, F)} ▷{(int,bool)} ((⟨1, 2, 3⟩, ⟨T, F, F⟩), ⟨F, F, F, T⟩)

2.3 SVCODE

In [Mad13] a streaming target language for a minimal SNESL was defined. With
trivial changes in the instruction set, this language, named as SVCODE (Stream-
ing VCODE), has been implemented on a multicore system in [MF16]; the various
experiment results have demonstrated single-core performance similar to sequential
C code for some simple text-processing tasks and near-linear scaling on moderate
multicores.

In this thesis, we put emphasis on the formalization of this low-level language’s
semantics. Also, to support recursion in the high-level language at the same time
preserve the cost, non-trivial extension of this language is needed.

2.3.1 SVCODE Syntax

The abstract syntax of SVCODE is given in Figure 2.8. An SVCODE program p
is basically a list of commands or instructions each of which defines one or more
streams. We use s to range over stream variables, also called stream ids, and S a set
of stream ids. As a general rule of reading an SVCODE instruction, the stream ids
on the left-hand side of a symbol “:=” are the defined streams of the instruction.

The instructions in SVCODE that define only one stream are in the form

s := ψ(s1, ..., sk)

where ψ is a primitive function, called a Xducer(transducer), taking the stream
s1, ..., sk as parameters and returning s. More detailed descriptions for specific Xduc-
ers are given in the next section.

The only essential control struture in this language is the WithCtrl instruction

Sout := WithCtrl(s , Sin, p1)

which may or may not execute a piece of SVCODE program p1, but always defines
a set of stream ids Sout. The definition instructions for all the stream ids in Sout are
included in the code block p1. Whether to execute p1 or not depends on the value
of the stream s . We will call this special stream the new control stream, and we
will give the explanation of the concept control stream later, but here we only care
about if s is empty:

20

p ::= ϵ (empty program)

| s := ψ(s1, ..., sk) (single stream definition)

| Sout := WithCtrl(s , Sin, p1) (WithCtrl block)

| (s′1, ..., s′k′) := SCall f(s1, ..., sk) (SVCODE function call)

| p1; p2

s ::= 0 | 1 | · · · ∈ SId = N (stream ids)

S ::= {s1, ..., sk} ∈ S (set of stream ids)

ψ ::= Consta | ToFlags | Usum | Map⊕ | Scan+ | Reduce+ | Distr (Xducers)

| Pack | UPack | B2u | SegConcat | USegCount | InterMerge | · · ·
⊕ ::= + | − | × | / | % | <= | == | not | · · · (scalar operations)

Figure 2.8: Abstract syntax of SVCODE

• If s is non-empty, then execute p1 and generate the streams of Sout as usual

• Otherwise, skip p1 and assign Sout all empty streams

Thus the new control stream is the most important role here, because it decides
whether or not to execute p1, which is the key to avoiding infinite unfolding of
recursive functions. Sin is a variable set including all the streams that are referred
to by p1; it will only affect the streaming execution model of SVCODE, while in the
eager model it can be ignored.

The instruction (s′1, ..., s
′
k′) := SCall f(s1, ..., sk) can be read as: “calling function

f with arguments s1, ..., sk returns s′1, ..., s
′
k′”. The function body of f is merely

another piece of SVCODE program, but without the definition instructions of its
argument streams.

It is worth noting that a well-formed SVCODE instruction should always assign
fresh (never previously used) stream ids to the defined streams, in which way the
dataflow of an SVCODE program can construct a DAG (directed acyclic graph).
We will give more formal definitions of this language in the next chapter to demon-
strate how the freshness property is guaranteed. In the practical implementation,
we simply identify each stream with a natural number, a smaller one always defined
earlier than a greater one.

2.3.2 Xducers and control stream

Transducers or Xducers are the primitive functions performing transformation on
streams in SVCODE. Each Xducer consumes a number of streams and transforms
them into another.

For example, the Xducer Map+(⟨3, 2⟩, ⟨1, 1⟩) consumes the stream ⟨3, 2⟩ and ⟨1, 1⟩,
then outputs the element-wise addition result ⟨4, 3⟩.

Example 2.14. Map+(⟨3, 2⟩, ⟨1, 1⟩):

21

Among all the Xducers, Consta() is a special one, because it outputs some number
of constant a but takes no argument. At the high level, it corresponds to the
evaluation of constants. Some strategy must be taken here to tell this Xducer how
many elements it should produce.

In the implementation of [MF16], a special stream of unit type, called control
stream, is used at compiling time for replicating constants.

In our implementation, we move the control stream to the runtime, and let it not
only control constants replication, but more importantly, dominate all the Xducers’
behavior. Our observation is that the parallel degree throughout the whole com-
putation can be expressed by this control stream, and all the Xducers can behave
correspondingly to the parallel degree carried by the control stream. So we make
the Xducer read the control stream firstly before consuming its normal inputs, so
that it will know how many elements it should read and output.

There are three benefits by doing so.
First, Xducers now can easily check a runtime error. For example, when the

parallel degree is two, i.e., the control stream is ⟨(), ()⟩, the Xducer Map+ will know
that it only needs to consume two elements from each input stream, and output two
as well; all the other cases will be reported as runtime errors. And the Xducer Consta
just outputs the equal number of elements to the length of the control stream.

Another benefit is that all the Xducers will behave in a more uniform and regular
way, which is easier for reason about and formalization, as we will show in the next
chapter.

Finally, the functionality of the Xducer can be completely independent or sep-
arated from the scheduling (in the streaming execution model), which makes the
Xducer easier to be extended or changed, and the implementation model more flex-
ible and easier to debug.

As we have mentioned before, the dataflow of an SVCODE program is a DAG,
where each Xducer stands for one node. The WithCtrl block is only a subgraph
that may be added to the DAG at runtime, and SCall another that will be unfolded
dynamically.

Figure 2.9 shows an example program, with its DAG in Figure 2.10.

22

� �
1 S1 := Const_3

2 S2 := ToFlags S1

3 S3 := Usum S2

4 [S4] := WithCtrl S3 []:

5 S4 := Const_1

6 S5 := ScanPlus S2 S4� �
Figure 2.9: A small SVCODE program

Figure 2.10: Dataflow DAG for the code in Figure 2.9 (assuming S3 is nonempty).

When we talk about two Xducers A and B connected by an arrow from A to B
in the DAG, we call A a producer or a supplier to B, and B a consumer or a client
of A. As an Xducer can have multiple suppliers, we distinguish these suppliers by
giving each of them an index, called a channel number. In Figure 2.10, the channel
number is labeled above each edge. For example, the Xducer S2 has two clients,
S3 and S5, for both of whom it is the No.0 channel; Xducer S5 has two suppliers

23

(ignoring the control stream): S2 the No.1 channel and S4 the No.2.

2.4 Translating SNESL1 to SVCODE

In Section 2.2, we have seen the idea of how a high-level value of SNESL1 can be
represented as a binary tree of low-level stream values. At the compiling time, we
use a structure STree (stream id tree) to connect the high-level variables and the
low-level ones:

STree ∋ st ::= s | (st1, st2)
The translation symbol table δ is a mapping from high-level variables to stream
trees:

δ ::= [x1 7→ st1, ..., xk 7→ stk]

Another important component maintained at the compiling time is a fresh-stream
allocation counter. It will be assigned to the defined stream(s) of the generated
instruction by the translation.

We will use the symbol “⇒” to denote the translation relation. To avoid clutter,
in this section we assume the defined stream id(s) of the new instructions are all
fresh.

2.4.1 Expression translation

A SNESL1 expression will be translated to a pair of an SVCODE program p and a
stream tree st whose stream values represent the high-level evaluation result:

δ ⊢ e⇒ (p, st)

The translation for constants, variables and pairs are straightforward. For ex-
ample, a pair (x, 4) will be translated to a program of only one instruction s0 :=
Const4() and a stream tree (s, s0), assuming in the context x is bound to s and s0
is a fresh id before the translation :

[x 7→ s] ⊢ (x, 4) ⇒ (s0 := Const4(), (s, s0))

For a let-binding expression let x = e1 in e2, first e1 gets translated to some
code p1 with a stream tree st1 as usual; then the binding [x 7→ st1] is added to δ, in
which the body e2 gets translated to some p2 with st2; the translation of the entire
expression will be the concatenation of p1 and p2, i.e., p1; p2, and the stream tree is
only st2.

Translations for specific built-in functions and user-defined functions will be given
later in the following two subsections.

Non-empty primitive sequence looks a little bit tricky to translate as it can have
arbitrary number n (n ≥ 1) of elements, but it is basically a n-argument version of
the function append, i.e., {e1, ..., ek} is compiled as append({e1}, ..., {ek}). More
details about translating append is given later. For the empty sequence {}τ , the
low-level streams are all empty streams except for the outermost descriptor ⟨T⟩, and
the number of those empty streams depends on the type τ .

The most interesting case may be the comprehensions. For the general one,
{e1 : x in e0 using x1, ..., xk}, the key step is to bind the variable x to the entire

24

data stream of the input sequence e0, then translate the body e1 with this variable-
binding, and put the generated code into a WithCtrl block. It is also important
here that the parallel degrees must be changed (to the length of the input sequence).
The values of the free variables x1, ..., xk will be used many times (depending on the
length of the input sequence as well), so they need to be replicated.

For example, the first step to translate the comprehension in the expression
let x = 1 in {i + x : i in &5 using x} is to translate &5, which is represented
as a data stream ⟨0, 1, 2, 3, 4⟩ with a flag steam ⟨F, F, F, F, F, T⟩. So i will be bound
to the data stream, and the flag is used to generate the new control stream, using
the Xducer Usum. The free variable x with value ⟨1⟩ will be replicated 5 times, gen-
erating a new stream ⟨1, 1, 1, 1, 1⟩, and this replication work is done by the Xducer
Distr. Then the adding operation in the comprehension body is translated to an
instruction performing vector addition on the stream bound to i and the replication
stream of x, and executing the instruction will give us ⟨1, 2, 3, 4, 5⟩.

The Xducer Usum working on a flag stream sb is employed to generate the new
control stream. It transforms an F to a unit, a T to nothing.

Example 2.15. Usum(⟨F, T, F, F, T⟩) with the control stream = ⟨(), ()⟩:

The translation for a general comprehension will look like:

δ ⊢ e0 ⇒ (p0, (st0, sb)) [x 7→ st0, (xi 7→ st ′i)
k
i=1] ⊢ e1 ⇒ (p1, st)

((δ(xi) = st i)
k
i=1)δ ⊢ {e1 : x in e0 using x1, ..., xk} ⇒ (p, (st , sb))

in which
p = (p0;

s1 := Usum(sb);

st ′1 := distrτ1(sb, st1);

...

st ′k := distrτk(sb, stk);

Sout := WithCtrl(s1, Sin, p1))

We put p1 into a WithCtrl block so that p1 can be skipped when s1, the new
control stream, is tested to be an empty stream. Sin and Sout are some analysis
results about the free stream variables and the defined ones of p1, which can be
easily obtained by traversing p1. We will give more details about them in the next
chapter.

The function distrτ is responsible for replicating streams by using the Xducer
Distr. We give its definition in a form close to the SVCODE style for more read-

25

ability:

s′ := distrπ(sb, s); ≡ s′ := Distr(sb, s);

(st′1, st
′
2) := distr(τ1,τ2)(sb, (st1, st2)); ≡ st′1 := distrτ1(sb, st1);

st′2 := distrτ2(sb, st2);

The Xducer Distr consumes a boolean stream as a segment descriptor of the
data stream, and replicates the constants of the data stream corresponding times to
their segment lengths.

Example 2.16. Distr(⟨F, F, F, T, F, T⟩, ⟨2, 5⟩) with control stream ⟨(), ()⟩

The restricted comprehension is a little bit simpler compared to the general one,
since there is no variable-bindings in e1 and the parallel degree of the computation
of e1 is either one or zero, thus the free variables x1, ..., xj does not need to be
distributed, but rather, packed. Its translation will look like:

δ ⊢ e0 ⇒ (p1, sb) [(xi 7→ st ′i)
k
i=1] ⊢ e1 ⇒ (p2, st)

((δ(xi) = st i)
k
i=1)δ ⊢ {e1 | e0 using x1, ..., xk} ⇒ (p, (st , s1))

in which
p = p1;

s1 := B2u(sb);

s2 := Usum(s1);

st ′1 := packτ1(sb, st1);

...

st ′k := packτk(sb, stk);

Sout := WithCtrl(s2, Sin, p2)

The Xducer B2u simply transforms a boolean to a unary number, i.e., transforms
⟨F⟩ to ⟨T⟩, and ⟨T⟩ to ⟨F, T⟩.

Example 2.17. B2u(⟨T, F⟩) with control stream ⟨(), ()⟩

26

The function packτ annotated with the high-level type that the packed stream
tree represents will generate instructions of Pack and possibly UPack and Distr.

The function st used in the instruction WithCtrl returns a flattening set of the
stream ids in st ; its formal definition can be found in Chapter 3.3.

s′ := packπ(sb, s); ≡ s′ := Pack(sb, s);

(st′1, st
′
2) := pack(τ1,τ2)(sb, (st1, st2)); ≡ st′1 := packτ1(sb, st1);

st′2 := packτ2(sb, st2);

(st′1, s
′
1) := pack{τ}(sb, (st1, s1)); ≡ s′1 := UPack(sb, s1);

s′2 := Distr(s1, sb);

sc := Usum(s1);

st′1 := WithCtrl(sc, {s′2} ∪ st1, st′1 := packτ (s
′
2, st1))

The Xducer Pack throws away the element of the second stream if the boolean
of the corresponding position in the first stream is a F.

Example 2.18. Pack(⟨T, F, T⟩, ⟨2, 3, 4⟩) with control stream ⟨(), (), ()⟩

UPack works in a way similar to Pack, but on data of boolean segments rather
than primitive values.

Example 2.19. UPack(⟨T, F, T⟩, ⟨F, T, F, F, T, F, F, F, T⟩) with control stream ⟨(), (), ()⟩

2.4.2 Built-in function translation

A high-level built-in function call will be translated to a few lines of SVCODE
instructions.

27

• Scalar operations, for instance x1⊕x2, will be translated to a single instruction
Map⊕(s1, s2), assuming δ(x1) = s1, δ(x2) = s2.

• The function iota(n) generates an integer sequence starting from 0 of length
n. The translation will first use the Xducer ToFlags to generate the descriptor
of the return value, and then perform a scan operation on a stream of n 1s to
generate the data stream. Its translation will look like:

iota(s) ⇒ (p, (s3, s0))

where

p =s0 := ToFlags(s);

s1 := Usum(s0);

{s2} := WithCtrl(s1, {}, s2 := Const1());

s3 := Scan+(s0, s2)

Given a stream ⟨n⟩, the Xducer ToFlags first outputs n Fs, then one T.

Example 2.20. ToFlags(⟨3, 0⟩) with control stream ⟨(), ()⟩:

Scan+(sb, sd) performs an exclusive scan of addition (with neutral element 0)
on the data stream sd segmented by sb.

Example 2.21. Scan+(⟨F, F, F, T, F, T⟩, ⟨2, 5, 3, 6⟩) with control stream ⟨(), ()⟩:

• The high-level function scan+ is implemented straightforwardly by using the
Xducer Scan+:

scan+((sd, sb)) ⇒ (s0 := Scan+(sb, sd), (s0, sb))

• Similar to scan+, reduce+ is translated to a low-level Xducer Reduce+.

• The translation of concat is also one instruction using the Xducer SegConcat:

concat(((st, s1), s2)) ⇒ (s0 := SegConcat(s2, s1), (st, s0))

28

The Xducer SegConcat merges the second outermost descriptors of the high-
level sequence, i.e., s1, into a new one s0 by removing unnecessary segment
boundary Ts; the old outermost descriptor s2 helps maintain the segmenting
information.

Example 2.22. SegConcat(⟨F, T, F, F, F, T⟩, ⟨F, T, F, F, T, T, F, F, F, T⟩) with con-
trol stream ⟨(), ()⟩. The second argument has 4 segments, and the first argu-
ment says that the first one will be merged as one segment, and the other three
together as another.

