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Overview

Global financial crisis

• Counterparty risk and counterparty risk mitigation tools matter

⋆ collateral rules and funding costs integral part of the transaction
⋆ implications for pricing, hedging, market-to-market accounting

• Multicurve modelling

⋆ LIBOR, EURIBOR, EONIA, EUREPO?

New regulation (Dodd-Frank, EMIR)

• clearing, netting, collateralization

• collateral quality, segregation, re-hypothecation

• replacement cost, close-out conventions

Valuation challenges (e.g., Brigo’s Counterparty Risk FAQ, Nov 2011)

• Credit/Debit Valuation Adjustment (CVA/DVA)
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Questions

Consistent valuation with counterparty risk and liquidity risk

• Swap rates endogenize collateral flows and funding/opportunity costs

• Root finding, stochastic approximation algorithms.

Impact of different collateral rules / conventions

• Partial vs. full collateralization

• Symmetric vs. asymmetric collateral rules

• Segregation vs. rehypothecation

Quantifying the cost of collateralization

• Benchmark: interest-rate swaps (IRS) market

• Case study: bespoke longevity swaps
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Common pitfalls

Interest-rate swaps (IRS)

• almost every IRS bilaterally collateralized

• cash collateral in over 90% of the cases

p

LT

Party A
(fixed payer)

Party B
(fixed receiver)
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Common pitfalls

Interest-rate swaps (IRS)

• almost every IRS bilaterally collateralized

• cash collateral in over 90% of the cases

Duffie/Singleton valuation formula:

• unitary notional, single payment

• LIBOR default spread, λ

V0 = EQ

[

exp

(

−

∫ T

0

(rt + λt)dt

)

(LT − p)

]

• Exceptions: He (2001) and Collin-Dufresne/Solnik (2001) set λ = 0.
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Bilateral default risk

Allow for credit quality of counterparties (Duffie/Huang, 1997)

• party A pays fixed, party B pays floating

• default intensities λA
t , λ

B
t , and recovery rates RA, RB

• fixed payer’s viewpoint

V0 = EQ

[

exp

(

−

∫ T

0

(rt + Λt)dt

)

(

LT − pd
)

]

Λt :=

{

(1−RA)λA
t if Vt < 0

(1−RB)λB
t if Vt ≥ 0
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(

−
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0

(rt + Λt)dt

)

(

LT − pd
)

]

Λt :=

{

(1−RA)λA
t if Vt < 0

(1−RB)λB
t if Vt ≥ 0

• full collateralization, RA = RB = 1

V0 = EQ

[

exp

(

−

∫ T

0

rtdt

)

(

LT − pd
)

]

...default-free, risk-neutral valuation formula...
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Collateralization

Collateral fractions (cht )t≥0 (ITM), (cpt )t≥0 (OTM) [hedger’s viewpoint]

• cht Vt−1{Vt−>0} cash held, cptVt−1{Vt−<0} cash posted

• funding cost / opportunity cost / capital relief

• δht net gain from holding collateral (r rebated)

• δ
p
t net cost of posting collateral (r rebated)

9/32



Overview Consistent valuation of swaps Equilibrium swap rates Cost of collateralization: case study Conclusion

Collateralization

Collateral fractions (cht )t≥0 (ITM), (cpt )t≥0 (OTM) [hedger’s viewpoint]

• cht Vt−1{Vt−>0} cash held, cptVt−1{Vt−<0} cash posted

• funding cost / opportunity cost / capital relief

• δht net gain from holding collateral (r rebated)

• δ
p
t net cost of posting collateral (r rebated)

• swap’s market value

V0 = EQ

[

exp

(

−
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(rt + Γt)dt

)
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]

Γt :=

{

(1− c
p
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+λB
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Collateralization

Collateral fractions (cht )t≥0 (ITM), (cpt )t≥0 (OTM) [hedger’s viewpoint]

• cht Vt−1{Vt−>0} cash held, cptVt−1{Vt−<0} cash posted

• funding cost / opportunity cost / capital relief

• δht net gain from holding collateral (r rebated)

• δ
p
t net cost of posting collateral (r rebated)

• swap’s market value

V0 = EQ

[

exp

(

−

∫ T

0

(rt + Γt)dt

)

(ST − pc)

]

Γt :=

{

(1− c
p
t )

