< ロ > < 回 > < 三 > < 三 > < 三 > < 回 > < 回 > < < 回 > < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Conclusion

Collateral flows, funding costs, and counterparty-risk-neutral swap rates

Enrico Biffis Imperial College London

BASED ON JOINT WORKS WITH

Damiano Brigo (King's College) **Lorenzo Pitotti** (Imperial & Algorithmics)

AND

David Blake (Cass Business School) Ariel Sun (Imperial & RMS)

HIPERFIT Workshop, Copenhagen, December 1, 2011

Agenda

1 Overview

- 2 Consistent valuation of swaps
- 3 Equilibrium swap rates
- 4 Cost of collateralization: case study
- 5 Conclusion

Agenda

1 Overview

- 2 Consistent valuation of swaps
- 3 Equilibrium swap rates
- 4 Cost of collateralization: case study
- 5 Conclusion

Overview

Global financial crisis

- Counterparty risk and counterparty risk mitigation tools matter
 - $\star\,$ collateral rules and funding costs integral part of the transaction
 - * implications for pricing, hedging, market-to-market accounting
- Multicurve modelling
 - * LIBOR, EURIBOR, EONIA, EUREPO?
- New regulation (Dodd-Frank, EMIR)
 - clearing, netting, collateralization
 - collateral quality, segregation, re-hypothecation
 - replacement cost, close-out conventions

Valuation challenges (e.g., Brigo's Counterparty Risk FAQ, Nov 2011)

• Credit/Debit Valuation Adjustment (CVA/DVA)

Questions

Consistent valuation with counterparty risk and liquidity risk

- Swap rates endogenize collateral flows and funding/opportunity costs
- Root finding, stochastic approximation algorithms.

Impact of different collateral rules / conventions

- Partial vs. full collateralization
- Symmetric vs. asymmetric collateral rules
- Segregation vs. rehypothecation

Quantifying the cost of collateralization

- Benchmark: interest-rate swaps (IRS) market
- Case study: bespoke longevity swaps

Agenda

1 Overview

2 Consistent valuation of swaps

3 Equilibrium swap rates

4 Cost of collateralization: case study

5 Conclusion

Common pitfalls

Interest-rate swaps (IRS)

- almost every IRS bilaterally collateralized
- cash collateral in over 90% of the cases

Common pitfalls

Interest-rate swaps (IRS)

- almost every IRS bilaterally collateralized
- cash collateral in over 90% of the cases

Duffie/Singleton valuation formula:

- unitary notional, single payment
- LIBOR default spread, λ

$$V_0 = E^{\mathbb{Q}}\left[\exp\left(-\int_0^T (r_t + \lambda_t) \mathrm{d}t\right) (L_T - p)\right]$$

• Exceptions: He (2001) and Collin-Dufresne/Solnik (2001) set $\lambda = 0$.

Bilateral default risk

Allow for credit quality of counterparties (Duffie/Huang, 1997)

- party A pays fixed, party B pays floating
- default intensities $\lambda_t^A,\,\lambda_t^B,$ and recovery rates R^A,R^B
- fixed payer's viewpoint

$$V_0 = E^{\mathbb{Q}} \left[\exp\left(-\int_0^T (r_t + \Lambda_t) \mathsf{d}t \right) \left(L_T - p^d \right) \right]$$
$$\Lambda_t := \begin{cases} (1 - R^A)\lambda_t^A & \text{if } V_t < 0\\ (1 - R^B)\lambda_t^B & \text{if } V_t \ge 0 \end{cases}$$

Bilateral default risk

Allow for credit quality of counterparties (Duffie/Huang, 1997)

- party A pays fixed, party B pays floating
- default intensities $\lambda_t^A,\,\lambda_t^B,$ and recovery rates R^A,R^B
- fixed payer's viewpoint

$$V_0 = E^{\mathbb{Q}} \left[\exp\left(-\int_0^T (r_t + \Lambda_t) \mathsf{d}t\right) \left(L_T - p^d\right) \right]$$
$$\Lambda_t := \begin{cases} (1 - R^A)\lambda_t^A & \text{if } V_t < 0\\ (1 - R^B)\lambda_t^B & \text{if } V_t \ge 0 \end{cases}$$

• full collateralization, ${\cal R}^A={\cal R}^B=1$

$$V_0 = E^{\mathbb{Q}}\left[\exp\left(-\int_0^T r_t \mathsf{d}t\right)\left(L_T - p^d\right)\right]$$

...default-free, risk-neutral valuation formula....