• part can be implemented straightforwardly by the Xducer USegCount.

part((st1, s1), (s2, s
′
2))) ⇒ (s0 := USegCount(s2, s

′
2), ((st1, s2), s0))

USegCount counts the number of the segments of its second argument, seg-
mented according to the second argument, and represents it in unary.

Example 2.23. USegCount(⟨F, F, F, F, F, T, F, F, F, T⟩, ⟨F, T, F, F, T, F, F, T⟩) with
control stream ⟨(), ()⟩. The first argument indicates that the first 5 elements of
the second argument are in the same segment, which has two Ts, and the last 3
another segment, which includes only one T. So the unary form of the counting
result is ⟨F, F, T, F, T⟩

• Implementation of the function append may be the most tricky one, since
it needs to recursively append subsequences at each depth of the argument
sequences:

append((st1, s1), (st2, s2))) ⇒ (p, (st , s0))

where

p = s0 := InterMerge([s1, s2]);

st := mergeRecur{τ}([(st1, s1), (st2, s2)]);

29

The Xducer InterMerge merges two descriptors by interleaving their segments.

The function mergeRecur annotated by the type of the argument merges the
inner segments recursively. Its definition is given below.

s := mergeRecur{π}([(s
′
1, s1), (s

′
2, s2)]); ≡ s := PrimSegInter([(s′1, s1), (s

′
2, s2)]);

(st, st′) := mergeRecur{(τ1,τ2)}([((st1, st
′
1), s1), ((st2, st

′
2), s2)]); ≡

st := mergeRecur{τ1}([(st1, s1), (st2, s2)]);

st′ := mergeRecur{τ2}([(st
′
1, s1), (st

′
2, s2)]);

(st, s3) := mergeRecur{{τ}}([((st1, s1), s
′
1), ((st2, s2), s

′
2)]); ≡

s3 := SegInter([(s1, s
′
1), (s2, s

′
2)]);

s4 := SegConcat(s1, s
′
1);

s5 := SegConcat(s2, s
′
2);

st := mergeRecur{τ}([(st1, s4), (st2, s5)]);

The Xducer PrimSegInter merges the given data streams according to their
descriptors similarly to InterMerge but working on primitive data instead of
boolean segments. SegInter merges a number of segments of a descriptor into
one. Note that we make the argument of InterMerge, mergeRecur, SegInter
and PrimSegInter all a list of stream trees instead of exact two, thus they can
be used to append arbitrary number (≥ 1) of sequences.

• Implementing the function the needs runtime check on the length of the se-
quence, which is done by the Xducer Check; if the length is one, then the data
stream is returned.

• empty also uses a corresponding low-level Xducer IsEmpty.

Example 2.24. Xducer IsEmpty(⟨F, T, F, F, F, T, T⟩) with control stream ⟨(), (), ()⟩
outputs ⟨F, F, T⟩.

2.4.3 User-defined function translation

We first introduce the type of SVCODE functions SFun: a triple in the form
([s1, ..., sm], p, [s

′
1, ..., s

′
n]), where s1, ..., sm are the argument stream ids, p the func-

tion body, and s′1, ..., s
′
n the return values:

sf ::= ([s1, ..., sm], p, [s
′
1, ..., s

′
n]) ∈ SFun

The overline function¯ flattens a stream tree to a list of stream ids:

¯: STree → [SId]

s = [s]

(st1, st2) = st1++st2

30

Then a user-defined function function f(x1 : τ1, ..., xk : τk) : τ = e will be
translated to an SVCODE function ([s1, ..., sm], p, st), assuming

[x1 7→ st1, ..., xk 7→ stk] ⊢ e⇒ (p, st)

where argument trees st1, ..., stk are generated according to their types τ1, ..., τk (with
all fresh ids), and

[s1, ..., sm] = st1 ++ ... ++ stk

The generated SVCODE function will be added to a user-defined function envi-
ronment Ψ mapping from function identifiers to SFuns:

Ψ ::= [f1 7→ sf 1, ..., fi 7→ sf i]

And Ψ will be used as a component of the runtime environment. So when we
interpret the instruction (s′1, ..., s

′
n) := SCall f(s1, ..., sm), the function body will be

unfolded by looking up f in Ψ and then passing the arguments.

2.5 Eager SVCODE interpreter

Recall that an SVCODE program is a list of instructions, each of which defines
one or more streams. The eager interpreter executes the instructions sequentially,
assuming the available memory is infinitely large, which is the critical difference
between the execution models of the eager and streaming interpreters.

For an eager interpreter, since there is always enough space, a new stream can be
entirely allocated in memory immediately after its definition instruction is executed.
In this way, traversing the whole program only once will generate the final result,
even for recursions. The streaming model of SVCODE does not show any of its
strengths here; the interpreter will perform just like a NESL’s low-level interpreter.

As we will add a limitation to the memory size in the streaming model, it is
reasonable to consider the eager version as an extreme case of the streaming one
with the largest buffer size. In this case, much work can be simplified or even
removed, such as the scheduling since there is only one sequential execution round.
Thus the correctness, as well as the time complexity, is the easiest to analyze. So
the eager version can be used as a baseline to compare with the streaming one with
different buffer sizes.

2.5.1 Dataflow

In the eager model, a Xducer consumes the entire input streams at once and outputs
the whole result immediately. The dataflow DAG is established gradually as Xducers
are activated one by one.

2.5.2 Cost model

The low-level work cost in the eager model is the total number of consumed and
produced elements of all Xducers, and the step is merely the number of activated
Xducers. By activated we mean the executed stream definitions, because those
inside a WithCtrl block may be skipped, thus we will not count their steps.

31

2.6 Streaming SVCODE interpreter

The execution model of the streaming interpreter does not assume an infinite mem-
ory; instead, it only uses a limited size of memory as a buffer. If the buffer size is
relatively small, then most of the streams cannot be materialized entirely at once.
As a result, the SVCODE program will be traversed multiple times, or there will be
more scheduling rounds. The dataflow of the streaming execution model is still a
DAG, but the difference from the eager one is that each Xducer maintains a small
buffer, whose data is updated each round. The final result will be collected from all
these scheduling rounds.

Since in most cases we will have to execute more than one rounds, some extra
setting-up and overhead seem to be inevitable. On the other hand, exploiting only
a limited buffer increases the efficiency of space usage. In particular, for properly
streamable SNESL programs, the buffer size can be as small as one.

2.6.1 Streamability

So far we have mentioned streamable for a few times, but not given a further expla-
nation.

We consider an algorithm to be streamable if it can be executed in constant space,
and more generally, in space linear in the recursion depth.

We should point out that not all algorithms are streamable. The situation where
an algorithm is not streamable can be various. The first case easy to think about
may be that the order of processing the data is random, not in the same direction
of time, or in other words, it requires random access. For instance, most sorting
algorithms, such as Mergesort, are not suitable to be streamed, since most of them
involve element permutation or indexing. There are also some computations that
look streamable, but can still be possible to fail, as Example 2.25 shows.

Static analysis for streamability is still an open problem [Mad16].

Example 2.25. The first expression are not properly streamable: after the stream
s has been entirely consumed by reducePlus (i.e., Reduce+), it is used to append to
the end of the reduction result, which requires to recompute it; the second expression
is properly streamable, since outputting s can be executed at the same time of
computing the reduction.� �

1 > :bs 1 -- set buffer size = 1

2 >

3 > let s = &4 in {reducePlus(s)} ++ s -- expression1

4 Deadlock!

5 >

6 > let s = &4 in s ++ {reducePlus(s)} -- expression2

7 {0,1,2,3,6} :: {int} -- result

8 [W_H: 19, S_H: 5] -- high -level work and step cost

9 [W_L: 101, S_L: 37] -- low -level work and step cost

10 W_L/W_H: 5.3 -- work bound

11 S_L/(W_H/bufSize + S_H): 1.5 -- step bound

12 >

13 > :bs 10 -- buffer size 10

14 >

15 > let s = &4 in {reducePlus(s)} ++ s -- expression1

32

16 {6,0,1,2,3} :: {int}

17 [W_H: 19, S_H: 5]

18 [W_L: 101, S_L: 13]

19 W_L/W_H: 5.3

20 S_L/(W_H/bufSize + S_H): 1.9� �
2.6.2 Processes

In the streaming execution model, the output buffer of a Xducer can be written only
by the Xducer itself, but can be read by many other Xducers. We define two states
for a buffer:

• Filling: the buffer is not full, and the Xducer is producing or writing data to
it; any client trying to read it has to wait.

• Draining: the buffer must be full; the clients can read it only in this state; if
the Xducer itself tries to write the buffer.

The condition of switching from Filling to Draining is simple: when the buffer
is fully filled. But the other switching direction takes a bit more work to detect:
all the readers have read all the data in the buffer (we will explain more about this
later). In this way, the time of context-switching for a buffer is minimized, and the
data is shared among its clients.

A notable special case is when the Xducer produces its last chunk, whose size
may be less than the buffer size and thus can never turn the buffer to a draining
mode. To deal with this case, we add a flag to the draining state to indicate if it
is the last chunk of the stream. Thus, we have the definition of a buffer state as
follows:

BufState :: = Filling a⃗

| Draining a⃗ b

where a⃗ is the data in the buffer.
In addition to maintaining the buffer state, a Xducer also has to remember its

suppliers so that it is not necessary to specify the suppliers repeatedly each round.
Actually, once a dataflow DAG is established, it is only possible to add more sub-
graphs to it due to an unfolding of a WithCtrl block or a SCall instruction; the
other parts uninvolved will be unchanged until the end of the execution.

Since Xducers have different data rates (the size of consumed/produced data at
each round), it is also important to keep track of the position of the data that it
has read. We will call this position the read-cursor. Also, it is possible that a
Xducer reads from the same supplier multiple times but with different data rates,
so we need to distinguish each use, rather than each client. In practice, we use the
channel number, as we have shown in Figure 2.10, together with the read-cursor
on the buffer to distinguish a use. As a result, we have a client list Clis of type
[(SId, int, int)].

Now we use a structure process, a tuple of four components including a Xducer,
to stand for one node on the streaming DAG with the type:

Proc = (BufState, S,Clis,Xducer)

33

Figure 2.11: A process S2 of Xducer Map+. It has read a 2 from S0’s buffer and a
1 from S1’s buffers, and it is writing a 3 to its own buffer.

where S is the stream ids of the suppliers. An example process of Xducer Map+
can be found in Figure 2.11.

Since we do not have parallel implementation of Xducer, we can consider the
Xducer inside a process as the action-performing unit. We classify the atomic actions
of a Xducer into three:

• Pin: read one element from one supplier’s buffer.

• Pout: write one element to its own buffer.

• Done: shutdown itself, no read or write any more.

A Xducer’s actions can be considered as a sequential list of these three atomics.
For example, the Map+ Xducer’s action will be repetitions of two Pins (reads from
two suppliers respectively) followed by one Pout, and a Done action can be added
where the Xducer should shutdown:

[Pin0, Pin1, Pout, Pin0, Pin1, Pout, ..., Done]

where the subscripts of Pin indicate reading from different suppliers.
The process is responsible for providing its Xducer with the data and maintaining

the state of the buffer. Its activities is described as the following table shows.

34

Xducer

action

Buffer

state
Filling Draining F Draining T

Pin process-read process-read;
allread-check

impossible

Pout write one element to
buffer; if buffer is full,
switch to Draining F

wait to write, and
allread-check

impossible

Done switch to Draining T switch to Draining T skip

Table 2.1: Process activities. The description of process-read and
allread-check are given later.

• process-read:

– if the supplier’s buffer state is Draining, and the read-cursor shows the
process has not yet read all the data, then the process reads one element
successfully and increases the read-cursor by one

– if the supplier’s buffer state is Draining, but the read-cursor shows the
process has read all the data, or the supplier’s buffer state is Filling,
then the process waits

• allread-check: if all the clients have read all the data of the buffer, switch it
to Filling state.

2.6.3 Scheduling

The streaming execution model consists of two phases:

(1) Initialization
In this phase, the interpreter establishes the initial DAG by traversing the SV-
CODE program. The cases are:

• initialize a sole stream definition s := ψ(s1, ..., sk):
This is to set up one process s :

– set its suppilers S = [s1, ..., sk]

– add itself to its suppliers’ Clis with the corresponding channel number
∈ {1, ..., k} and a read-cursor number 0

– empty buffer of state Filling

– set up the specific Xducer ψ

• initialize a function call (s′1, ..., s
′
k′) := SCall f(s1, ..., sk):

A user-defined function at runtime can be considered as another DAG,
whose nodes(processes) of the formal arguments are missing. So the in-
terpreter just adds the function’s DAG to the main program’s DAG and re-
places the function’s formal arguments with the actual parameters s1, ..., sk,
and the formal return ones with the actual ones s′1, ..., s

′
k′ .

35

• initialize a WithCtrl block Sout := WithCtrl(sc, Sin, p)
At the initialization phase, the interpreter does not unfold p; instead, it
mainly does the following two tasks:

– prevents all the import streams of Sin from producing more than one
chunk (a full buffer) of data before the interpreter knows whether sc is
an empty stream or not, i.e., add all of them a dummy client that never
reads the buffer

– initializes all the export streams of Sout as dummy processes that do not
produce any data

(2) Loop scheduling.
This phase is a looping procedure. The condition of its end is that all the
Xducers have shutdown, and all the buffers are in DrainingT state.

In a single scheduling round, the processes on the DAG are activated one by one
from small to large. The active process acts as Table 2.11 shows.

Another important task in each round is to judge whether to unfold a WithCtrl

block or not. The judgment depends on the buffer state of the new control
stream:

• Filling ⟨⟩: the new control process has not produce any data yet, so the
decision cannot be made in this round, thus delayed to the next round

• Draining ⟨⟩ T : the new control stream is empty, thus no need to unfold the
code, just set the export list streams also empty, and performs some other
necessary clean-up job

• other cases: the new control stream must be nonempty, thus the interpreter
can unfold the code block now, and replace the dummy clients/producers
with actual clients/producers.

2.6.4 Cost model

Since we have defined the atomic actions of Xducers, it is now easy to define the
low-level cost:

Work = the total number of Pin and Pout of all processes

Step = the total number of switches from Filling to Draining of all processes

2.6.5 Recursion

In SVCODE, a recursive function call happens when the function body of f from
the instruction (s′1, ..., s

′
k′) := SCall f(s1, ..., sk) includes another SCall of f .

For a non-recursive SCall instruction, the effect of interpreting it is almost trans-
parent. For a recursive one, there is not much difference except one crucial point:
the recursive SCall can only occur within a WithCtrl block, otherwise it can never
terminate. At each time of interpreting an inline SCall instruction, the function
body is unfolded, but the WithCtrl instruction inside it will stop it from further
unfolding, that is, the stack-frame number only increases by one.

At the high level, a SNESL program should use some conditional to decide when
to terminate the recursion. As conditionals in SNESL are only comprehensions,

36

which are all translated to a WithCtrl block wrapping the expression body, so a
recursion that can terminate at the high level will also terminate at the low level.

Example 2.26. The recursive function fact computes the factorial for a given
number.� �

1 -- define a function to compute factorial

2 > function fact(x:int):int = if x <= 1 then 1 else x*fact(x-1)

3

4 -- using eager interpreter

5 > let x = {3,7,0,4} in {fact(y): y in x }

6 {6 ,5040 ,1 ,24} :: {int}

7 [W_H: 227, S_H: 95]

8 [W_L: 1007, S_L: 140]

9 W_L/W_H: 4.4 -- work bound

10 S_L/S_H: 1.5 -- step bound

11

12 -- using streaming interpreter

13 > let x = {3,7,0,4} in {fact(y): y in x }

14 {6 ,5040 ,1 ,24} :: {int}

15 [W_H: 227, S_H: 95]

16 [W_L: 977, S_L: 128]

17 W_L/W_H: 4.3

18 S_L/(W_H/bufSize + S_H): 1.1� �
The outline of the translated SVCODE of the expression let x = {3,7,0,4} in

{fact(y): y in x} is given in Figure 2.12. After generating the sequence {3,7,0,4},
the code only has two more instructions: a Usum to generate the new control stream,
and a WithCtrl block only for controling the recursive function call.� �

1 -- initial control stream = <()>

2 ...