+λA
t −δ

p
t c

p
t if Vt < 0

(1− cht )
+λB

t −δht c
h
t if Vt ≥ 0

• Full collateralization (cp,h = 1), symmetric costs/spreads (δ, λ):

rt + Γt = rt − δt
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Swap rates

Swap rate pc from V0 = 0

pc = EQ[LT ] +
CovQ

(

exp
(

−
∫ T

0
(rt + Γt)dt

)

, LT

)

EQ

[

exp
(

−
∫ T

0
(rt + Γt)dt

)]
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Root finding (V0(p
c) = 0) and stochastic approximations

• Robbins-Monro, Polyak-Ruppert averaging

• Main issue is unbiased estimator of V0(p) when using American MC
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Swap rates

Swap rate pc from V0 = 0

pc = EQ[LT ] +
CovQ

(

exp
(

−
∫ T

0
(rt + Γt(c

h,p))dt
)

, LT

)

EQ

[

exp
(

−
∫ T

0
(rt + Γt(ch,p))dt

)]

Root finding (V0(p
c) = 0) and stochastic approximations

• Robbins-Monro, Polyak-Ruppert averaging

• Main issue is unbiased estimator of V0(p) when using American MC

Collateral rule examples

• collateral thresholds based on credit ratings, CDS spreads, etc.

• c
p
t = cht = 1 (full collateralization)

• c
p
t = α, cht = β, with α, β ∈ [0, 1]

• c
p
t = 1{Lt≤β(t)}, c

h
t = 1{Lt≥α(t)}∪{λB

t
≥γ}, with α(·) > β(·), γ ≥ 0
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Swap rates

Swap rate pc from V0 = 0

pc = EQ[LT ] +
CovQ

(

exp
(

−
∫ T

0
(rt + Γt(Vt(p

c)))dt
)

, LT

)

EQ

[

exp
(

−
∫ T

0
(rt + Γt(Vt(pc)))dt

)]

Root finding (V0(p
c) = 0) and stochastic approximations

• Robbins-Monro, Polyak-Ruppert averaging

• Main issue is unbiased estimator of V0(p) when using American MC

Collateral rule examples

• collateral thresholds based on credit ratings, CDS spreads, etc.

• c
p
t = cht = 1 (full collateralization)

• c
p
t = α, cht = β, with α, β ∈ [0, 1]

• c
p
t = 1{Lt≤β(t)}, c

h
t = 1{Lt≥α(t)}∪{λB

t
≥γ}, with α(·) > β(·), γ ≥ 0

• c
p
t = 1{Vt(pc)≤v} and cht = 1{Vt(pc)≥v}, with v < v
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Symmetric collateralization with re-hypothecation
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(A)symmetric collateralization with segregation
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Longevity swaps

Date Hedger Size Term (yrs) Type Interm./supplier
Jan 08 Lucida Not disclosed 10 indexed JPM

ILS funds
Jul 2008 Canada Life GBP 500m 40 bespoke JPM

ILS funds
Feb 2009 Abbey Life GBP 1.5bn run-off bespoke DB

ILS funds
Partner Re

Mar 2009 Aviva GBP 475m 10 bespoke RBS
Jun 2009 Babcock GBP 750m 50 bespoke Credit Suisse

International Pacific Life Re
Jul 2009 RSA GBP 1.9bn run-off bespoke GS

(Rothesay Life)
Dec 2009 Berkshire GBP 750m run-off bespoke Swiss Re

Council
Feb 2010 BMW UK GBP 3bn run-off bespoke DB

Paternoster
Dec 2010 Swiss Re USD 50m 8 indexed ILS funds

(Kortis bond)
Feb 2011 Pall GBP 70m 10 indexed JPM

Pension Fund
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Bespoke longevity swaps

Stylized example: single payment at time T > 0

• notional n > 0, fixed payment p ∈ (0, 1)

• variable payment ST (realized survival rate)

n× p

n× ST

Party A
(hedger)

Party B
(hedge supplier)
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• notional n > 0, fixed payment p ∈ (0, 1)

• variable payment ST (realized survival rate)

n× p

n× ST

Party A
(hedger)

Party B
(hedge supplier)

Swap value (hedger’s viewpoint)

V0 = nEQ

[

exp

(

−
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0
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)
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Bespoke longevity swaps

Stylized example: single payment at time T > 0

• notional n > 0, fixed payment p ∈ (0, 1)

• variable payment ST (realized survival rate)

n× p

n× ST

Party A
(hedger)