Collateralization

Collateral fractions $(c_t^h)_{t\geq 0}$ (ITM), $(c_t^p)_{t\geq 0}$ (OTM) [hedger's viewpoint]

- $c_t^h V_{t-} 1_{\{V_{t-}>0\}}$ cash held, $c_t^p V_{t-} 1_{\{V_{t-}<0\}}$ cash posted
- funding cost / opportunity cost / capital relief
- δ^h_t net gain from holding collateral (r rebated)
- δ^p_t net cost of posting collateral (r rebated)

Collateralization

Collateral fractions $(c_t^h)_{t\geq 0}$ (ITM), $(c_t^p)_{t\geq 0}$ (OTM) [hedger's viewpoint]

- $c_t^h V_{t-} 1_{\{V_{t-}>0\}}$ cash held, $c_t^p V_{t-} 1_{\{V_{t-}<0\}}$ cash posted
- funding cost / opportunity cost / capital relief
- δ^h_t net gain from holding collateral (r rebated)
- δ^p_t net cost of posting collateral (r rebated)
- swap's market value

$$V_0 = E^{\mathbb{Q}} \left[\exp\left(-\int_0^T (r_t + \Gamma_t) \mathsf{d}t\right) (S_T - p^c) \right]$$
$$\Gamma_t := \begin{cases} (1 - c_t^p)^+ \lambda_t^A - \delta_t^p c_t^p & \text{if } V_t < 0\\ (1 - c_t^h)^+ \lambda_t^B - \delta_t^h c_t^h & \text{if } V_t \ge 0 \end{cases}$$

Collateralization

Collateral fractions $(c_t^h)_{t\geq 0}$ (ITM), $(c_t^p)_{t\geq 0}$ (OTM) [hedger's viewpoint]

- $c_t^h V_{t-} 1_{\{V_{t-}>0\}}$ cash held, $c_t^p V_{t-} 1_{\{V_{t-}<0\}}$ cash posted
- funding cost / opportunity cost / capital relief
- δ^h_t net gain from holding collateral (r rebated)
- δ^p_t net cost of posting collateral (r rebated)
- swap's market value

$$V_0 = E^{\mathbb{Q}} \left[\exp\left(-\int_0^T (r_t + \Gamma_t) \mathsf{d}t\right) (S_T - p^c) \right]$$
$$\Gamma_t := \begin{cases} (1 - c_t^p)^+ \lambda_t^A - \delta_t^p c_t^p & \text{if } V_t < 0\\ (1 - c_t^h)^+ \lambda_t^B - \delta_t^h c_t^h & \text{if } V_t \ge 0 \end{cases}$$

• Full collateralization ($c^{p,h} = 1$), symmetric costs/spreads (δ, λ):

$$r_t + \Gamma_t = r_t - \delta_t$$

Agenda

1 Overview

2 Consistent valuation of swaps

3 Equilibrium swap rates

4 Cost of collateralization: case study

5 Conclusion

Swap rate p^c from $V_0 = 0$

$$p^{c} = E^{\mathbb{Q}}[L_{T}] + \frac{\mathsf{Cov}^{\mathbb{Q}}\left(\exp\left(-\int_{0}^{T}(r_{t}+\Gamma_{t})\mathsf{d}t\right), L_{T}\right)}{E^{\mathbb{Q}}\left[\exp\left(-\int_{0}^{T}(r_{t}+\Gamma_{t})\mathsf{d}t\right)\right]}$$

Swap rate p^c from $V_0 = 0$

$$p^{c} = E^{\mathbb{Q}}[L_{T}] + \frac{\mathsf{Cov}^{\mathbb{Q}}\left(\exp\left(-\int_{0}^{T}(r_{t}+\Gamma_{t})\mathsf{d}t\right), L_{T}\right)}{E^{\mathbb{Q}}\left[\exp\left(-\int_{0}^{T}(r_{t}+\Gamma_{t})\mathsf{d}t\right)\right]}$$

Root finding $(V_0(p^c)=0)$ and stochastic approximations

- Robbins-Monro, Polyak-Ruppert averaging
- Main issue is unbiased estimator of $V_0(p)$ when using American MC

Swap rate p^c from $V_0 = 0$

$$p^{c} = E^{\mathbb{Q}}[L_{T}] + \frac{\mathsf{Cov}^{\mathbb{Q}}\left(\exp\left(-\int_{0}^{T}(r_{t} + \Gamma_{t}(c^{h,p}))\mathsf{d}t\right), L_{T}\right)}{E^{\mathbb{Q}}\left[\exp\left(-\int_{0}^{T}(r_{t} + \Gamma_{t}(c^{h,p}))\mathsf{d}t\right)\right]}$$

Root finding ($V_0(p^c) = 0$) and stochastic approximations

- Robbins-Monro, Polyak-Ruppert averaging
- Main issue is unbiased estimator of $V_0(p)$ when using American MC