3 S10 := InterMerge [S6,S7,S8,S9]; -- <F,F,F,F,T>

4 S11 := PriSegInter [(S1,S6) ,(S2,S7) ,(S3,S8) ,(S4,S9)]; -- <3,7,0,4>

5 S12 := Usum S10; -- <() ,() ,() ,()>

6 S13 := WithCtrl S12 (import [S11]):

7 [S13] := SCall fact [S11] -- <6 5040 1 24> function call

8

9 Return: (S13 , S10)� �
Figure 2.12: Outline SVCODE for the main function

The code of the function body is shown in Figure 2.13. The comments show the
streams when the function is unfolded at its first time, i.e, the argument stream
S1 = [3,7,0,4]. As the unfolding time increases, the graph of the dataflow grows
dynamically. The total unfolding time will depend on the maximal depth of the
recursive call of all elements. In our example, it is the number 7 that will unfold the
function 6 times.

� �
1

2 Parameters: [S1] -- <3,7,0,4>

37

3

4 -- compare with 1

5 S3 := Const_1; -- <1,1,1,1>

6 S4 := MapTwo Leq S1 S3; -- <F F T F>

7 S5 := B2u S4; -- <T T FT T>

8

9 -- for elements <=1

10 S6 := Usum S5; -- < () >

11 [S7] := WithCtrl S6 []:

12 S7 := Const_1 -- < 1 >

13

14 S8 := Const_1; -- <1>

15 S9 := MapTwo Leq S1 S8; -- <F F T F>

16 S10 := MapOne Not S9; -- <T T F T>

17 S11 := B2u S10; -- <FT FT FT >

18 S12 := Pack S1 S10; -- <3 7 4>

19

20 -- for elementes >1

21 S13 := Usum S11; -- <()() ()>

22 [S17] := WithCtrl S13 [S12]:

23 S14 := Const_1 -- <1 1 1>

24 S15 := MapTwo Minus S12 S14 -- <2 6 3>

25 [S16] := SCall fact [S15] -- <2 720 6> recursive

call

26 S17 := MapTwo Times S12 S16 -- <6 5040 24>

27 ...

28 S19 := PriSegInterS [(S7,S5) ,(S17 ,S11)]; -- <6 5040 1 24>

29

30 Return: S19� �
Figure 2.13: The SVCODE of fact function body

2.6.6 Deadlock

An inherent tough issue of the streaming execution model is the risk of deadlock,
which is mainly due to the limitation of available memory. In general, we classify
deadlock situations into two types: soft deadlock, which can be broken not neces-
sarily by enlarging the buffer size, and hard deadlock, which can only be solved by
enlarging the buffer size or recomputation.

• Soft deadlock:

One case of soft deadlock can be caused by the different data rates of processes
that leads to a situation where some buffer(s) of Filling state can never turn
to Draining. For example, the following expression tries to negate the elements
that can be divided by 5 exactly of a sequence.

Example 2.27. A soft deadlock that can be broken by stealing� �
1 > :bs 4

2 >

3 > {the({-x | x % 5 == 0} ++ {x | x %5 != 0}) : x in &10}

4 {0,1,2,3,4,-5,6,7,8,9} :: {int}� �
38

In this example, the input sequence contains elements from 0 to 9; the sub-
sequence of the negated numbers, containing only 0 and -5, are concatenated
with the one of the other eight numbers. Since these two subsequences are
generated at different rates, the buffer for holding the shorter subsequence can-
not get full when the other for the longer subsequence is already full to drain.
Then the Xducer for appending their elements deadlocks. But if we minimize
the buffer size to 1, then the deadlock does not happen, since buffer of size one
immediately turns to Draining mode as soon as there is one element generated.

In our implementation, we use a stealing strategy to mitigate this type of
deadlock. The idea is that when a deadlock is detected, we will first switch
the smallest process with a Filling state buffer into Draining mode to see if
the deadlock can be broken; if not, we repeat this switch until the deadlock is
broken; or otherwise, it may be a hard deadlock.

Since the stealing strategy is basically a premature switch from Filling to
Draining, the low-level step cost may be affected and the effect depends on
the concrete program and the buffer size. Some future work can be further
investigation about the effect of this stealing strategy on the cost model.

• Hard deadlock:

This type of deadlock is mainly caused by insufficient space or trying to traverse
the same sequence multiple times.

Example 2.28. A hard deadlock caused by traversing the sequence s two
times.� �

1 > :bs 4

2 >

3 > let s = {1+ x : x in &5} in s ++ &2 ++ s

4 Deadlock!� �
As the appending operation is sequential, which means its arguments must
come one by one, the same stream s can not appear two times sequentially.
One can solve the deadlock by recomputing the s stream, for example, defining
another stream doing the same task so they can be used at different time, as
the following code shows:

� �
1 > let s = {1+ x : x in &5} ; s2 = {1+ x : x in &5} in s ++ &2

++ s2

2 {1,2,3,4,5,0,1,1,2,3,4,5} :: {int}� �
Other solutions can be tabulating the sequence (into a vector), so it can be
used multiple times, or enlarging the buffer size.

� �
1 > :bs 10

2 >

3 > let s = {1+ x : x in &5} in s ++ &2 ++ s

4 {1,2,3,4,5,0,1,1,2,3,4,5} :: {int}� �
39

2.6.7 Examples

The following example program computes the united-and-conquer (exclusive) scan
and reduce at the same. Due to a lack of primitive functions in the experimental
language, we only implemented a version for a sequence with a length of power of 2
and require the length to be explicitly given.

For an input sequence of length n, the algorithm (for both scan and reduce) has
an asymptotic cost of linear work and logarithmic step, i.e. O(n) work and O(lg n)
step, and its recursion depth is logarithmic as well.

� �
1 -- united -and -conquer scan and reduce (only for n = power of 2)

2 function scanred(v:{int}, n:int) : ({int},int) =

3 if n==1 then ({0}, the(v))

4 else

5 let is = scanExPlus ({1 : x in v});

6 odds = {x: i in is , x in v | i%2 !=0};

7 evens ={x: i in is , x in v | i%2 ==0};

8 ps = {x+y : x in evens , y in odds};

9 (ss,r) = scanred(ps,n/2)

10 in (concat ({{s,s+x} : s in ss, x in evens}), r)� �
For the following running example, the actual time of the unfolding of scanred

is 5, i.e., lg 16 + 1 (as we can see from our instrumented interpreter, but not shown
here). Thus the size of the dataflow network, or the number of processes grows
4-fold after the initialization to reach its maximal size. We would expect that all
streamable recursions use linear space in its recursion depth, while this requires more
experiments and a formal proof.

� �
1 > :bs 1

2 >

3 > scanred(&16,16)

4 ({0 ,0,1,3 ,6 ,10 ,15 ,21 ,28 ,36,45,55,66,78,91,105} ,120) :: ({int},int)

5 [W_H: 837, S_H: 188], [W_L: 4783, S_L: 1568]

6 W_L/W_H: 5.7

7 S_L/(W_H/bufSize + S_H): 1.5

8 >

9 > :bs 10

10 >

11 > scanred(&16,16)

12 ({0 ,0,1,3 ,6 ,10 ,15 ,21 ,28 ,36,45,55,66,78,91,105} ,120) :: ({int},int)

13 [W_H: 837, S_H: 188], [W_L: 4783, S_L: 351]

14 W_L/W_H: 5.7

15 S_L/(W_H/bufSize + S_H): 1.3

16 >

17 > :bs 100

18 >

19 > scanred(&16,16)

20 ({0 ,0,1,3 ,6 ,10 ,15 ,21 ,28 ,36,45,55,66,78,91,105} ,120) :: ({int},int)

21 [W_H: 837, S_H: 188], [W_L: 4783, S_L: 300]

22 W_L/W_H: 5.7

23 S_L/(W_H/bufSize + S_H): 1.5� �
40

Chapter 3

Formalization

In this chapter, we will present the formal proof of the correctness of the translation
and the work cost preservation for the language SNESL0, a core subset of SNESL1.
First its formal definition and semantics will be given. Then SVCODE0, the tar-
get language of SNESL0, is defined, and proofs of some of its properties including
freshness and determinism are given. As the first step to formalize the full language,
we only consider the eager semantics of this target language here. The value repre-
sentation and translation from SNESL0 to SVCODE0 are also formalized. Finally,
we put emphasis on the proof of the translation correctness theorem including work
cost preservation.

3.1 SNESL0

The language SNESL0 we will formalize in this chapter is a subset of SNESL1 with
its core semantics. The simplifications we have made from SNESL1 to SNESL0 are
listed below:

• only one primitive type int

• no pair types or zip-like comprehensions

• selected built-in functions

• no restricted comprehension

• no user-defined functions

3.1.1 Syntax

(1) The types of SNESL0 are:

τ ::= int | {τ1}

(2) The synatx of SNESL0 values :

n ∈ Z

v ::= n | {v1, ..., vl}
(3) The syntax of SNESL0 expressions and the built-in functions are shown in Fig-
ure 3.1.

41

e ::= x (variable)

| let x = e1 in e2 (let-binding)

| ϕ(x1, ..., xk) (built-in function call)

| {e : x in y using x1, ..., xk} (general comprehension)

ϕ ::= constn | iota | plus

Figure 3.1: SNESL0 expressions and built-in functions

Note that constants now are generated by calling the built-in function constn()
to limit the number of expression forms. Also, the arguments of built-in functions
as well as the input sequence in general comprehension are variables instead of
expressions; the front end can simply convert the general forms of these expressions
into the restricted forms by adding let-bindings for the variables. For example, the
expression {x+ y : x in &5 using y} in a general form can be turned to

let t1 = const5() in

let t2 = iota(t1) in

{plus(x, y) : x in t2 using y}

where t1, t2 are temporary variables used by the front-end compiler.

3.1.2 Typing rules

(1) Expression typing rules:

Judgment Γ ⊢ e : τ

(Γ(x) = τ)
Γ ⊢ x : τ

Γ ⊢ e1 : τ1 Γ[x 7→ τ1] ⊢ e2 : τ

Γ ⊢ let x = e1 in e2 : τ

ϕ : (τ1, ..., τk) → τ
((Γ(xi) = τi)

k
i=1)Γ ⊢ ϕ(x1, ..., xk) : τ

[x 7→ τ1, (xi 7→ int)ki=1] ⊢ e : τ
(Γ(y) = {τ1}, (Γ(xi) = int)ki=1)Γ ⊢ {e : x in y using x1, ..., xk} : {τ}

Since now there is only one concrete type in SNESL0 (i.e., int), the free variables
x1, ..., xk in the rule for general comprehension must be all of type int.

(2) Built-in function typing rules:

Judgment ϕ : (τ1, ..., τk) → τ

42

constn : () → int iota : (int) → {int} plus : (int, int) → int

(3) Value typing rules:

Judgment v : τ

n : int
(vi : τ)

l
i=1

{v1, ..., vl} : {τ}

Notation 3.1. Let |v| denote the size of a value:

|n| = 1

|{v1, ..., vl}| = 1 +
l∑

i=1

|vi|

3.1.3 Semantics

(1) The evaluation rules with work cost of SNESL0 are given below. The W in the
judgment (W ∈ N) stands for the work cost.

Judgment ρ ⊢ e ↓ v $ W

(ρ(x) = v)
ρ ⊢ x ↓ v $ 0

ρ ⊢ e1 ↓ v1 $ W1 ρ[x 7→ v1] ⊢ e2 ↓ v $ W2

ρ ⊢ let x = e1 in e2 ↓ v $ W1 +W2

ϕ(v1, ..., vk) ↓ v
((ρ(xi) = vi)

k
i=1)

ρ ⊢ ϕ(x1, ..., xk) ↓ v $ (
∑k

i=1 |vi|) + |v|

([x 7→ vi, x1 7→ n1, ..., xk 7→ nk] ⊢ e ↓ v′i $ Wi)
l
i=1

ρ(y) = {v1, ..., vl}
(ρ(xi) = ni)

k
i=1

W = (k + 1) · (l + 1)+
l∑

i=1

Wi

ρ ⊢ {e : x in y using x1, ..., xk} ↓ {v′1, ..., v′l} $ W

For variables, we consider its evaluation is zero-cost. Let-bindings need to evalu-
ate both the bound expression e1 and the body e2, so the cost is the sum of these
two evaluations. A function call simply costs the total size of its arguments and
return value. The cost for evaluating a general comprehension is the sum of the
evaluations for each element in the sequence, plus an extra (k + 1) · (l + 1) 1.

(2) Built-in function evaluation rules:

Judgment ϕ(v1, ..., vk) ↓ v
1In [Mad16], the extra is k · (l + 1) (when the concrete type is restricted to only int), which should be a bug.

In a special case where k=0 and the evaluation of the comprehension body does not cost anything, for example,
{x : x in &5 using ·}, the total cost for evaluating the comprehension will be zero as well, if the extra is only
k · (l + 1). However, the low-level execution does pay some work cost (because of Usum) which is still proportional
to the length of the sequence.

43

constn() ↓ n
(n ≥ 0)

iota(n) ↓ {0, 1, ..., n− 1}

(n3 = n1 + n2)
plus(n1, n2) ↓ n3

3.2 SVCODE0

The target language of SNESL0 is also a subset of SVCODE presented in the last
chapter without the SCall instruction. We will call it SVCODE0.

3.2.1 Syntax

In this minimal language, a primitive stream a⃗ can be a vector of booleans, integers
or units, as the following grammar shows:

b ∈ B = {T, F}
a ::= n | b | ()

b⃗ = ⟨b1, ..., bi⟩
c⃗ = ⟨(), ..., ()⟩
a⃗ = ⟨a1, ..., ai⟩

The syntax of SVCODE0 is given in Figure 3.2.

p ::= ϵ

| s := ψ(s1, ..., sk)

| Sout := WithCtrl(sc, Sin, p1)

| p1; p2

s ::= 0 | 1 | · · · ∈ SId = N (stream ids)

S ::= {s1, ..., si} ∈ S (a set of stream ids)

ψ ::= Consta | ToFlags | Usum | MapTwo+ | ScanPlusn0 | Distr (Xducers)

Figure 3.2: Abstract syntax of SVCODE0

We consider a well-formed program p must be able to be represented in a form
S ⊩ p : S ′, where S is a superset of all the free variables of p and S ′ a set of all the
defined ones of p, and most importantly, there is no overlapping between S and S ′.

Definition 3.2 (Well-formedness). p is a well-formed SVCODE0 program, writ-
ten as S ⊩ p : S ′ for some S and S ′, if it can be shown so by the following rules:

44

Judgment S ⊩ p : S ′

S ⊩ ϵ : ∅
({s1, ..., sk} ⊆ S, s /∈ S)

S ⊩ s := ψ(s1, ..., sk) : {s}

Sin ⊩ p1 : S
′

 (Sin ∪ {sc}) ⊆ S

Sout ⊆ S ′

S ∩ S ′ = ∅

S ⊩ Sout := WithCtrl(sc, Sin, p1) : Sout

S ⊩ p1 : S1 S ∪ S1 ⊩ p2 : S2

S ⊩ (p1; p2) : S1 ∪ S2

Lemma 3.3. If S ⊩ p : S ′, then S ∩ S ′ = ∅.

Proof. The proof is straightforward by induction on the derivation of S ⊩ p : S ′. ■

3.2.2 Instruction semantics

Before showing the semantics, we first introduce some notations and operations
about streams for convenience.

Notation 3.4. Let ⟨a1, ..., ai|⃗a⟩ denote a non-empty stream ⟨a1, ..., ai, a′1, ..., a′j⟩ for
some a⃗ = ⟨a′1, ..., a′j⟩;

Notation 3.5 (Stream concatenation). ⟨a1, ..., ai⟩++⟨a′1, ..., a′j⟩ = ⟨a1, ..., ai, a′1, ..., a′j⟩

Notation 3.6 (Stream length). For a stream a⃗ = ⟨a1, ..., al⟩, |⃗a| = l.

The operational semantics of SVCODE0 is given in Figure 3.3, and the W in
the judgment stands for the work cost. The runtime environment or store σ is a
mapping from stream variables to vectors:

σ ::= [s1 7→ a⃗1, ..., si 7→ a⃗i]

The control stream c⃗, which is a vector of units, indicates the parallel degree of the
computation, as we have discussed in the last chapter. It is worth noting that only
in the rule P-Wc-Nonemp the control stream gets changed (from the conclusion
to the premise).