Collateral rule examples

- collateral thresholds based on credit ratings, CDS spreads, etc.
- $c_t^p = c_t^h = 1$ (full collateralization)

•
$$c_t^p = \alpha$$
, $c_t^h = \beta$, with $\alpha, \beta \in [0, 1]$

• $c_t^p = 1_{\{L_t \leq \beta(t)\}}$, $c_t^h = 1_{\{L_t \geq \alpha(t)\} \cup \{\lambda_t^B \geq \gamma\}}$, with $\alpha(\cdot) > \beta(\cdot)$, $\gamma \geq 0$

Swap rate p^c from $V_0 = 0$

$$p^{c} = E^{\mathbb{Q}}[L_{T}] + \frac{\mathsf{Cov}^{\mathbb{Q}}\left(\exp\left(-\int_{0}^{T}(r_{t} + \Gamma_{t}(V_{t}(p^{c})))\mathsf{d}t\right), L_{T}\right)}{E^{\mathbb{Q}}\left[\exp\left(-\int_{0}^{T}(r_{t} + \Gamma_{t}(V_{t}(p^{c})))\mathsf{d}t\right)\right]}$$

Root finding ($V_0(p^c) = 0$) and stochastic approximations

- Robbins-Monro, Polyak-Ruppert averaging
- Main issue is unbiased estimator of $V_0(p)$ when using American MC

Collateral rule examples

- collateral thresholds based on credit ratings, CDS spreads, etc.
- $c_t^p = c_t^h = 1$ (full collateralization)
- $c_t^p = \alpha$, $c_t^h = \beta$, with $\alpha, \beta \in [0, 1]$
- $c_t^p = 1_{\{L_t \leq \beta(t)\}}$, $c_t^h = 1_{\{L_t \geq \alpha(t)\} \cup \{\lambda_t^B \geq \gamma\}}$, with $\alpha(\cdot) > \beta(\cdot)$, $\gamma \geq 0$
- $c_t^p = 1_{\{V_t(p^c) \leq \underline{v}\}}$ and $c_t^h = 1_{\{V_t(p^c) \geq \overline{v}\}}$, with $\underline{v} < \overline{v}$

Symmetric collateralization with re-hypothecation

◆□ > ◆□ > ◆豆 > ◆豆 > ・ 目 → 今へぐ

(A)symmetric collateralization with segregation

◆□ > ◆□ > ◆臣 > ◆臣 > 三臣 - のへで

Agenda

1 Overview

- 2 Consistent valuation of swaps
- 3 Equilibrium swap rates
- 4 Cost of collateralization: case study
- 5 Conclusion

Longevity swaps

Jan 08LucidaNot disclosed10indexedJPMJul 2008Canada LifeGBP 500m40bespokeJPMILS fundsFeb 2009Abbey LifeGBP 1.5bnrun-offbespokeDBFeb 2009Abbey LifeGBP 1.5bnrun-offbespokeDBMar 2009AvivaGBP 475m10bespokeRBSJun 2009BabcockGBP 750m50bespokeCredit SuisseJul 2009RSAGBP 1.9bnrun-offbespokeGSJul 2009RSAGBP 750mrun-offbespokeGSDec 2009BerkshireGBP 750mrun-offbespokeSwiss ReCouncilCouncilFeb 2010BMW UKGBP 3bnrun-offbespokeDBDec 2010Swiss ReUSD 50m8indexedILS fundsFeb 2011PallGBP 70m10indexedJPM	Date	Hedger	Size	Term (yrs)	Туре	Interm./supplier
Jul 2008Canada LifeGBP 500m40bespokeJPMJul 2008Canada LifeGBP 500m40bespokeJPMFeb 2009Abbey LifeGBP 1.5bnrun-offbespokeDBILS fundsPartnerReILS fundsPartner ReMar 2009AvivaGBP 475m10bespokeRBSJun 2009BabcockGBP 750m50bespokeCredit SuisseInternationalPacific Life RePacific Life ReGSJul 2009RSAGBP 1.9bnrun-offbespokeGSDec 2009Berkshire CouncilGBP 750mrun-offbespokeDBFeb 2010BMW UKGBP 3bnrun-offbespokeDBDec 2010Swiss Re (Kortis bond)USD 50m8indexedILS fundsFeb 2011PallGBP 70m10indexedJPM	Jan 08	Lucida	Not disclosed	10	indexed	JPM
Jul 2008Canada LifeGBP 500m40bespokeJPMILS fundsFeb 2009Abbey LifeGBP 1.5bnrun-offbespokeDBILS fundsPartner ReMar 2009AvivaGBP 475m10bespokeRBSJun 2009BabcockGBP 750m50bespokeCredit SuisseInternationalrun-offbespokeGS(Rothesay Life)Dec 2009BerkshireGBP 750mrun-offbespokeSwiss ReCouncilCouncilFeb 2010BMW UKGBP 3bnrun-offbespokeDBDec 2010Swiss ReUSD 50m8indexedILS fundsFeb 2011PallGBP 70m10indexedJPM						ILS funds
ILS fundsFeb 2009Abbey LifeGBP 1.5bnrun-offbespokeDBILS fundsPartner ReMar 2009AvivaGBP 475m10bespokeRBSJun 2009BabcockGBP 750m50bespokeCredit SuisseInternationalPartnerPacific Life ReJul 2009RSAGBP 1.9bnrun-offbespokeGSDec 2009BerkshireGBP 750mrun-offbespokeSwiss ReCouncilCouncilFeb 2010BMW UKGBP 3bnrun-offbespokeDBDec 2010Swiss ReUSD 50m8indexedILS fundsKortis bond)Feb 2011PallGBP 70m10indexedJPM	Jul 2008	Canada Life	GBP 500m	40	bespoke	JPM
Feb 2009Abbey LifeGBP 1.5bnrun-offbespokeDBILS funds Partner ReMar 2009AvivaGBP 475m10bespokeRBSJun 2009BabcockGBP 750m50bespokeCredit Suisse Pacific Life ReJul 2009RSAGBP 1.9bnrun-offbespokeGS (Rothesay Life)Dec 2009Berkshire CouncilGBP 750mrun-offbespokeSwiss ReFeb 2010BMW UKGBP 3bnrun-offbespokeDB PaternosterDec 2010Swiss Re (Kortis bond)USD 50m8indexedILS fundsFeb 2011PallGBP 70m10indexedJPM						ILS funds
ILS funds Partner ReMar 2009AvivaGBP 475m10bespokeRBSJun 2009BabcockGBP 750m50bespokeCredit Suisse Pacific Life ReJul 2009RSAGBP 1.9bnrun-offbespokeGS (Rothesay Life)Dec 2009Berkshire CouncilGBP 750mrun-offbespokeSwiss ReFeb 2010BMW UKGBP 3bnrun-offbespokeDB PaternosterDec 2010Swiss Re (Kortis bond)USD 50m8indexedILS fundsFeb 2011PallGBP 70m10indexedJPM	Feb 2009	Abbey Life	GBP 1.5bn	run-off	bespoke	DB
Partner ReMar 2009AvivaGBP 475m10bespokeRBSJun 2009BabcockGBP 750m50bespokeCredit Suisse Pacific Life ReJul 2009RSAGBP 1.9bnrun-offbespokeGS (Rothesay Life)Dec 2009Berkshire CouncilGBP 750mrun-offbespokeSwiss ReFeb 2010BMW UKGBP 3bnrun-offbespokeDB PaternosterDec 2010Swiss Re (Kortis bond)USD 50m8indexedILS funds						ILS funds
Mar 2009AvivaGBP 475m10bespokeRBSJun 2009BabcockGBP 750m50bespokeCredit Suisse Pacific Life ReJul 2009RSAGBP 1.9bnrun-offbespokeGS (Rothesay Life)Dec 2009Berkshire CouncilGBP 750mrun-offbespokeSwiss ReFeb 2010BMW UKGBP 3bnrun-offbespokeDB PaternosterDec 2010Swiss Re (Kortis bond)USD 50m8indexedILS fundsFeb 2011PallGBP 70m10indexedJPM						Partner Re
Jun 2009Babcock InternationalGBP 750m50bespoke Pacific Life ReJul 2009RSAGBP 1.9bnrun-offbespokeGS (Rothesay Life)Dec 2009Berkshire CouncilGBP 750mrun-offbespokeSwiss ReFeb 2010BMW UKGBP 3bnrun-offbespokeDB PaternosterDec 2010Swiss Re (Kortis bond)USD 50m8indexedILS funds	Mar 2009	Aviva	GBP 475m	10	bespoke	RBS
International Pacific Life Re Jul 2009 RSA GBP 1.9bn run-off bespoke GS (Rothesay Life) Dec 2009 Berkshire GBP 750m run-off bespoke Swiss Re Council Feb 2010 BMW UK GBP 3bn run-off bespoke DB Dec 2010 Swiss Re USD 50m 8 indexed ILS funds Kortis bond) Feb 2011 Pall GBP 70m 10 indexed JPM	Jun 2009	Babcock	GBP 750m	50	bespoke	Credit Suisse
Jul 2009 RSA GBP 1.9bn run-off bespoke GS (Rothesay Life) Dec 2009 Berkshire Council GBP 750m run-off bespoke Swiss Re Feb 2010 BMW UK GBP 3bn run-off bespoke DB Paternoster Dec 2010 Swiss Re (Kortis bond) USD 50m 8 indexed ILS funds		International				Pacific Life Re
(Rothesay Life) Dec 2009 Berkshire Council GBP 750m run-off bespoke Swiss Re Feb 2010 BMW UK GBP 3bn run-off bespoke DB Dec 2010 Swiss Re (Kortis bond) USD 50m 8 indexed ILS funds Feb 2011 Pall GBP 70m 10 indexed JPM	Jul 2009	RSA	GBP 1.9bn	run-off	bespoke	GS
Dec 2009 Berkshire Council GBP 750m run-off bespoke Swiss Re Feb 2010 BMW UK GBP 3bn run-off bespoke DB Paternoster Dec 2010 Swiss Re (Kortis bond) USD 50m 8 indexed ILS funds Feb 2011 Pall GBP 70m 10 indexed JPM						(Rothesay Life)
Council Feb 2010 BMW UK GBP 3bn run-off bespoke DB Dec 2010 Swiss Re (Kortis bond) USD 50m 8 indexed ILS funds Feb 2011 Pall GBP 70m 10 indexed JPM	Dec 2009	Berkshire	GBP 750m	run-off	bespoke	Swiss Re
Feb 2010 BMW UK GBP 3bn run-off bespoke DB Dec 2010 Swiss Re (Kortis bond) USD 50m 8 indexed ILS funds Feb 2011 Pall GBP 70m 10 indexed JPM		Council				
Paternoster Dec 2010 Swiss Re (Kortis bond) USD 50m 8 indexed ILS funds Feb 2011 Pall GBP 70m 10 indexed JPM	Feb 2010	BMW UK	GBP 3bn	run-off	bespoke	DB
Dec 2010 Swiss Re (Kortis bond) USD 50m 8 indexed ILS funds Feb 2011 Pall GBP 70m 10 indexed JPM						Paternoster
(Kortis bond) Feb 2011 Pall GBP 70m 10 indexed JPM	Dec 2010	Swiss Re	USD 50m	8	indexed	ILS funds
Feb 2011 Pall GBP 70m 10 indexed JPM		(Kortis bond)				
	Feb 2011	Pall	GBP 70m	10	indexed	JPM
Pension Fund		Pension Fund				