45

Judgment ⟨p, σ⟩ ⇓c⃗ σ′ $ W

P-Empty: ⟨ϵ, σ⟩ ⇓c⃗ σ $ 0

P-Xducer :
ψ(⃗a1, ..., a⃗k) ⇓c⃗ a⃗

((σ(si) = a⃗i)
k
i=1)⟨s := ψ(s1, ..., sk), σ⟩ ⇓c⃗ σ[s 7→ a⃗] $ (

∑k
i=1 |⃗ai|) + |⃗a|

P-Wc-Emp : (
∀s ∈ {sc} ∪ Sin.σ(s) = ⟨⟩
Sout = {s1, ..., sk}

)
⟨Sout := WithCtrl(sc, Sin, p1), σ⟩ ⇓c⃗ σ[(si 7→ ⟨⟩)ki=1] $ 1

P-Wc-Nonemp :
⟨p1, σ⟩ ⇓c⃗1 σ′′ $ W1

(
σ(sc) = c⃗1 ̸= ⟨⟩
Sout = {s1, ..., sk}

)
⟨Sout := WithCtrl(sc, Sin, p1), σ⟩ ⇓c⃗ σ[(si 7→ σ′′(si))

k
i=1] $ W1 + 1

P-Seq :
⟨p1, σ⟩ ⇓c⃗ σ′′ $ W1 ⟨p2, σ′′⟩ ⇓c⃗ σ′ $ W2

⟨p1; p2, σ⟩ ⇓c⃗ σ′ $ W1 +W2

Figure 3.3: SVCODE0 semantics

The rule P-Empty is simple: an empty program does nothing on the store, thus
it does not cost anything.

The rule P-Xducer adds the store a new stream binding where the bound vector
is generated by a specific Xducer. The detailed semantics of Xducers will be given
in the next subsection. Its cost is the total size of the input and output streams.

The rules P-Wc-Emp and P-Wc-Nonemp together show two possibilities for
interpreting a WithCtrl instruction:

• if the new control stream sc and the streams in Sin, which includes the free
variables of p1, are all empty, then just bind empty vectors to the stream ids
in Sout, which is a part of the defined streams of p1; the cost is just a constant.

• otherwise execute the code of p1 as usual under the new control stream, ending
in the store σ′′, then copy the bindings of Sout from σ′′ to the initial store; the
cost is the one of executing p1 plus a constant.

The rule P-Seq is for executing two pieces of code sequentially, so the cost is the
sum of these two.

3.2.3 Xducer semantics

The semantics of Xducers are abstracted into two levels: the general level and the
block level. The general level summarizes the common property that all Xducers
share, and the block level describes the specific behavior of each Xducer.

46

Judgment ψ(⃗a1, ..., a⃗k) ⇓c⃗ a⃗

P-X-Loop :
ψ(⃗a11, ..., a⃗k1) ↓ a⃗01 ψ(⃗a12, ..., a⃗k2) ⇓c⃗0 a⃗02

((⃗ai1++a⃗i2 = a⃗i)
k
i=0)

ψ(⃗a1, ..., a⃗k) ⇓⟨()|⃗c0⟩ a⃗0

P-X-Termi:
ψ(⟨⟩1, ..., ⟨⟩k) ⇓⟨⟩ ⟨⟩

2

Figure 3.4: General semantics of SVCODE0 Xducers

Figure 3.4 shows the semantics at the general level.
There are only two rules for the general semantics. They together say that the

output stream of a Xducer is computed in a “loop” fashion, where each iteration
uses specific block semantics of the Xducer and the number of iterations is the unary
number that the control stream represents, i.e., the length of the control stream. In
the parallel setting, we prefer to call this iteration a block. Recall that the control
stream is a representation of the parallel degree of the computation, then a block
stands for the subcomputation of exact one degree. It is worth noting that all these
blocks are data-independent, which means they can be executed in parallel. So
the control stream indeed carries the theoretical maximum number of processors we
need to execute the computation most efficiently, if the computation within a block
cannot be parallelized further.

After abstracting the general semantics, the remaining work of formalizing the
specific semantics of Xducers within a block becomes relatively clear and simple.
The block semantics are defined in Figure 3.5.

As mentioned before, we can consider a block as the minimum computing unit
assigned to a single processor. This is reasonable for Xducers such as Consta and
MapTwo+, because they are already sequential at the block level.

However, some other Xducers, such as Usum, can be parallelized further inside
a block. As we have implemented more Xducers than shown here, we find that
computations on unary numbers within blocks are common, which is mainly due to
the value representation strategy we use, but also more difficult to be regularized.
For the scope of this thesis, the block semantics we have shown are already relatively
clear and simple enough to reason about, and the formalization of the unary level
parallelism can be investigated in future work.

The formalization for these Xducers’ semantics we have shown here is mainly for
theoretical analysis and reasoning about the computation, but not for what the real
implementation of them should be. In practice, most of the Xducers can be realized
in a more efficient way to exploit parallelism by using a segmented scan operation
[Ble89].

2For notational convenience, in this thesis we add subscripts to a sequence of constants, such as ⟨⟩, F, 1, to denote
the total number of these constants.

47

Judgment ψ(⃗a1, ..., a⃗k) ↓ a⃗

P-X-Const:
Consta() ↓ ⟨a⟩

P-X-ToFlags: (n ≥ 0)
ToFlags(⟨n⟩) ↓ ⟨F1, ..., Fn, T⟩

P-X-MapTwo : (n3 = n1 + n2)
MapTwo+(⟨n1⟩, ⟨n2⟩) ↓ ⟨n3⟩

P-X-UsumF :
Usum(⃗b) ↓ a⃗

Usum(⟨F|⃗b⟩) ↓ ⟨()|⃗a⟩
P-X-UsumT:

Usum(⟨T⟩) ↓ ⟨⟩

P-X-ScanF :
ScanPlusn0+n(⃗b, a⃗) ↓ a⃗′

ScanPlusn0(⟨F|⃗b⟩, ⟨n|⃗a⟩) ↓ ⟨n0|⃗a′⟩

P-ScanT:
ScanPlusn0(⟨T⟩, ⟨⟩) ↓ ⟨⟩

P-X-DistrF :
Distr(⃗b, ⟨n⟩) ↓ a⃗

Distr(⟨F|⃗b⟩, ⟨n⟩) ↓ ⟨n|⃗a⟩
P-X-DistrT:

Distr(⟨T⟩, ⟨n⟩) ↓ ⟨⟩

Figure 3.5: Block semantics of Xducers

3.2.4 SVCODE0 determinism

Definition 3.7 (Stream prefix). a⃗ is a prefix of a⃗′, written as a⃗ ⊑ a⃗′, if it can be
shown so using the following rules:

Judgment a⃗ ⊑ a⃗′

I-Emp: ⟨⟩ ⊑ a⃗′ I-Nonemp:
a⃗ ⊑ a⃗′

⟨a0|⃗a⟩ ⊑ ⟨a0|⃗a′⟩

Lemma 3.8. If a⃗1++a⃗2 = a⃗, then a⃗1 ⊑ a⃗.

Proof. The proof is straightforward by induction on a⃗1: case a⃗1 = ⟨⟩ and case
a⃗1 = ⟨a0 | a⃗′1⟩ for some a⃗′1. ■

The following lemma says that a Xducer always knows how many elements it
should consume and produce within a block.

Lemma 3.9 (Blocks are self-delimiting and deterministic). If

(i) (⃗a′i ⊑ a⃗i by some derivation Ii)
k
i=1 and ψ(⃗a′1, ..., a⃗

′
k) ↓ a⃗′ by some P,

(ii) (⃗a′′i ⊑ a⃗i by some derivation I ′
i)

k
i=1 and ψ(⃗a′′1, ..., a⃗

′′
k) ↓ a⃗′′ by some P ′.

48

then

(iii) (⃗a′i = a⃗′′i)
k
i=1

(iv) a⃗′ = a⃗′′.

Proof. The proof is by induction on P. We show three cases P–X-ToFlags,
P–X-ScanT and P–X-ScanF here; the others are analogous.

• Case P uses P–X-ToFlags.
Then

P =
ToFlags(⟨n1⟩) ↓ ⟨F1, ..., Fn1 , T⟩

and
P ′ =

ToFlags(⟨n2⟩) ↓ ⟨F1, ..., Fn2 , T⟩
so k = 1, a⃗′1 = ⟨n1⟩, a⃗′ = ⟨F1, ..., Fn1 , T⟩, and a⃗′′1 = ⟨n2⟩, a⃗′′ = ⟨F1, ..., Fn2 , T⟩.
Since both a⃗′1 and a⃗

′′
1 are nonempty, I1 and I ′

1 must both use the rule I-Nonemp,
which implies n1 = n2. Then it is clear that a⃗′1 = a⃗′′1 and a⃗′ = a⃗′′, as required.

• Case P uses P–X-ScanT.
Then

P =
ScanPlusn0(⟨T⟩, ⟨⟩) ↓ ⟨⟩

so k=2, a⃗′1 = ⟨T⟩. Since a⃗′1 is nonempty, then I1 must use I-Nonemp, which
implies the first element of a⃗1 is T.
There are two possibilities for P ′:

– Subcase P ′ uses P–X-ScanF.
This subcase is impossible, because it requires a⃗1 to start with a F, which
is contradictory to what we already know.

– Subcase P ′ uses P–X-ScanT.
Then

P ′ =
ScanPlusn0(⟨T⟩, ⟨⟩) ↓ ⟨⟩

So a⃗′′1 = ⟨T⟩ = a⃗′1, a⃗
′′
2 = ⟨⟩ = a⃗′2, and a⃗

′′ = ⟨⟩ = a⃗′′, as required.

• Case P uses P–X-ScanF.
Then

P0

ScanPlusn0+n(⃗a
′
10, a⃗

′
20) ↓ a⃗′0P =

ScanPlusn0(⟨F|⃗a′10⟩, ⟨n|⃗a′20⟩) ↓ ⟨n0|⃗a′0⟩

So k=2, a⃗′1 = ⟨F|⃗a′10⟩, and a⃗′2 = ⟨n|⃗a′20⟩. I1 must use I-Nonemp, which implies
the first element of a⃗1 is F. So a⃗1 = ⟨F|⃗a10⟩ for some a⃗10. By the rule I-Nonemp,
we have

a⃗′10 ⊑ a⃗10
⟨F|⃗a′10⟩ ⊑ ⟨F|⃗a10⟩

Similarly, we can assume a⃗2 = ⟨n|⃗a20⟩, and we must have a⃗′20 ⊑ a⃗20. Thus,

(⃗a′i0 ⊑ a⃗i0)
2
i=1 (3.1)

There are two possibilities for P ′:

49

– Subcase P ′ uses P–X-ScanT.
This subcase is impossible, because a⃗1 does not start with a T.

– Subcase P ′ uses P–X-ScanF.
Then

P ′
0

ScanPlusn0+n(⃗a
′′
10, a⃗

′′
20) ↓ a⃗′′0P ′ =

ScanPlusn0(⟨F|⃗a′′10⟩, ⟨n|⃗a′′20⟩) ↓ ⟨n0 |⃗a′′0⟩
so a⃗′′1 = ⟨F|⃗a′′10⟩, a⃗′′2 = ⟨n|⃗a′′20⟩, a⃗′′ = ⟨n0|⃗a′′0⟩, and it is easy to show

(⃗a′′i0 ⊑ a⃗i0)
2
i=1 (3.2)

Here we first prove the following inner lemma:
if (⃗a′i0 ⊑ a⃗i0)

2
i=1 and ScanPlusn0 (⃗a

′
10, a⃗

′
20) ↓ a⃗′ by some derivation P0, (⃗a

′′
i0 ⊑

a⃗i0)
2
i=1 and ScanPlusn0 (⃗a

′′
10, a⃗

′′
20) ↓ a⃗′′, then a⃗′10 = a⃗′′10, a⃗

′
20 = a⃗′′20, and a⃗

′ =
a⃗′′.
The proof is by induction on P0. There are two subcases: for the case P0

uses P–X-ScanT, the proof is analogous to the outer proof case where
P uses P–X-ScanT; for the case P0 uses P–X-ScanF, the proof can be
done by the inner IH.

Then, by this inner lemma on (3.1) with P0, (3.2), P ′
0, we get (⃗a

′
i0 = a⃗′′i0)

2
i=1,

and a⃗′0 = a⃗′′0.
Thus ⟨F|⃗a′10⟩ = ⟨F|⃗a′′10⟩, i.e., a⃗′1 = a⃗′′1. Likewise, a⃗

′
2 = ⟨n|⃗a′20⟩ = ⟨n|⃗a′′20⟩ = a⃗′′2,

and a⃗′ = ⟨n0|⃗a′0⟩ = ⟨n0|⃗a′′0⟩ = a⃗′′, as required.

■
Lemma 3.10 (Xducer determinism). If ψ(⃗a1, ..., a⃗k) ⇓c⃗ a⃗0 by some derivation
P, and ψ(⃗a1, ..., a⃗k) ⇓c⃗ a⃗′0 by some derivation P ′, then a⃗0 = a⃗′0.

Proof. The proof is by induction on the structure of c⃗.

• Case c⃗ = ⟨⟩
Then both P and P ′ must use P-X-Termi:

P = P ′ =
ψ(⟨⟩1, ..., ⟨⟩k) ⇓⟨⟩ ⟨⟩

so a⃗0 = a⃗′0 = ⟨⟩, as required.

• Case c⃗ = ⟨()|⃗c0⟩ for some c⃗0.
P must use P-X-Loop:

P1

ψ(⃗a11, ..., a⃗k1) ↓ a⃗01
P2

ψ(⃗a12, ..., a⃗k2) ⇓c⃗0 a⃗02P =
ψ(⃗a1, ..., a⃗k) ⇓⟨()|⃗c0⟩ a⃗0

where
(⃗ai1++a⃗i2 = a⃗i)

k
i=1 (3.3)

a⃗01++a⃗02 = a⃗0 (3.4)

Similarly,

P ′
1

ψ(⃗a′11, ..., a⃗
′
k1) ↓ a⃗′01

P ′
2

ψ(⃗a′12, ..., a⃗
′
k2) ⇓c⃗0 a⃗′02P ′ =

ψ(⃗a1, ..., a⃗k) ⇓⟨()|⃗c0⟩ a⃗′0

50

where
(⃗a′i1++a⃗

′
i2 = a⃗i)

k
i=1 (3.5)

a⃗′01++a⃗
′
02 = a⃗′0 (3.6)

Using Lemma 3.8 on each of the k equations of (3.3), we have

(⃗ai1 ⊑ a⃗i)
k
i=1 (3.7)

Analogously, from (3.5),
(⃗a′i1 ⊑ a⃗i)

k
i=1 (3.8)

By Lemma 3.9 on (3.7) with P1, (3.8), P ′
1, we get

(⃗ai1 = a⃗′i1)
k
i=1 (3.9)

a⃗01 = a⃗′01 (3.10)

It is easy to show that from (3.3), (3.5) and (3.9) we can get

(⃗ai2 = a⃗′i2)
k
i=1 (3.11)

Then by IH on P2 with P ′
2, we obtain a⃗02 = a⃗′02.

Therefore, with (3.4), (3.6), (3.10), we obtain a⃗0 = a⃗01++a⃗02 = a⃗′01++a⃗
′
02 = a⃗′0,

as required.

■

Theorem 3.11 (SVCODE0determinism). If ⟨p, σ⟩ ⇓c⃗ σ′ $ W (by some deriva-
tion P) and ⟨p, σ⟩ ⇓c⃗ σ′′ $ W ′ (by some derivation P ′), then σ′ = σ′′ and W =W ′.

Proof. The proof is by induction on the syntax of p. There are four cases: the case
for p = ϵ is trivial; with the help of Lemma 3.10, the case for p = s := ψ(s1, ..., sk)
is immediate; proof of p = p1; p2 can be done by IH; the only interesting case is
p = Sout := WithCtrl(sc, Sin, p1).