Stylized example: single payment at time T > 0

- notional n > 0, fixed payment $p \in (0, 1)$
- variable payment S_T (realized survival rate)

Stylized example: single payment at time T>0

- notional n > 0, fixed payment $p \in (0, 1)$
- variable payment S_T (realized survival rate)

Swap value (hedger's viewpoint)

$$V_0 = n E^{\mathbb{Q}} \left[\exp \left(-\int_0^T r_t \mathsf{d}t \right) (S_T - p) \right]$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Stylized example: single payment at time T>0

- notional n > 0, fixed payment $p \in (0, 1)$
- variable payment S_T (realized survival rate)

Longevity swap rate

$$p = E^{\mathbb{Q}}[S_T] + \frac{\mathsf{Cov}^{\mathbb{Q}}\left(\exp\left(-\int_0^T r_t \mathsf{d}t\right), S_T\right)}{E^{\mathbb{Q}}\left[\exp\left(-\int_0^T r_t \mathsf{d}t\right)\right]}$$

◆ロ > ◆母 > ◆臣 > ◆臣 > ─ 臣 = ����

Stylized example: single payment at time T>0

- notional n > 0, fixed payment $p \in (0, 1)$
- variable payment S_T (realized survival rate)

Longevity swap rate (r, S uncorrelated)

 $p = E^{\mathbb{Q}}\left[S_T\right] + 0$

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うへぐ

Stylized example: single payment at time T > 0

- notional n > 0, fixed payment $p \in (0, 1)$
- variable payment S_T (realized survival rate)

Longevity swap rate (r, S uncorrelated)

$$p = E^{\mathbb{Q}}\left[S_T\right] + 0$$

Useful baseline case $p = E^{\mathbb{P}}[S_T]$ (best estimate).