• Case p = Sout := WithCtrl(sc, Sin, p1).
Assume Sout = {s1, ..., sk}. There are two subcases by induction on σ(sc):

– Subcase σ(sc) = ⟨⟩.
Then P and P ′ must both use P-Wc-Emp, and they must be identical:

P = P ′ = ⟨Sout := WithCtrl(sc, Sin, p1), σ⟩ ⇓c⃗ σ[(si 7→ ⟨⟩)ki=1] $ 1

with ∀s ∈ Sin.σ(s) = ⟨⟩. So σ′ = σ′′ = σ[(si 7→ ⟨⟩)ki=1], and W = W ′ = 1,
as required.

– Subcase σ(sc) ̸= ⟨⟩.
Then we must have

P1

⟨p1, σ⟩ ⇓c⃗1 σ1 $ W1P = ⟨Sout := WithCtrl(sc, Sin, p1), σ⟩ ⇓c⃗ σ[(si 7→ σ1(si))
k
i=1] $ W1 + 1

51

Also, we have

P ′
1

⟨p1, σ⟩ ⇓c⃗1 σ′
1 $ W ′

1P ′ = ⟨Sout := WithCtrl(sc, Sin, p1), σ⟩ ⇓c⃗ σ[(si 7→ σ′
1(si))

k
i=1] $ W

′
1 + 1

So σ′ = σ[(si 7→ σ1(si))
k
i=1], and σ

′′ = σ[(si 7→ σ′
1(si))

k
i=1].

By IH on p1 with P1 and P ′
1, we obtain σ1 = σ′

1 and W1 = W ′
1. Then it is

clear that σ′ = σ′′, and W = W1 + 1 = W ′
1 + 1 = W ′, as required.

■

3.3 Translation

(1) Since we do not have pairs, the type of stream trees here will be :

STree ∋ st ::= s | (st1, s)

(2) A function for obtaining the set of stream ids in a stream tree (or flattening a
stream tree to a set of stream ids):

· : STree → S
s = {s}

(st1, s) = st1 ∪ {s}

The translation judgments shown below can be read as: “ in the environment
δ, the expression e (or the function call ϕ(st1, ..., stk)) will be translated to an
SVCODE0 program p, and a stream tree st representing the evaluation result; the
fresh stream allocation counter is increased from s0 to s1”.

• Expression translation rules:

Judgment δ ⊢ e⇒s0
s1
(p, st)

(δ(x) = st)
δ ⊢ x⇒s0

s0
(ϵ, st)

δ ⊢ e1 ⇒s0
s′0
(p1, st1) δ[x 7→ st1] ⊢ e2 ⇒

s′0
s1 (p2, st)

δ ⊢ let x = e1 in e2 ⇒s0
s1
(p1; p2, st)

ϕ(st1, ..., stk) ⇒s0
s1
(p, st)

((δ(xi) = st i)
k
i=1)δ ⊢ ϕ(x1, ..., xk) ⇒s0

s1
(p, st)

52

[x 7→ st1, (xi 7→ s′i)
k
i=1] ⊢ e1 ⇒

s′k+1

s′′1
(p1, st2)

δ(y) = (st1, sb)

(δ(xi) = si)
k
i=1

p = (s ′0 := Usum(sb);

s ′1 := Distr(sb, s1);

...

s ′k := Distr(sb, sk);

Sout := WithCtrl(s ′0, Sin, p1))

Sin = st1 ∪ {s′1, ..., s′k}
Sout = {s | s ∈ st2, s ≥ s′k + 1}
s ′i+1 = s ′i + 1, ∀i ∈ {0, ..., k − 1}

δ ⊢ {e1 : x in y using x1, ..., xk} ⇒s′0

s′′1
(p, (st2, sb))

• Built-in function translation rules:

Judgment ϕ(st1, ..., stk) ⇒s0
s1
(p, st)

constn() ⇒s0
s0+1 (s0 := Constn(), s0)

plus(s1, s2) ⇒s0
s0+1 (s0 := MapTwo+(s1, s2), s0)

si+1 = si + 1, ∀i ∈ {0, ..., 3}
p =s0 := ToFlags(s);

s1 := Usum(s0);

{s2} := WithCtrl(s1, ∅, s2 := Const1());

s3 := ScanPlus0(s0, s2)

iota(s) ⇒s0
s4
(p, (s3, s0))

Notation 3.12. Let S ⋖ s denote ∀s′ ∈ S.s′ < s.

The following Lemma 3.13 and Theorem 3.14 together show that the translated
SVCODE0 program is well-formed and the defined stream ids are fresh (given the
conditions are all satisfied).

Lemma 3.13. If

(i) ϕ(st1, ..., stk) ⇒s0
s1
(p, st)

(ii)
∪k

i=1 st i ⊆ S

(iii) S ⋖ s0

then, for some S ′,

(iv) S ⊩ p : S ′

(v) S ′ ⊆ {s0, s0+1, ..., s1−1}

(vi) st ⊆ (S ∪ S ′)

Proof. The proof is by cases of the syntax of ϕ. ■

Theorem 3.14. If

53

(i) δ ⊢ e⇒s0
s1
(p, st)

(ii) ∀x ∈ dom(δ).δ(x) ⊆ S

(iii) S ⋖ s0

then, for some S ′,

(iv) S ⊩ p : S ′

(v) S ′ ⊆ {s0, s0+1, ..., s1−1}

(vi) st ⊆ (S ∪ S ′)

Proof. The proof can be done by induction on the syntax of e. The proof case of
e = ϕ(x1, ..., xk) uses Lemma 3.13. ■

3.4 Value representation

(1) Just like STree, the stream value tree also needs to be redefined as follows:

SvVal ∋ w ::= a⃗ | (w, b⃗)

(2) A function for SVCODE0 value construction from a stream-id tree:

σ∗ : STree → SvVal

σ∗(s) = σ(s)

σ∗((st , s)) = (σ∗(st), σ(s))

(3) We annotate the operation ++ with the high-level type to represent the con-
catenation of SVCODE0 values:

++τ : SvVal → SvVal → SvVal

a⃗1 ++int a⃗2 = a⃗1 ++ a⃗2

(w1, b⃗1) ++{τ} (w2, b⃗2) = (w1 ++τ w2, b⃗1 ++ b⃗2)

(4) The notation ⟨⟩τ can represent a stream tree whose streams are all empty (i.e.,
an empty stream tree), or it can be viewed as that given a high-level type τ , a
corresponding empty stream tree can be generated.

Notation 3.15. Let ⟨⟩τ denote an empty stream tree:

⟨⟩int = ⟨⟩
⟨⟩{τ} = (⟨⟩τ , ⟨⟩)

It is easy to check that, for any τ , ++τ is associative with ⟨⟩τ as neutral element.

(5) Value representation rules:

Judgment v ▷τ w

n ▷int ⟨n⟩
(vi ▷τ wi)

l
i=1 (w = w1 ++τ · · ·++τ wl){v1, ..., vl} ▷{τ} (w, ⟨F1, ..., Fl, T⟩)

54

(6) The following set of rules are used to recover/reconstruct a SNESL0 value from
a SVCODE0 value. The judgment can be read as:“ given a SVCODE0 value w
and a high-level type τ , a high-level value v can be recovered from the prefix of
each stream of w, and the remaining part is w′”.

Judgment w ◁τ v, w
′

⟨n0|⃗a⟩ ◁int n0, a⃗
w ◁τ v1, w1 w1 ◁τ v2, w2 · · · wl−1 ◁τ vl, wl

(w, ⟨F1, ..., Fl, T|⃗b⟩) ◁{τ} {v1, ..., vl}, (wl, b⃗)

The following two lemmas say that if a high-level value can be represented as a
low-level one, then using the value recovery rules above, we can translate the low-
level one back to the original high-level one, and the recovery is deterministic. A
corollary that can be derived from these lemmas is that if two high-level values are
represented as the same low-level one, then they must be identical.

Lemma 3.16 (Recovery determinism). If w ◁τ v, w′, and w ◁τ v′, w′′, then
v = v′, and w′ = w′′.

Proof. The proof is by induction on the derivation of w ◁τ v, w
′. ■

Lemma 3.17 (Recovery correctness). If v ▷τ w (by some derivation R), then
∀w′.(w++τw

′) ◁τ v, w
′.

Proof. The proof is by induction on R. ■

Corollary 3.18. If v ▷τ w, v
′ ▷τ w, then v = v′.

Proof. The proof will use Lemma 3.17 (take w′ = ⟨⟩τ) and Lemma 3.16. ■

3.5 Correctness

3.5.1 Definitions

We first define a binary relation
S∼ on stores to denote that two stores are similar:

they have identical domains, and their bound values of the stream ids in S are the
same.

Definition 3.19 (Store similarity). σ1
S∼σ2 iff

(1) dom(σ1) = dom(σ2)
(2) ∀s ∈ S.σ1(s) = σ2(s)

According to this definition, it is only meaningful to have S ⊆ dom(σ1) (=
dom(σ2)). When S = dom(σ1) = dom(σ2), σ1 and σ2 are identical. It is easy to

show that this relation
S∼ is symmetric and transitive.

• If σ1
S∼ σ2, then σ2

S∼ σ1.

• If σ1
S∼ σ2 and σ2

S∼ σ3, then σ1
S∼ σ3.

55

We also define a binary operation
S
▷◁ on stores to represent a kind of fusion of

two similar stores: the fusion of two similar stores is a new store, in which the
bound values by S are from any of the parameter stores, and the others are the
concatenation of the values from the two stores.

Definition 3.20 (Store fusion). For σ1
S∼ σ2, σ1

S
▷◁ σ2 = σ where

σ(s) =

{
σ1(s) (= σ2(s)), s ∈ S

σ1(s)++σ2(s), s /∈ S

Clearly, if σ1
S
▷◁ σ2 = σ, then σ1

S∼ σ and σ2
S∼ σ.

Lemma 3.21 (Xducer fusion). If

(i) ψ(⃗a1, ..., a⃗k) ⇓c⃗ a⃗ by some derivation P

(ii) ψ(⃗a′1, ..., a⃗
′
k) ⇓c⃗′ a⃗′ by some derivation P ′,

then ψ(⃗a1++a⃗
′
1, ..., a⃗k++a⃗

′
k) ⇓c⃗++c⃗′ a⃗++a⃗′ by some P ′′.

Proof. By induction on the structure of c⃗.

• Case c⃗ = ⟨⟩.
Then P must use P-X-Termi:

P =
ψ(⟨⟩, ..., ⟨⟩) ⇓⟨⟩ ⟨⟩

so (⃗ai = ⟨⟩)ki=1 and a⃗ = ⟨⟩. Then (⃗ai++a⃗
′
i = a⃗′i)

k
i=1, c⃗++c⃗

′ = c⃗′ and a⃗++a⃗′ = a⃗′.
Take P ′′ = P ′ and we are done.

• Case c⃗ = ⟨()|⃗c0⟩ for some c⃗0.
Then P must use P-X-Loop:

P1

ψ(⃗a11, ..., a⃗k1) ↓ a⃗01
P2

ψ(⃗a12, ..., a⃗k2) ⇓c⃗0 a⃗02P =
ψ(⃗a1, ..., a⃗k) ⇓⟨()|⃗c0⟩ a⃗

with (⃗ai = a⃗i1++a⃗i2)
k
i=1, and a⃗ = a⃗01++a⃗02.

By IH on c⃗0 with P2 and P ′, we get a derivation P ′
2 of

ψ(⃗a12++a⃗
′
1, ..., a⃗k2++a⃗

′
k) ⇓c⃗0++c⃗′ a⃗02++a⃗

′

Then using the rule P-X-Loop we can build a derivation P ′′′ as follows:

P1

ψ(⃗a11, ..., a⃗k1) ↓ a⃗01
P ′

2

ψ(⃗a12++a⃗
′
1, ..., a⃗k2++a⃗

′
k) ⇓c⃗0++c⃗′ a⃗02++a⃗

′

ψ(⃗a11++(⃗a12++a⃗
′
1), ..., a⃗k1++(⃗ak2++a⃗

′
k)) ⇓⟨()|⃗c0++c⃗′⟩ a⃗01++(⃗a02++a⃗

′)

Since it is clear that

∀i ∈ {1, ..., k}. a⃗i1++(⃗ai2++a⃗
′
i) = (⃗ai1++a⃗i2)++a⃗

′
i = a⃗i++a⃗

′
i

⟨()|⃗c′1++c⃗2⟩ = ⟨()|⃗c′1⟩++c⃗2 = c⃗1++c⃗2

a⃗01++(⃗a02++a⃗
′) = (⃗a01++a⃗02)++a⃗

′ = a⃗++a⃗′

so we take P ′′ = P ′′′, and we are done.

56

■
Notation 3.22. Let σ

S
== σ′ denote: ∀s ∈ S.σ(s) = σ′(s).

The relation σ
S
== σ′ looks similar to σ

S∼ σ′, but it does not require σ and σ′

have the same domain.

Lemma 3.23. If S ⊩ p : S ′, ⟨p, σ⟩ ⇓c⃗ σ′ $ W , then σ′ S
== σ.

Proof. The proof is by induction on the derivation of ⟨p, σ⟩ ⇓c⃗ σ′ $ W . ■
Lemma 3.24. If

(i) S ⊩ p : S ′

(ii) ⟨p, σ1⟩ ⇓c⃗ σ′
1 $ W

(iii) σ2
S
== σ1

then, for some σ′
2,

(iv) ⟨p, σ2⟩ ⇓c⃗ σ′
2 $ W

(v) σ′
2

S′
=== σ′

1

Proof. The proof is by induction on the derivation of ⟨p, σ1⟩ ⇓c⃗ σ′
1 $ W . ■

The following lemma says that two separate executions of the same program p
with different parallel degrees (c⃗1 and c⃗2) can be fused as one computation with a
parallel degree of c⃗1++c⃗2.

Lemma 3.25 (Parallelism fusion). If

(i) S1 ⊩ p : S2 (by some derivation W)

(ii) σ1
S∼ σ2

(iii) ⟨p, σ1⟩ ⇓c⃗1 σ′
1 $ W1 (by some derivation P1)

(iv) ⟨p, σ2⟩ ⇓c⃗2 σ′
2 $ W2 (by some derivation P2)

(v) (S1 ∪ S2) ∩ S = ∅
then, for some W ,

(vi) σ′
1

S∼ σ′
2

(vii)
⟨
p, σ1

S
▷◁ σ2

⟩
⇓c⃗1++c⃗2 σ′

1

S
▷◁ σ′

2 $ W (by P)

(viii) W ≤ W1 +W2

Proof. By induction on the syntax of p.

• Case p = ϵ.
P1 must be ⟨ϵ, σ1⟩ ⇓c⃗1 σ1 $ 0, and P2 must be ⟨ϵ, σ2⟩ ⇓c⃗2 σ2 $ 0.

So σ′
1 = σ1, and σ

′
2 = σ2, thus σ

′
1

S∼ σ′
2, and σ

′
1

S
▷◁ σ′

2 = σ1
S
▷◁ σ2.

By P-Empty, we take P =
⟨
ϵ, (σ1

S
▷◁ σ2)

⟩
⇓c⃗1++c⃗2 (σ1

S
▷◁ σ2) $ 0 and it’s clear

W = 0 ≤ 0 + 0, as required.

57

• Case p = s := ψ(s1, ..., sk).
P1 must look like

P ′
1

ψ(⃗a1, ..., a⃗k) ⇓c⃗1 a⃗

⟨s := ψ(s1, ..., sk), σ1⟩ ⇓c⃗1 σ1[s 7→ a⃗] $ (
∑k

i=1 |⃗ai|) + |⃗a|

and we have
(σ1(si) = a⃗i)

k
i=1 (3.12)

Similarly, P2 must look like

P ′
2

ψ(⃗a′1, ..., a⃗
′
k) ⇓c⃗2 a⃗′

⟨s := ψ(s1, ..., sk), σ2⟩ ⇓c⃗2 σ2[s 7→ a⃗′] $ (
∑k

i=1 |⃗a′i|) + |⃗a′|

and we have
(σ2(si) = a⃗′i)

k
i=1 (3.13)

So σ′
1 = σ1[s 7→ a⃗], σ′

2 = σ2[s 7→ a⃗′], and W1 = (
∑k

i=1 |⃗ai|) + |⃗a|, W2 =

(
∑k

i=1 |⃗a′i|) + |⃗a′|. Clearly, σ′
1

S∼ σ′
2.

From assumption (i) and (v) we have {s1, ..., sk} ⊆ S1 ∩ S = ∅, that is,

{s1, ..., sk} ∩ S = ∅ (3.14)

By Lemma 3.21 on P ′
1, P ′

2, we get a derivation P ′ of

ψ(⃗a1++a⃗
′
1, ..., a⃗k++a⃗

′
k) ⇓c⃗1++c⃗2 a⃗++a⃗′

Since σ1
S∼ σ2, with (3.12),(3.13) and (3.14), by Definition 3.20 we have

∀i ∈ {1, ..., k}.(σ1
S
▷◁ σ2)(si) = σ1(si)++σ2(si) = a⃗i++a⃗

′
i (3.15)

Also, it is easy to prove

σ1[s 7→ a⃗]
S
▷◁ σ2[s 7→ a⃗′] = (σ1

S
▷◁ σ2)[s 7→ a⃗++a⃗′] (3.16)

Using the rule P-Xducer with (3.15), we can build P ′′ as follows

P ′

ψ(⃗a1++a⃗
′
1, ..., a⃗k++a⃗

′
k) ⇓c⃗1++c⃗2 a⃗++a⃗′⟨

s := ψ(s1, ..., sk), (σ1
S
▷◁ σ2)

⟩
⇓c⃗1++c⃗2 (σ1

S
▷◁ σ2)[s 7→ a⃗++a⃗′] $ (

∑k
i=1 |⃗ai++a⃗′i|) + |⃗a++a⃗′|

With (3.16), we take P = P ′′, and it is clear that W = (
∑k

i=1 |⃗ai++a⃗′i|) +
|⃗a++a⃗′| = W1 +W2 as required.

58

• Case p = Sout := WithCtrl(sc, Sin, p0).
We must have

W0

Sin ⊩ p0 : S2W =
S1 ⊩ Sout := WithCtrl(sc, Sin, p0) : Sout

where
(Sin ∪ {sc}) ⊆ S1, Sout ⊆ S2 (3.17)

From (v) we have (Sin ∪ {sc}) ⊆ S1 ∩ S = ∅, that is,

{sc} ∩ S = ∅ (3.18)

Sin ∩ S = ∅ (3.19)

Assume Sout = {s1, ..., sk}.
There are four possibilities:

– Subcase both P1 and P2 use P-Wc-Emp.

So P1 must look like

⟨Sout := WithCtrl(sc, Sin, p0), σ1⟩ ⇓c⃗1 σ1[s1 7→ ⟨⟩, ..., sk 7→ ⟨⟩] $ 1

and we have
∀s ∈ {sc} ∪ Sin.σ1(s) = ⟨⟩ (3.20)

Similarly,P2 must look like

⟨Sout := WithCtrl(sc, Sin, p0), σ2⟩ ⇓c⃗2 σ2[s1 7→ ⟨⟩, ..., sk 7→ ⟨⟩] $ 1

and
∀s ∈ {sc} ∪ Sin.σ2(s) = ⟨⟩ (3.21)

So σ′
1 = σ1[(si 7→ ⟨⟩)ki=1], σ

′
2 = σ2[(si 7→ ⟨⟩)ki=1],W1 = 1,W2 = 1.

Since σ1
S∼ σ2, by Definition 3.20 with (3.18), (3.19), and (3.20), (3.21), we

have

∀s ∈ {sc} ∪ Sin.(σ1
S
▷◁ σ2)(s) = σ1(s)++σ2(s) = ⟨⟩ (3.22)

Also, it is easy to show that σ′
1

S∼ σ′
2 and

σ′
1

S
▷◁ σ′

2 = (σ1
S
▷◁ σ2)[(si 7→ ⟨⟩)ki=1] (3.23)

Using P-Wc-Emp with (3.22), we can build a derivation P ′ as follows⟨
Sout := WithCtrl(sc, Sin, p0), (σ1

S
▷◁ σ2)

⟩
⇓c⃗1++c⃗2 (σ1

S
▷◁ σ2)[(si 7→ ⟨⟩)ki=1] $ 1

With (3.23), we take P = P ′. And W = 1 ≤ 1+ 1 = W1 +W2 as requierd.

59

– Subcase P1 uses P-Wc-Nomemp, P2 uses P-Wc-Emp.

P1 must look like

P ′
1

⟨p0, σ1⟩ ⇓c⃗′1 σ′′
1 $ W0

⟨Sout := WithCtrl(sc, Sin, p0), σ1⟩ ⇓c⃗1 σ1[(si 7→ σ′′
1(si))

k
i=1] $ W0 + 1

and we have
σ1(sc) = c⃗′1 ̸= ⟨⟩ (3.24)

P2 must look like

⟨Sout := WithCtrl(sc, Sin, p0), σ2⟩ ⇓c⃗2 σ2[(si 7→ ⟨⟩)ki=1] $ 1

and we have ∀s ∈ {sc} ∪ Sin.σ2(s) = ⟨⟩ thus

σ2(sc) = ⟨⟩ (3.25)

∀s ∈ Sin.σ2(s) = ⟨⟩ (3.26)

So σ′
1 = σ1[(si 7→ σ′′

1(si))
k
i=1], W1 = W0 + 1, σ′

2 = σ2[(si 7→ ⟨⟩)ki=1] and
W2 = 1.

Since σ1
S∼ σ2, it is easy to show that

∀s ∈ Sin.(σ1
S
▷◁ σ2)(s) = σ1(s)++σ2(s) = σ1(s) (3.27)

Then by Lemma 3.24 on W0 with P ′
1, (3.27), we obtain a derivation P0 of⟨

p0, (σ1
S
▷◁ σ2)

⟩
⇓c⃗′1 σ0 $ W0

for some σ0, and

σ0
S2=== σ′′

1

Then, with (3.17), we have

(σ0(si) = σ′′
1(si))

k
i=1 (3.28)

Since σ1
S∼ σ2, by Definition 3.20 with (3.24), (3.25), we have

(σ1
S
▷◁ σ2)(sc) = σ1(sc)++σ2(sc) = c⃗′1 ̸= ⟨⟩ (3.29)

and it is also easy to show σ′
1

S∼ σ′
2 and

(σ′
1

S
▷◁ σ′

2) = (σ1
S
▷◁ σ2)[(si 7→ σ′′

1(s1))
k
i=1] (3.30)

With (3.28), we replace σ′′
1(si) with σ0(si) for ∀i ∈ {1, ..., k} in (3.30),

giving us

(σ′
1

S
▷◁ σ′

2) = (σ1
S
▷◁ σ2)[(si 7→ σ0(s1))

k
i=1] (3.31)

60

Since (3.29), we can use the rule P-Wc-Nonemp to build a derivation P ′

as follows

P0⟨
p0, (σ1

S
▷◁ σ2)

⟩
⇓c⃗′1 σ0 $ W0⟨

Sout := WithCtrl(sc, Sin, p0), (σ1
S
▷◁ σ2)

⟩
⇓c⃗1++c⃗2 (σ1

S
▷◁ σ2)[(si 7→ σ0(si))

k
i=1] $ W0 + 1

Then with (3.31), we take P = P ′, and it is clear W = W0 + 1 = W1 ≤
W1 + 1 = W1 +W2, as required.

– Subcase P1 uses P-Wc-Emp and P2 uses P-Wc-Nonemp.
This subcase is analogous to the previous one.

– Subcase both P1 and P2 use P-Wc-Nonemp.
P1 must look like

P ′
1

⟨p0, σ1⟩ ⇓c⃗′1 σ′′
1 $ W ′

1

⟨Sout := WithCtrl(sc, Sin, p0), σ1⟩ ⇓c⃗1 σ1[(si 7→ σ′′
1(si))

k
i=1] $ W

′
1 + 1

and
σ1(sc) = c⃗′1 ̸= ⟨⟩ (3.32)

Similarly, P2 must look like

P ′
2

⟨p0, σ2⟩ ⇓c⃗′2 σ′′
2 $ W ′

2

⟨Sout := WithCtrl(sc, Sin, p0), σ2⟩ ⇓c⃗2 σ2[(si 7→ σ′′
2(si))

k
i=1] $ W

′
2 + 1

and
σ2(sc) = c⃗′2 ̸= ⟨⟩ (3.33)

So σ′
1 = σ1[(si 7→ σ′′

1(si))
k
i=1],W1 = W ′

1 + 1, σ′
2 = σ2[(si 7→ σ′′

2(si))
k
i=1] and

W2 =W ′
2 + 1.

By IH on p0 with W0, P ′
1, P ′

2, we get σ′′
1

S∼ σ′′
2 , a derivation P0 of⟨

p0, (σ1
S
▷◁ σ2)

⟩
⇓c⃗′1++c⃗′2 σ′′

1

S
▷◁ σ′′

2 $ W ′

and W ′ ≤ W ′
1 +W ′

2.

Since ∀i ∈ {1, ..., k}.si ∈ Sout and Sout ∩ S = ∅ , then by Definition 3.20,
we know

(σ′′
1

S
▷◁ σ′′

2)(si) = σ′′
1(si)++σ

′′
2(si) (3.34)

Also, it is easy to show that σ′
1

S∼ σ′
2, and

(σ′
1

S
▷◁ σ′

2) = (σ1
S
▷◁ σ2)[(si 7→ σ′′

1(si)++σ
′′
2(si))

k
i=1] (3.35)

Then, with (3.34), we replace σ′′
1(si)++σ

′′
2(si) with (σ′′

1

S
▷◁ σ′′

2)(si) for ∀i ∈
{1, ..., k} in (3.35), giving us

(σ′
1

S
▷◁ σ′

2) = (σ1
S
▷◁ σ2)[(si 7→ (σ′′

1

S
▷◁ σ′′

2)(si))
k
i=1] (3.36)

61

Since (3.18) with (3.32), (3.33), we know (σ1
S
▷◁ σ2)(sc) = c⃗′1++c⃗

′
2 ̸= ⟨⟩,

therefore we can use the rule P-Wc-Nonemp to build a derivation P ′ as
follows:

P0⟨
p0, (σ1

S
▷◁ σ2)

⟩
⇓c⃗′1++c⃗′2 σ′′

1

S
▷◁ σ′′

2 $ W ′⟨
Sout := WithCtrl(sc, Sin, p0), (σ1

S
▷◁ σ2)

⟩
⇓c⃗1++c⃗2 (σ1

S
▷◁ σ2)[(si 7→ (σ′′

1

S
▷◁ σ′′

2)(si))
k
i=1] $ W

′ + 1

.

Therefore, with (3.36), we take P = P ′, and it is clear that W =W ′ +1 <
W ′

1 + 1 +W ′
2 + 1 = W1 +W2 as required.

• Case p = p1; p2
We must have

W1

S0 ⊩ p1 : S1

W2

S0 ∪ S1 ⊩ p2 : S2W =
S0 ⊩ (p1; p2) : S1 ∪ S2

P ′
1

⟨p1, σ1⟩ ⇓c⃗1 σ′′
1 $ W ′

1

P ′′
1

⟨p2, σ′′
1⟩ ⇓c⃗1 σ′

1 $ W ′′
1P1 = ⟨p1; p2, σ1⟩ ⇓c⃗1 σ′

1 $ W ′
1 +W ′′

1

and
P ′

2

⟨p1, σ2⟩ ⇓c⃗2 σ′′
2 $ W ′

2

P ′′
2

⟨p2, σ′′
2⟩ ⇓c⃗2 σ′

2 $ W ′′
2P2 = ⟨p1; p2, σ2⟩ ⇓c⃗1 σ′

2 $ W ′
2 +W ′′

2

From (v) it is easy to show that

S0 ∩ S = ∅ (3.37)

S1 ∩ S = ∅ (3.38)

S2 ∩ S = ∅ (3.39)

Then by IH on p1 with W1, P ′
1, P ′

2, (3.37), we get

σ′′
1

S∼ σ′′
2 (3.40)

and a derivation P ′ of⟨
p1, (σ1

S
▷◁ σ2)

⟩
⇓c⃗1++c⃗2 σ′′

1

S
▷◁ σ′′

2 $ W ′

where W ′ ≤ W ′
1 +W ′

2.

Likewise, by IH on p2 with W2, (3.40), P ′′
1 , P ′′

2 , we get σ
′
1

S∼ σ′
2, and a derivation

P ′′ of ⟨
p2, σ

′′
1

S
▷◁ σ′′

2

⟩
⇓c⃗1++c⃗2 (σ′

1

S
▷◁ σ′

2) $ W
′′

where W ′′ ≤ W ′′
1 +W ′′

2 .

Therefore, we use the rule P-Seq to build P as follows:
P ′⟨

p1, (σ1
S
▷◁ σ2)

⟩
⇓c⃗1++c⃗2 σ′′

1

S
▷◁ σ′′

2 $ W ′

P ′′⟨
p2, σ

′′
1

S
▷◁ σ′′

2

⟩
⇓c⃗1++c⃗2 (σ′

1

S
▷◁ σ′

2) $ W
′′⟨

p1; p2, (σ1
S
▷◁ σ2)

⟩
⇓c⃗1++c⃗2 (σ′

1

S
▷◁ σ′

2) $ W

and it is clear W = W ′ +W ′′ ≤ W ′
1 +W ′

2 +W ′′
1 +W ′′

2 =W1 +W2, as required.

62

■

3.5.2 Correctness proof

Lemma 3.26 (Correctness of built-in functions). For some constant C, if

(i) ϕ : (τ1, ..., τk) → τ (by some derivation T)

(ii) ϕ(v1, ..., vk) ↓ v (by E)

(iii) ϕ(st1, ..., stk) ⇒s0
s1
(p, st) (by C)

(iv) (vi ▷τi σ
∗(st i))

k
i=1

then, for some σ′ and W ,

(v) ⟨p, σ⟩ ⇓⟨()⟩ σ′ $ W (by P)

(vi) v ▷τ σ
′∗(st) (by R)

(vii) W ≤ C · (
∑k

i=1 |vi|+ |v|)

Proof. The proof is by cases on the syntax of ϕ. We will show that we can take C
= 7 here, which will satisfy all the proof cases.

• Case ϕ = constn
There is only one possibility for each of T , E and C:

T = constn : () → int

E = constn() ↓ n
C = constn() ⇒s0

s0+1 (s0 := Constn(), s0)

So k = 0, τ = int, v = n, p = s0 := Constn(), s1 = s0 + 1, and st = s0

By P-Xducer, P-X-Loop, P-X-Termi and P-X-Const, we can construct
P as follows:

Constn() ↓ ⟨n⟩ Constn() ⇓⟨⟩ ⟨⟩
Constn() ⇓⟨()⟩ ⟨n⟩

P =
⟨s0 := Constn(), σ⟩ ⇓⟨()⟩ σ[s0 7→ ⟨n⟩] $ 1

So σ′ = σ[s0 7→ ⟨n⟩].
Then we take R = n ▷int σ

′(s0)
Also clearly, W = 1 = |v|, so C can be any number ≥ 1.

• Case ϕ = plus
We must have

T = plus : (int, int) → int

E = plus(n1, n2) ↓ n3

where n3 = n2 + n1, and

C = plus(s1, s2) ⇒s0
s0+1 (s0 := MapTwo+(s1, s2), s0)

63

So k = 2 and v1 = n1, v2 = n2, v = n3, st = s0.

Assumption (iv) gives us n1 ▷int σ(s1) and n2 ▷int σ(s2), which implies σ(s1) =
⟨n1⟩ and σ(s2) = ⟨n2⟩ respectively.
Then using P-Xducer with σ(s1) = ⟨n1⟩ and σ(s2) = ⟨n2⟩, P-X-Loop,
P-X-Termi, and P-X-MapTwo we can build P as follows:

MapTwo+(⟨n1⟩, ⟨n2⟩) ↓ ⟨n3⟩ MapTwo+(⟨⟩, ⟨⟩) ⇓⟨⟩ ⟨⟩
MapTwo+(⟨n1⟩, ⟨n2⟩) ⇓⟨()⟩ ⟨n3⟩⟨

s0 := MapTwo+(s1, s2), σ
⟩
⇓⟨()⟩ σ[s0 7→ ⟨n3⟩] $ 3

Therefore, σ′ = σ[s0 7→ ⟨n3⟩].
Now we can take R = n3 ▷int σ

′(s0), and it is clear thatW = 3 = |v1|+ |v2|+ |v|
and C can be any number ≥ 1.