Cashflows and marking-to-market

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

Longevity swap rates

◆□ > ◆□ > ◆臣 > ◆臣 > 三臣 - のへで

Hedge supplier's credit deterioration

Fully fledged calibration

Building blocks

- two-factor short rate model
- $\bullet~{\rm TED}$ spread for λ^B
- $\bullet \ \lambda^A = \lambda^B + \Delta \text{, } \Delta > 0$
- net cost of collateral in IRS market (calibration of Johannes/Sundaresan, 2007)
- Lee-Carter mortality model

Two approaches to collateral costs δ^h, δ^p

- $\star\,$ funding costs associated with collateral flows
- ** simulate Solvency II capital charges (1-year 99.5% VaR) accruing from representative longevity-linked liability; opportunity cost of (say) 6% + LIBOR incurred on capital charges

Fully fledged calibration

 $\mathbb Q\text{-dynamics}$ of state variable process X

$$\begin{split} \mathrm{d}X_{t}^{1} &= \left(k_{1}(X_{t}^{2} - X_{t}^{1}) - \eta^{1}\right)\mathrm{d}t + \sigma_{1}\mathrm{d}W_{t}^{1} \\ \mathrm{d}X_{t}^{2} &= \left(k_{2}(\theta_{2} - X_{t}^{2}) - \eta^{2}\right)\mathrm{d}t + \sigma_{2}\mathrm{d}W_{t}^{2} \\ \mathrm{d}X_{t}^{3} &= \left(\kappa_{3}(\theta_{3} - X_{t}^{3}) + \kappa_{3,1}(X_{t}^{1} - \theta_{2}) + \kappa_{3,4}(X_{t}^{4} - \theta_{4}) - \eta_{3}\right)\mathrm{d}t + \sigma_{3}\mathrm{d}W_{t}^{3} \\ \mathrm{d}X_{t}^{4} &= \left(\kappa_{4}(\theta_{4} - X_{t}^{3}) + \kappa_{4,1}(X_{t}^{1} - \theta_{2}) + \kappa_{4,2}(X_{t}^{2} - \theta_{2}) - \eta_{4}\right)\mathrm{d}t + \sigma_{4}\mathrm{d}W_{t}^{4} \\ \mathrm{d}X_{t}^{5} &= \left(\kappa_{5}(\theta_{5} - X_{t}^{5}) + \kappa_{5,1}(X_{t}^{1} - \theta_{2}) + \kappa_{5,2}(X_{t}^{2} - \theta_{2}) + \kappa_{5,3}(X_{t}^{3} - \theta_{3}) \right. \\ &\quad + \kappa_{5,4}(X_{t}^{4} - \theta_{4}) + \kappa_{5,6}(X_{t}^{6} - E_{0}[X_{t}^{6}]) - \eta_{5})\mathrm{d}t + \sigma_{5}\mathrm{d}W_{t}^{5} \\ \mathrm{d}X_{t}^{6} &= \left(A(t) + B(t)(X_{t}^{6} - a(t))\right)\mathrm{d}t + \sigma_{6}(t)\mathrm{d}W_{t}^{6} \end{split}$$

- $r = X^1$, mean reverting to random target X^2
- $\lambda^B = X^3$, TED spread
- X^4 , net cost of collateral in IRS markets (Johannes/Sundaresan, 2007)
- X^5 net cost of collateral for longevity risk exposures
- X^6 continuous time version of Lee-Carter model

Parameter estimates

Parameter estimates

- Treasury/IRS market: Johannes/Sundaresan (2007)
- Mortality: US/UK HMD data
- Net cost of collateral:

i)
$$\delta^h = \delta^p = \lambda^A = X^{(3)} + \Delta$$
, $\Delta \in \{0, 0.01, 0.02\}$
ii) $\delta^h = \delta^p = X^{(5)}$

κ_1	0.969	η_1	-0.053	σ_1	0.008	UK	
κ_2	0.832	η_3	-0.014	σ_2	0.155	δ_K	-0.888
κ_3	1.669	η_4	0.007	σ_3	0.009	σ_K	1.156
κ_4	0.045	η_5	0.055	σ_4	0.010	US	
κ_5	0.990	$\kappa_{5,1}$	0.147	σ_5	0.690	δ_K	-0.761
$\kappa_{3,1}$	-0.163	$\kappa_{5,2}$	1.340	θ_2	0.046	σ_K	1.078
$\kappa_{4,1}$	0.114	$\kappa_{5,3}$	2.509	θ_3	0.003		
$\kappa_{3,4}$	0.804	$\kappa_{5,4}$	-0.133	$ heta_4$	0.007		
$\kappa_{4,2}$	-0.038	$\kappa_{5,6}$	-0.002	$ heta_5$	0.115	$\rho_{1,2}$	-0.036

Longevity swap spreads

Underlying: 10,000 US males aged 65 at beginning of 2008. Term: 25 years.