• Case ϕ = iota.
We have

T = iota : (int) → {int}
E = iota(n) ↓ {0, 1, ..., n−1}

where n ≥ 0, and
C = iota(s) ⇒s0

s4
(p, (s3, s0))

where

si+1 = si + 1,∀i ∈ {0, ..., 3}
p = (s0 := ToFlags(s);

s1 := Usum(s0);

{s2} := WithCtrl(s1, ∅, s2 := Const1());

s3 := ScanPlus0(s0, s2))

So k = 1, v1 = n, τ = {int} and v = {0, 1, ..., n−1}.
From (iv): n ▷int σ(s), which implies σ(s) = ⟨n⟩.
Let p = p0; (p1; (p2; p3)). Then using P-Seq 3 times, we construct P as follows:

P0

⟨p0, σ⟩ ⇓⟨()⟩ σ0 $ W0

P1

⟨p1, σ0⟩ ⇓⟨()⟩ σ1 $ W1

P2

⟨p2, σ1⟩ ⇓⟨()⟩ σ2 $ W2

P3

⟨p3, σ2⟩ ⇓⟨()⟩ σ′ $ W3

⟨p2; p3, σ2⟩ ⇓⟨()⟩ σ′ $ W2 +W3

⟨p1; (p2; p3), σ1⟩ ⇓⟨()⟩ σ′ $ W1 +W2 +W3

⟨p0; (p1; (p2; p3)), σ⟩ ⇓⟨()⟩ σ′ $ W0 +W1 +W2 +W3

For p0 = s0 := ToFlags(s), with σ(s) = ⟨n⟩, we can build P0 as follows:

by P-X-ToFlags
ToFlags(⟨n⟩) ↓ ⟨F1, ..., Fn, T⟩

by P-X-Termi
ToFlags(⟨⟩) ⇓⟨⟩ ⟨⟩

by P-X-Loop
ToFlags(⟨n⟩) ⇓⟨()⟩ ⟨F1, ..., Fn, T⟩

by P-Xducer
⟨p0, σ⟩ ⇓⟨()⟩ σ[s0 7→ ⟨F1, ..., Fn, T⟩] $ 1 + n+ 1

So σ0 = σ[s0 7→ ⟨F1, ..., Fn, T⟩] and W0 = n+ 2.

64

Similarly, for p1 = s1 := Usum(s0), we can build P1 as follows:

by P-X-UsumT Usum(⟨T⟩) ↓ ⟨⟩
....

Usum(⟨F2, ..., Fn, T⟩) ↓ ⟨()2, ..., ()n⟩
by P-X-UsumF

Usum(⟨F1, ..., Fn, T⟩) ↓ ⟨()1, ..., ()n⟩
by P-X-Termi

Usum(⟨⟩) ⇓⟨⟩ ⟨⟩
by P-X-Loop

Usum(⟨F1, ..., Fn, T⟩) ⇓⟨()⟩ ⟨()1, ..., ()n⟩
by P-Xducer

⟨p1, σ0⟩ ⇓⟨()⟩ σ0[s1 7→ ⟨()1, ..., ()n⟩] $ n+ 1 + n

So σ1 = σ[s0 7→ ⟨F1, ..., Fn, T⟩, s1 7→ ⟨()1, ..., ()n⟩], and W1 = 2n+ 1.

Now we build P2 for p2 = {s2} := WithCtrl(s1, ∅, s2 := Const1()). There are
two possibilities:

– Subcase n = 0, then σ1(s1) = ⟨⟩, so we use P-Wc-Emp to build P2 as
follows:

⟨p2, σ1⟩ ⇓⟨()⟩ σ1[s2 7→ ⟨⟩] $ 1

thus σ2 = σ[s0 7→ ⟨T⟩, s1 7→ ⟨⟩, s2 7→ ⟨⟩], and W2 = 1.

– Subcase n > 0, then σ1(s1) = ⟨()1, ..., ()n⟩ ̸= ⟨⟩. It is easy to show that we
can build P2 ending with using the rule P-Wc-Nonemp:

⟨s2 := Const1(), σ1⟩ ⇓⟨()1,...,()n⟩ σ1[s2 7→ ⟨11, ..., 1n⟩] $ n
⟨p2, σ1⟩ ⇓⟨()⟩ σ1[s2 7→ ⟨11, ..., 1n⟩] $ n+ 1

So in this subcase, σ2 = σ[s0 7→ ⟨F1, ..., Fn, T⟩, s1 7→ ⟨()1, ..., ()n⟩, s2 7→
⟨11, ..., 1n⟩], and W2 = n+ 1.

For p3 = s3 := ScanPlus0(s0, s2), it is easy to show that

⟨p3, σ2⟩ ⇓⟨()⟩ σ2[s3 7→ ⟨0, ..., n− 1⟩] $ n+ 1 + n+ n

thus σ′ = σ[s0 7→ ⟨F1, ..., Fn, T⟩, s1 7→ ⟨()1, ..., ()n⟩, s2 7→ ⟨11, ..., 1n⟩, s3 7→ ⟨0, ..., n−
1⟩] and W3 = 3n+ 1.

Therefore, with σ′∗((s3, s0)) = (⟨0, ..., n−1⟩, ⟨F1, ..., Fn, T⟩), we can build

0 ▷int ⟨0⟩ ... n−1 ▷int ⟨n−1⟩
R = {0, ..., n−1} ▷{int} (⟨0, ..., n−1⟩, ⟨F1, ..., Fn, T⟩)

Since W = W0 +W1 +W2 +W3 = 6n + 3 +W2, and |v1| + |v| = n + 1, for
n = 0, we have W2 = 1, so W = 4, and C can be any number ≥ 4; for n ̸= 0,
W2 = n+ 1, so W = 7n+ 4, thus C ≥ 7.

■
Theorem 3.27 (Correctness for expressions). For some constant C, if

(i) Γ ⊢ e : τ (by some derivation T)

(ii) ρ ⊢ e ↓ v $ WH (by some E)

(iii) δ ⊢ e⇒s0
s1
(p, st) (by some C)

65

(iv) ∀x ∈ dom(Γ). ⊢ ρ(x) : Γ(x)

(v) ∀x ∈ dom(Γ).δ(x)⋖ s0

(vi) ∀x ∈ dom(Γ).ρ(x) ▷Γ(x) σ
∗(δ(x))

then, for some σ′ and WL,

(vii) ⟨p, σ⟩ ⇓⟨()⟩ σ′ $ WL (by some derivation P)

(viii) v ▷τ σ
′∗(st) (by some R)

(ix) WL ≤ C ·WH

Proof. The proof is by induction on the syntax of e. We will show that we can take
C = 7 here, which will satisfy all the proof cases.

• Case e = x.
We must have

T = (Γ(x) = τ)
Γ ⊢ x : τ

E = (ρ(x) = v)
ρ ⊢ x ↓ v $ 0

C = (δ(x) = st)
δ ⊢ x⇒s0

s0
(ϵ, st)

So p = ϵ.

Immediately we have P = ⟨ϵ, σ⟩ ⇓⟨()⟩ σ $ 0
From the assumptions (iv), (v) and (vi) we already have v ▷τ σ

∗(st). Finally
it’s clear that WL = WH = 0, so C can be any number.

• Case e = let x = e1 in e2.

We must have:

T1

Γ ⊢ e1 : τ1

T2

Γ[x 7→ τ1] ⊢ e2 : τT =
Γ ⊢ let x = e1 in e2 : τ

E1
ρ ⊢ e1 ↓ v1 $ WH

1

E2
ρ[x 7→ v1] ⊢ e2 ↓ v $ WH

2E =
ρ ⊢ let x = e1 in e2 ↓ v $ WH

1 +WH
2

C1
δ ⊢ e1 ⇒s0

s′0
(p1, st1)

C2
δ[x 7→ st1] ⊢ e2 ⇒

s′0
s1 (p2, st)

C =
δ ⊢ let x = e1 in e2 ⇒s0

s1
(p1; p2, st)

So p = p1; p2.

By IH on e1 with T1, E1, C1, we have

(a) P1 of ⟨p1, σ⟩ ⇓⟨()⟩ σ1 $ WL
1

(b) R1 of v1 ▷τ1 σ
∗
1(st1)

(c) WL
1 ≤ C ·WH

1

66

From (b), we must have ρ[x 7→ v1](x) : Γ[x 7→ τ1](x), and ρ[x 7→ v1](x) ▷Γ[x7→τ1](x)

σ∗
1(δ[x 7→ st1](x)) must hold. By Theorem 3.14 on C1, we get st1 ⋖ s′0, hence

δ[x 7→ st1](x)⋖ s′0.

Then by IH on e2 with T2, E2, C2, we get

(d) P2 of ⟨p2, σ1⟩ ⇓⟨()⟩ σ2 $ WL
2

(e) R2 of v ▷τ σ
∗
2(st)

(f) WL
2 ≤ C ·WH

2

So using P-Seq we can construct:

P1

⟨p1, σ⟩ ⇓⟨()⟩ σ1 $ WL
1

P2

⟨p2, σ1⟩ ⇓⟨()⟩ σ2 $ WL
2P =

⟨p1; p2, σ⟩ ⇓⟨()⟩ σ2 $ WL
1 +WL

2

Take σ′ = σ2 (thus R = R2), and we have WL = WL
1 +WL

2 ≤ C(WH
1 +WH

2) =
C ·WH , as required.

• Case e = ϕ(x1, ..., xk)
We must have

T1

ϕ : (τ1, ..., τk) → τ
T = ((Γ(xi) = τi)

k
i=1)Γ ⊢ ϕ(x1, ..., xk) : τ

E1
ϕ(v1, ..., vk) ↓ vE = ((ρ(xi) = vi)

k
i=1)

ρ ⊢ ϕ(x1, ..., xk) ↓ v $ (
∑k

i=1 |vi|+ |v|)
C1

ϕ(st1, ..., stk) ⇒s0
s1
(p, st)

C = ((δ(xi) = st i)
k
i=1)δ ⊢ ϕ(x1, ..., xk) ⇒s0

s1
(p, st)

From the assumptions (iv) and (vi), for all i ∈ {1, ..., k}:

(a) ⊢ ρ(xi) : Γ(xi), that is, ⊢ vi : τi
(b) ρ(xi) ▷Γ(xi) σ

∗(st i), that is, vi ▷τi σ
∗(st i)

Since WH = |v| +
∑k

i=1 |vi|, using Lemma 3.26 on T1 with E1, C1, (a), (b) will
give us exactly what we shall show.

• Case e = {e1 : x in y using x1, ..., xk}.

From the corresponding assumptions, we have:

(i)
T1

[x 7→ τ1, x1 7→ int, ..., xk 7→ int] ⊢ e1 : τ2T =
Γ ⊢ {e1 : x in y using x1, ..., xk} : {τ2}

with
Γ(y) = {τ1}

(Γ(xi) = int)ki=1

67

(ii) (
Ei

[x 7→ vi, x1 7→ n1, ..., xk 7→ nk] ⊢ e1 ↓ v′i $ WH
i

)l

i=1E =
ρ ⊢ {e1 : x in y using x1, ..., xk} ↓ {v′1, ..., v′l} $ WH

with
ρ(y) = {v1, ..., vl}
(ρ(xi) = ni)

k
i=1

WH = (l + 1) · (1 + k) +
l∑

i=1

WH
i

(iii)
C1

[x 7→ st1, x1 7→ s′1, ..., xk 7→ s′k] ⊢ e1 ⇒
s′k+1

s′′1
(p1, st2)

C =
δ ⊢ {e1 : x in y using x1, ..., xk} ⇒s′0

s′′1
(p, (st2, sb))

with

δ(y) = (st1, sb)

(δ(xi) = si)
k
i=1

p = (s ′0 := Usum(sb);

s ′1 := Distr(sb, s1);

...

s ′k := Distr(sb, sk);

Sout := WithCtrl(s ′0, Sin, p1))

Sin = st1 ∪ {s′1, ..., s′k}
Sout = {s | s ∈ st2, s ≥ s′k + 1}
s ′i+1 = s ′i + 1,∀i ∈ {0, ..., k − 1}

So τ = {τ2}, v = {v′1, ..., v′l}, st = (st2, sb).

(iv) ⊢ ρ(y) : Γ(y) gives us ⊢ {v1, ..., vl} : {τ1}, which must have the derivation:

(⊢ vi : τ1)
l
i=1

⊢ {v1, ..., vl} : {τ1}
(3.41)

and clearly for ∀i ∈ {1, ..., k}. ⊢ ρ(xi) : Γ(xi), that is

(⊢ ni : int)ki=1 (3.42)

(v) δ(y)⋖ s0 gives us

δ(y) = (st1, sb) = st1 ∪ {sb}⋖ s ′0 (3.43)

and (δ(xi))
k
i=1 ⋖ s ′0 implies {s1, ..., sj}⋖ s ′0.

68

(vi) Since ρ(y) ▷Γ(y) σ
∗(δ(y)) = {v1, ..., vl} ▷{τ1} σ∗((st1, sb)), which must have

the derivation: (
Ri

vi ▷τ1 wi

)l

i=1

{v1, ..., vl} ▷{τ1} (w, ⟨F1, ..., Fl, T⟩)

(3.44)

where w = w1 ++τ1 · · ·++τ1 wl, therefore we have

σ∗(st1) = w (3.45)

σ(sb) = ⟨F1, ..., Fl, T⟩. (3.46)

Also, for ∀i ∈ {1, ..., k}. ρ(xi) ▷Γ(xi) σ(δ(xi)) must have the derivation

ni ▷int σ(si), which implies

(σ(si) = ⟨ni⟩)ki=1 (3.47)

First we shall show (vii): ⟨p, σ⟩ ⇓⟨()⟩ σ′ $ WL by some P .

Let

pu = s ′0 := Usum(sb)

pd1 = s ′1 := Distr(sb, s1)

...

pdk = s ′k := Distr(sb, sk)

pw = Sout := WithCtrl(s ′0, Sin, p1)

That is, p = pu; pd1; · · · ; pdk; pw.
UsingP-Seq (k+1) times (which generates (k+1) intermediate stores σ0, ..., σk),
we can build P as follows:

Pu

⟨pu, σ⟩ ⇓⟨()⟩ σ0 $ WL
u

Pd1

⟨pd1, σ0⟩ ⇓⟨()⟩ σ1 $ WL
d1

Pdk

⟨pdk, σk−1⟩ ⇓⟨()⟩ σk $ WL
dk

Pw

⟨pw, σk⟩ ⇓⟨()⟩ σ′ $ WL
w

...⟨
(pdi;)

k
i=2

pw
, σ1

⟩
⇓⟨()⟩ σ′ $ WL

w +
∑k

i=2W
L
di⟨

(pdi;)
k
i=1

pw
, σ0

⟩
⇓⟨()⟩ σ′ $ WL

w +
∑k

i=1W
L
di⟨ pu;

(pdi;)
k
i=1

pw

, σ

⟩
⇓⟨()⟩ σ′ $ WL

thus

WL = WL
u + (

k∑
i=1

WL
di) +WL

w

It is easy to show that, (as we have presented some analogous cases in the proof
of Lemma 3.26,) with σ(sb) = ⟨F1, ..., Fl, T⟩, we can build Pu ending in

⟨s ′0 := Usum(sb), σ⟩ ⇓⟨()⟩ σ[s ′0 7→ ⟨()1, ..., ()l⟩] $ 2l + 1

69

and, with (σ(si) = ⟨ni⟩)ki=1 from (3.47), Pdi ending in

⟨s ′i := Distr(sb, si), σi−1⟩ ⇓⟨()⟩ σi−1[si 7→ ⟨
l︷ ︸︸ ︷

ni, ..., ni⟩] $ 2l + 2

Thus σk = σ[s ′0 7→ ⟨()1, ..., ()l⟩, s ′1 7→ ⟨
l︷ ︸︸ ︷

n1, ..., n1⟩, ..., s ′k 7→ ⟨
l︷ ︸︸ ︷

nk, ..., nk⟩], and

WL
u + (

∑k
i=1W

L
di) = (2l + 1) + k · (2l + 2) = 2(k + 1) · l + 1 + 2k .