• swap spreads (basis points), $p_T^c - E^{\mathbb{P}}[S_T]$:

	Maturity	$c^A = 0$	$c^A = 0$	$c^A = 1$	$c^A = 1$
	payment	$c^B = 0$	$c^{B} = 1$	$c^B = 0$	$c^B = 1$
	(yrs)	(bps)	(bps)	(bps)	(bps)
$\lambda^{A,B} = \lambda,$	15	0.03	11.34	-11.76	0.05
$\delta^{A,B} = \delta$,	20	1.11	19.93	-17.94	0.86
$\delta = \lambda$	25	1.50	21.25	-18.35	1.24
$\lambda^A = \lambda^B + \Delta,$	15	5.45	16.79	-17.29	-5.84
$\delta^i = \lambda^i$,	20	10.16	28.95	-27.08	-8.23
$\Delta = 100 \; \mathrm{bps}$	25	10.96	30.75	-27.76	-9.19
$\lambda^A = \lambda^B + \Delta,$	15	11.30	22.29	-22.90	-11.25
$\delta^i=\lambda^i$,	20	19.26	38.06	-36.16	-17.42
$\Delta=200~{\rm bps}$	25	19.46	40.27	-37.02	-18.38

Funding costs case. Swap margins $\frac{p^c}{E^{\mathbb{P}}[S_T]} - 1$ against Lee-Carter mortality improvements quantiles for $\Delta = 0$ (dashed), $\Delta = 100$ bps (solid): no collateral (squares), full collateralization (circles).

Funding costs case. Swap margins $\frac{p^c}{E^{\mathbb{P}}[S_T]} - 1$ against Lee-Carter mortality improvements quantiles for $\Delta = 0$ (dashed), $\Delta = 100$ bps (solid): no collateral (squares), full collateralization (circles).

Funding costs case. Swap margins $\frac{p^c}{E^{\mathbb{P}}[S_T]} - 1$ against Lee-Carter mortality improvements quantiles for $\Delta = 0$ (dashed), $\Delta = 100$ bps (solid): no collateral (squares), full collateralization (circles).

Funding costs case. Swap margins $\frac{p^c}{E^{\mathbb{P}}[S_T]} - 1$ against Lee-Carter mortality improvements quantiles for $\Delta = 0$ (dashed), $\Delta = 100$ bps (solid): no collateral (squares), full collateralization (circles).

One-sided vs. two-sided collateralization

Funding costs case. Swap margins $\frac{p^c}{E^p[S_T]} - 1$ against Lee-Carter mortality improvements quantiles. $\Delta = 100$ bps. No collateral (squares) vs. full collateralization: two-sided (circles), one-sided A (stars), one-sided B (diamonds).

One-sided vs. two-sided collateralization

Funding costs case. Swap margins $\frac{p^c}{E^F[S_T]} - 1$ against Lee-Carter mortality improvements quantiles. $\Delta = 100$ bps. No collateral (squares) vs. full collateralization: two-sided (circles), one-sided A (stars), one-sided B (diamonds).

One-sided vs. two-sided collateralization

Funding costs case. Swap margins $\frac{p^c}{E^p[S_T]} - 1$ against Lee-Carter mortality improvements quantiles. $\Delta = 100$ bps. No collateral (squares) vs. full collateralization: two-sided (circles), one-sided A (stars), one-sided B (diamonds).

Capital charges approach

Opportunity cost case. Swap margins $p_{T_i}^c/p_{T_i} - 1$ against Lee-Carter mortality improvements quantiles for $\Delta = 0$: no collateral (squares), two-sided full collateralization (circles), one-sided A (stars), one-sided B (diamonds), $\Xi \rightarrow \Xi \rightarrow \Xi$

Understanding longevity swap rates

Two effects at play here

- longevity risk
- interest rate risk

$$p^{c} = E^{\mathbb{Q}}[S_{T}] + \frac{\mathsf{Cov}^{\mathbb{Q}}\left(\exp\left(-\int_{0}^{T}(r_{t}+\Gamma_{t})\mathsf{d}t\right), S_{T}\right)}{E^{\mathbb{Q}}\left[\exp\left(-\int_{0}^{T}(r_{t}+\Gamma_{t})\mathsf{d}t\right)\right]}$$

Understanding longevity swap rates

Two effects at play here

- longevity risk
- interest rate risk

$$p^{c} = E^{\mathbb{Q}}[S_{T}] + \frac{\mathsf{Cov}^{\mathbb{Q}}\left(\exp\left(-\int_{0}^{T}(r_{t}+\Gamma_{t})\mathsf{d}t\right), S_{T}\right)}{E^{\mathbb{Q}}\left[\exp\left(-\int_{0}^{T}(r_{t}+\Gamma_{t})\mathsf{d}t\right)\right]} \quad \uparrow\uparrow$$