Now it remains to build Pw.
Assume Sout = {s′k+1, ..., s

′
k+k′}. There are two possibilities for σk(s

′
0), for each

of which we will build a Pw and show (viii) and (ix).

– Subcase σk(s
′
0) = ⟨⟩, i.e., l = 0.

Then (σk(s
′
i) = ⟨⟩)ki=1. Also, with (3.44) and (3.45), we have σ∗

k(st1) =
σ∗(st1) = ⟨⟩τ1 ; with (3.46), σk(sb) = ⟨T⟩. Thus

∀s ∈ ({s ′0} ∪ Sin).σk(s) = ⟨⟩

Then we can use the rule P-Wc-Emp to build Pw as follows:

⟨Sout := WithCtrl(s ′0, Sin, p1), σk⟩ ⇓⟨()⟩ σk[sk+1 7→ ⟨⟩, ..., sk+k′ 7→ ⟨⟩] $ 1

So in this subcase, we take

σ′ = σ[s ′0 7→ ⟨⟩, s ′1 7→ ⟨⟩, ..., s ′k 7→ ⟨⟩, s ′k+1 7→ ⟨⟩, ..., s ′k+k′ 7→ ⟨⟩] (3.48)

and WL
w = 1.

Therefore, σ′∗(st) = σ′∗((st2, sb)) = (σ′∗(st2), σ
′(sb)) = (⟨⟩τ2 , ⟨T⟩), with

which we construct

R = {} ▷{τ2} (⟨⟩τ2 , ⟨T⟩)

Finally, WL = (2l + 1) + k · (2l + 2) + WL
w = 2 + 2k, and WH =

(l + 1) · (1 + k) +
∑l

i=1W
H
i = 1 + k, thus C can be any number ≥ 2.

– Subcase σk(s0) ̸= ⟨⟩, i.e., l > 0.

Since we have T1, (Ei)li=1, and C1, let Γ1, (ρi)
l
i=1, and δ1 be the initial

environment in these derivations respectively, i.e.,

Γ1 = [x 7→ τ1, x1 7→ int, ..., xk 7→ int]

ρi = [x 7→ vi, x1 7→ n1, ..., xk 7→ nk]

δ1 = [x 7→ st1, x1 7→ s′1, ..., xk 7→ s′k]

From what we already shown (i.e., (3.41), (3.42)), (3.43)), it is clear that

(a) ∀i ∈ {1, ..., l}.∀x′ ∈ dom(Γ1). ⊢ ρi(x
′) : Γ1(x

′)

(b) ∀x′ ∈ dom(Γ1).δ1(x′)⋖ s ′k + 1

70

Let S = dom(σk)− Sin. For ∀i ∈ {1, ..., l}, we take σ′
i as

dom(σ′
i) = dom(σk)

∀s ∈ S.σ′
i(s) = σk(s)

σ′∗
i (st1) = wi

σ′
i(s

′
1) = ⟨n1⟩

...

σ′
i(s

′
k) = ⟨nk⟩

Then it is eays to show that
(c) ∀i ∈ {1, ..., l}.∀x′ ∈ dom(Γ1).ρi(x

′) ▷Γ1(x′) σ
′∗
i (δ1(x

′))
and

σ′
1

S∼ σ′
2

S∼ ...
S∼ σ′

l
S∼ σk (3.49)

σ′
1

S
▷◁ σ′

2

S
▷◁ ...

S
▷◁ σ′

l = (
S
▷◁ σ′

i)
l
i=1 = σk (3.50)

By IH (l times) on e1 with T1, (Ei)li=1, C1, (a), (b), (c), we obtain:

(⟨p1, σ′
i⟩ ⇓⟨()⟩ σ′′

i $ WL′

i)li=1 (3.51)

(v′i ▷τ2 σ
′′∗
i (st2))

l
i=1 (3.52)

(WL′

i ≤ C ·WH
i)li=1 (3.53)

By Theorem 3.14 on C1, we have

Sin ⊩ p1 : S
′ (3.54)

for some S ′ ⊆ {s′k+ 1, s′k+ 2, ..., s′′1 − 1}.
Since we have (3.54), (3.49), (3.51) and clearly (Sin ∪ S ′) ∩ S = ∅, it is
easy to show that using Lemma 3.25 (the parallelism fusion lemma) (l−1)
times we can obtain a derivation P ′

w of⟨
p1, (

S
▷◁ σ′

i)
l
i=1

⟩
⇓⟨()1,...,()l⟩ (

S
▷◁ σ′′

i)
l
i=1 $ WL′

w (3.55)

and, together with (3.53),

WL′

w ≤
l∑

i=1

WL′

i ≤ C ·
l∑

i=1

WH
i

Let σ′′ = (
S
▷◁ σ′′

i)
l
i=1, then (with (3.50)), we have P ′

w as:

⟨p1, σk⟩ ⇓⟨()1,...,()l⟩ σ′′ $ WL′

w

Now we build Pw using the rule P-Wc-Nonemp as follows:

P ′
w

⟨p1, σk⟩ ⇓⟨()1,...,()l⟩ σ′′ $ WL′
w

⟨pw, σk⟩ ⇓⟨()⟩ σk[s
′
k+1 7→ σ′′(s ′k+1), ..., s

′
k+k′ 7→ σ′′(s ′k+k′)] $ 1 +WL′

w

71

So in this subcase we take

σ′ = σ[s ′0 7→ ⟨()1, ..., ()l⟩, s ′1 7→ ⟨
l︷ ︸︸ ︷

n1, ..., n1⟩, ..., s ′k 7→ ⟨
l︷ ︸︸ ︷

nk, ..., nk⟩,
s ′k+1 7→ σ′′(s ′k+1), ..., s

′
k+k′ 7→ σ′′(s ′k+k′)]

(3.56)

and WL
w = 1 +WL′

w ≤ 1 + C ·
∑l

i=1W
H
i .

Let σ′∗(st2) = w′, and σ′′∗
i (st2) = w′

i for ∀i ∈ {1, ..., l}.
Then it is easy to show:

w′ = σ′′∗(st2) = w′
1++τ2 · · ·++τ2w

′
l

So we now have σ′∗(st) = σ′∗((st2, sb)) = (w′, ⟨F1, ..., Fl, T⟩). With (3.52),
we can construct R as follows:

(v′i ▷τ2 w
′
i)
l
i=1

{v′1, ..., v′l} ▷{τ2} (w′, ⟨F1, ..., Fl, T⟩)

as required.

Finally, in this subcase

WL = (2l + 1) + k · (2l + 2) +WL
w

≤ (2l + 1) + k · (2l + 2) + 1 + C ·
l∑

i=1

WH
i

= 2(l + 1) · (1 + k) + C ·
l∑

i=1

WH
i

WH = (l + 1) · (1 + k) +
l∑

i=1

WH
i

therefore, C can be any number ≥ 2.

■
Corollary 3.28 (Correctness of implementation). For some constant C, if

(i) [] ⊢ e : τ

(ii) [] ⊢ e ↓ v $ WH

then

(iii) ∃! p, st, s. [] ⊢ e⇒0
s (p, st)

(iv) ∃! σ,WL. ⟨p, []⟩ ⇓⟨()⟩ σ $ WL

(v) ∃! v′. σ∗(st) ◁τ v
′, ⟨⟩τ

(vi) v′ = v and WL ≤ C ·WH

Proof. The proof will use Theorem 3.27, Theorem 3.11, Lemma 3.16 and Lemma 3.17.
■

72

3.6 Scaling up

We have presented the formal proof of the correctness of SNESL0. It is a tiny
language, compared to the full SNESL, or even SNESL1. However, it maintains
the most important properties and the core semantics of full SNESL. In particular,
it includes the general comprehension, the expression for expressing nested data-
parallelism in SNESL.

The proofs of the most important lemmas and theorems shown in this chapter,
such as the block self-delimiting lemma, the parallelism fusion lemma, the determin-
ism theorem and the correctness theorem of the translation, have shed light on the
extension of the formal validation of full SNESL. For scaling up, we need to consider
at least the following points:

• Extension to more primitive types and associative scalar operations should be
trivial.

• Adding pairs should mainly increase one more rule for value representation.
Since the low-level stream trees are compatible with pairs, the effect at the
low-level would be almost transparent. However, the translation of the function
zip (for generating pairs) will need to include code checking that the segment
descriptors of the two sequence arguments are identical.

• Error preservation is also a desirable part that can be easily supported in prin-
ciple. We would expect the runtime error can be simulated accurately from the
high level to the low level.

• Adding more built-in functions are basically to add more Xducers to the target
language, as most of them are implemented by only one counterpart low-level
Xducer, such as ScanPlus for scan and SegConcat for concat, or a few lines.
The two-level semantics of Xducers (the general level and the block level) has
reduced much of the work to formalize the semantics of a new Xducer. In
addition, a non-trivial built-in function iota, implemented with a WithCtrl

instruction, is already given in SNESL0 as a representative example.

• For the restricted comprehension, its implementation in SVCODE is simpler
than the general one, because it does not include variable-bindings. However,
the type-dependent pack may need some consideration to deal with.

• Extension to step and space cost should be similar to the work cost.

• With the SCall instruction being added to the target language, it will be simple
to support recursion. However, we will also need to prove the preservation of
termination to show that the translated SVCODE program from a terminating
SNESL one will terminate as well. This should be provable with a generalized
IH using induction on the high-level evaluation derivation.

• The real challenge may be to scale up to streaming semantics. At this point,
there are still some problems about streaming left open, such as streamability
and deadlock, so it is not that meaningful to give a precise prediction about
how they will affect the proof system.

73

Chapter 4

Conclusion

Based on the practical experimentation that has demonstrated good performance
and time and space efficiency from previous work of SNESL [Mad16], this thesis has
moved the development of SNESL one step forward.

The main contributions of this thesis are:

• Extension of the dataflow model of streaming to account for recursion.
The challenge of supporting recursion is that it can cause an infinite increase
of the dataflow network in the execution model. Our solution is to extend the
target language to make sure that the dataflow graph will be completed dynam-
ically during execution, but not grow infinitely, if all recursions are guarded by
conditionals (i.e., comprehensions in SNESL). We have developed the imple-
mentation as three instrumented interpreters, the high-level one for SNESL1,
the eager one with sufficiently large space and the streaming one with a lim-
ited buffer for SVCODE, to compare their results and costs. Although without
a formal proof, we have demonstrated result and cost preservation in our ex-
periments, and provided some representative examples. The space usage from
our experiment results also shows an increase proportional to the depth of the
recursion.

• A formalization of the source and target languages, and the correctness of the
translation including work cost preservation.
Formal semantics for the high-level NDP language can be found from previous
related research, such as NESL and Proteus. However, none of them has given a
formal semantics of the target language. This thesis has presented a formaliza-
tion of the target language for a core subset of SNESL, and also given a detailed
proof for the correctness of translation and work cost preservation, as well as
some other important properties of the language including well-formedness and
determinism. The work we have done in this thesis should lay out the possibil-
ity for a formal validation of the translation correctness and cost preservation
for full SNESL.

While investigating the solution to recursion, we have also touched some crucial,
open problems in this streaming language, such as streamability, scheduling, and
deadlocks. We have explored a possibility of scheduling that can be as efficient and
lightweight as the one used in the previous work of SNESL, but also preserves the
step cost.

74

The future work on SNESL related to the scope of this thesis can fall into the
following two points.

• Formalization of the streaming semantics of the target language. The formal-
ization work we have done in this thesis is only for its eager semantics, while
the streaming semantics is also an area that has not been covered much yet.

• Schedulability. As a streaming language aiming at both time and space effi-
ciency, SNESL should be equipped with a type system or some static/dynamic
analysis that can prevent a measure of problematic programs. The user may
expect that, at least for a streamable program, deadlock will not happen. This
will require a good high-level characterization of streamability, and a formal
demonstration that all streamable programs (in above sense) indeed execute
without deadlock.

75

Bibliography

[BG96] Guy E. Blelloch and John Greiner. A provable time and space efficient
implementation of NESL. In Proceedings of the First ACM SIGPLAN
International Conference on Functional Programming, ICFP ’96, pages
213–225, New York, NY, USA, 1996. ACM.

[BHC+93] Guy E. Blelloch, Jonathan C. Hardwick, Siddhartha Chatterjee, Jay
Sipelstein, and Marco Zagha. Implementation of a portable nested data-
parallel language. In Proceedings of the Fourth ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming, PPOPP ’93,
pages 102–111, New York, NY, USA, 1993. ACM.

[Ble89] Guy E. Blelloch. Scans as primitive parallel operations. IEEE Transac-
tions on Computers, 38(11):1526–1538, 1989.

[Ble90] Guy E. Blelloch. Vector Models for Data-parallel Computing. MIT Press,
Cambridge, MA, USA, 1990.

[Ble95] Guy E. Blelloch. Nesl: A nested data-parallel language.(version
3.1). Technical Report CMU-CS-95-170, School of Computer Science,
Carnegie Mellon University, 1995.

[Ble96] Guy E. Blelloch. Programming parallel algorithms. Communications of
the ACM, 39(3):85–97, 1996.

[BS90] Guy E. Blelloch and Gary W. Sabot. Compiling collection-oriented lan-
guages onto massively parallel computers. J. Parallel Distrib. Comput.,
8(2):119–134, February 1990.

[CLPJ+07] Manuel M. T. Chakravarty, Roman Leshchinskiy, Simon Peyton Jones,
Gabriele Keller, and Simon Marlow. Data Parallel Haskell: A Status
Report. In Proceedings of the 2007 Workshop on Declarative Aspects of
Multicore Programming, DAMP ’07, pages 10–18, New York, NY, USA,
2007. ACM.

[LCK+12] Ben Lippmeier, Manuel M.T. Chakravarty, Gabriele Keller, Roman
Leshchinskiy, and Simon Peyton Jones. Work efficient higher-order vec-
torisation. In Proceedings of the 17th ACM SIGPLAN International
Conference on Functional Programming, ICFP ’12, pages 259–270, New
York, NY, USA, 2012. ACM.

[Mad13] Frederik M. Madsen. A streaming model for nested data parallelism.
Master’s thesis, Department of Computer Science (DIKU), University
of Copenhagen, March 2013.

76

[Mad16] Frederik M. Madsen. Streaming for Functional Data-Parallel Languages.
PhD thesis, Department of Computer Science (DIKU), University of
Copenhagen, September 2016.

[MF13] Frederik M. Madsen and Andrzej Filinski. Towards a streaming model
for nested data parallelism. In Proceedings of the 2nd ACM SIG-
PLAN Workshop on Functional High-performance Computing, FHPC
’13, pages 13–24, New York, NY, USA, 2013. ACM.

[MF16] Frederik M. Madsen and Andrzej Filinski. Streaming nested data paral-
lelism on multicores. In Proceedings of the 5th International Workshop
on Functional High-Performance Computing, FHPC 2016, pages 44–51,
New York, NY, USA, 2016. ACM.

[PJ08] Simon Peyton Jones. Harnessing the multicores: Nested data parallelism
in Haskell. In Proceedings of the 6th Asian Symposium on Programming
Languages and Systems, APLAS ’08, pages 138–138, Berlin, Heidelberg,
2008. Springer-Verlag.

[PP93] Jan F. Prins and Daniel W. Palmer. Transforming high-level data-
parallel programs into vector operations. In Proceedings of the Fourth
SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming, PPoPP’93, pages 119–128. ACM, 1993.

[PPCF96] Daniel W. Palmer, Jan Prins, Siddhartha Chatterjee, and Rickard E.
Faith. Piecewise execution of nested data-parallel programs. In Proceed-
ings of the 8th International Workshop on Languages and Compilers for
Parallel Computing, LCPC ’95, pages 346–361, London, UK, UK, 1996.
Springer-Verlag.

[PPW95] D. W. Palmer, J. F. Prins, and S. Westfold. Work-efficient nested data-
parallelism. In Proceedings of the Fifth Symposium on the Frontiers
of Massively Parallel Computation, FRONTIERS ’95, pages 186–193,
Washington, DC, USA, 1995. IEEE Computer Society.

77