Intuition

- A receives collateral when S_T is high, liability more capital intensive
- A posts collateral when S_T is low, liability less capital intensive

Understanding longevity swap rates

Two effects at play here

- longevity risk
- interest rate risk

$$p^{c} = E^{\mathbb{Q}}[S_{T}] + \frac{\mathsf{Cov}^{\mathbb{Q}}\left(\exp\left(-\int_{0}^{T}(r_{t}+\Gamma_{t})\mathsf{d}t\right), S_{T}\right)}{E^{\mathbb{Q}}\left[\exp\left(-\int_{0}^{T}(r_{t}+\Gamma_{t})\mathsf{d}t\right)\right]} \quad \downarrow \downarrow$$

Intuition

- If A is ITM, collateral higher in low interest rate environments
- If A is OTM, collateral lower in higher interest rate environments

Comparison with IRS market

IRS spreads: difference betweeen futures price ($\delta = r$) and swap rate of collateralized IRS of corresponding maturity

		IRS			longevity		
	Maturity	$c^A = 0$	$c^A = 1$	$c^A = 1$	$c^A = 0$	$c^A = 1$	$c^{A} = 1$
	payment	$c^{B} = 1$	$c^B = 0$	$c^{B} = 1$	$c^B = 1$	$c^B = 0$	$c^{B} = 1$
	(yrs)	(bps)	(bps)	(bps)	(bps)	(bps)	(bps)
$\lambda^{A,B} = \lambda,$	15	-7.96	-44.97	-52.86	11.34	-11.76	0.05
$\delta^{A,B} = \delta,$	20	-12.68	-42.64	-56.22	19.93	-17.94	0.86
$\delta = \lambda$	25	-17.94	-40.98	-58.92	21.25	-18.35	1.24
$\lambda^A = \lambda^B + \Delta,$	15	-8.00	-67.87	-75.23	16.79	-17.29	-5.84
$\delta^i = \lambda^i$,	20	-12.65	-63.84	-77.42	28.95	-27.08	-8.23
$\Delta=100~{\rm bps}$	25	-17.65	-60.63	-77.64	30.75	-27.76	-9.19

Agenda

1 Overview

- 2 Consistent valuation of swaps
- 3 Equilibrium swap rates
- 4 Cost of collateralization: case study

5 Conclusion

Conclusion

Swap valuation with counterparty risk and liquidity risk

- Swap rates endogenize collateral flows generated by MTM procedure and associated funding/opportunity costs
- Root finding and stochastic approximation algorithms
- Even standard collateral rules may pose significant challenges

Impact of collateral rules / conventions

- Partial vs. full collateralization
- Symmetric vs. asymmetric collateral rules
- Segregation vs. rehypothecation
- Funding costs vs. opportunity costs

Quantifying the cost of collateralization

- The case of IRSs and bespoke longevity swaps
- Sign and magnitude of costs are far from obvious

Overview

THANK YOU

<ロト < 回 > < 三 > < 三 > < 三 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Some references

- S. Assefa, T.R. Bielecki, S. Crépey and M. Jeanblanc (2010), CVA computation for counterparty risk assessment in credit portfolios. In T. Bielecki, D. Brigo and F. Patras (eds.), *Recent Advancements in the Theory and Practice of Credit Derivatives*, Bloomberg Press.
- E. Biffis, D. Brigo, L. Pitotti (2011), Collateral flows, funding costs, and counterparty-risk-neutral swap rates.
- E. Biffis, D. Blake, L. Pitotti, A. Sun (2011), The cost of counterparty risk and collateralization in longevity swaps, WP on SSRN.
- D. Brigo (2011), Brigo's Counterparty Risk FAQ, WP on ArXiv.
- D. Brigo and A. Capponi (2009). Bilateral counterparty risk valuation with stochastic dynamical models and application to CDSs. WP, Kings College London.
- D. Brigo, A. Pallavicini and V. Papatheodorou (2011). Collateral margining in arbitragefree counterparty valuation adjustment including re-hypothecation and netting. WP, Kings College London.
- P. Collin-Dufresne and B. Solnik (2001), On the term structure of default premia in the swap and LIBOR markets, *Journal of Finance*.
- D. Duffie and M. Huang (1997), Swap rates and credit quality, Journal of Finance.
- D. Duffie and K. Singleton (1997), An econometric model of the term structure of interest rate swap yields, *Journal of Finance*.
- H. He (2001), Modeling term structures of swap spreads, WP, Yale.
- H.J. Kushner and G.G. Yin (2003), Stochastic Approximation and Recursive Algorithms and Applications, Springer.
- M. Johannes and S. Sundaresan (2007), The impact of collateralization on swap rates, Journal of Finance.