Party B
(hedge supplier)

Longevity swap rate (r, S uncorrelated)

p = EQ [ST ] + 0

Useful baseline case p = EP[ST ] (best estimate).
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Cashflows and marking-to-market
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Longevity swap rates
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Hedge supplier’s credit deterioration
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Fully fledged calibration

Building blocks

• two-factor short rate model

• TED spread for λB

• λA = λB +∆, ∆ > 0

• net cost of collateral in IRS market (calibration of
Johannes/Sundaresan, 2007)

• Lee-Carter mortality model

Two approaches to collateral costs δh, δp

⋆ funding costs associated with collateral flows

⋆⋆ simulate Solvency II capital charges (1-year 99.5% VaR) accruing
from representative longevity-linked liability;
opportunity cost of (say) 6% + LIBOR incurred on capital charges
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Fully fledged calibration

Q-dynamics of state variable process X

dX1
t =

(

k1(X
2
t −X

1
t )− η

1) dt+ σ1dW
1
t

dX2
t =

(

k2(θ2 −X
2
t )− η

2) dt+ σ2dW
2
t

dX3
t =

(

κ3(θ3 −X
3
t ) + κ3,1(X

1
t − θ2) + κ3,4(X

4
t − θ4)− η3

)

dt+ σ3dW
3
t

dX4
t =

(

κ4(θ4 −X
4
t ) + κ4,1(X

1
t − θ2) + κ4,2(X

2
t − θ2)− η4

)

dt+ σ4dW
4
t

dX5
t =

(

κ5(θ5 −X
5
t ) + κ5,1(X

1
t − θ2) + κ5,2(X

2
t − θ2) + κ5,3(X

3
t − θ3)

+ κ5,4(X
4
t − θ4) + κ5,6(X

6
t − E0[X

6
t ])− η5

)

dt+ σ5dW
5
t

dX6
t =

(

A(t) +B(t)(X6
t − a(t))

)

dt+ σ6(t)dW
6
t

• r = X1, mean reverting to random target X2

• λB = X3, TED spread

• X4, net cost of collateral in IRS markets (Johannes/Sundaresan, 2007)

• X5 net cost of collateral for longevity risk exposures

• X6 continuous time version of Lee-Carter model
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Parameter estimates

Parameter estimates

• Treasury/IRS market: Johannes/Sundaresan (2007)

• Mortality: US/UK HMD data

• Net cost of collateral:

i) δh = δp = λA = X(3) +∆, ∆ ∈ {0, 0.01, 0.02}
ii) δh = δp = X(5)

κ1 0.969 η1 -0.053 σ1 0.008 UK
κ2 0.832 η3 -0.014 σ2 0.155 δK -0.888
κ3 1.669 η4 0.007 σ3 0.009 σK 1.156
κ4 0.045 η5 0.055 σ4 0.010 US
κ5 0.990 κ5,1 0.147 σ5 0.690 δK -0.761
κ3,1 -0.163 κ5,2 1.340 θ2 0.046 σK 1.078
κ4,1 0.114 κ5,3 2.509 θ3 0.003
κ3,4 0.804 κ5,4 -0.133 θ4 0.007
κ4,2 -0.038 κ5,6 -0.002 θ5 0.115 ρ1,2 -0.036
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Longevity swap spreads

Underlying: 10,000 US males aged 65 at beginning of 2008. Term: 25 years.

• swap spreads (basis points), pcT − EP[ST ]:

Maturity cA = 0 cA = 0 cA = 1 cA = 1

payment cB = 0 cB = 1 cB = 0 cB = 1

(yrs) (bps) (bps) (bps) (bps)

λA,B = λ, 15 0.03 11.34 -11.76 0.05
δA,B = δ, 20 1.11 19.93 -17.94 0.86
δ = λ 25 1.50 21.25 -18.35 1.24

λA = λB +∆, 15 5.45 16.79 -17.29 -5.84
δi = λi, 20 10.16 28.95 -27.08 -8.23

∆ = 100 bps 25 10.96 30.75 -27.76 -9.19

λA = λB +∆, 15 11.30 22.29 -22.90 -11.25
δi = λi, 20 19.26 38.06 -36.16 -17.42

∆ = 200 bps 25 19.46 40.27 -37.02 -18.38
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Longevity swap margins

5 10 15 20 25
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

payment date

sw
ap

 m
ar

gi
n 

an
d 

pe
rc

en
til

es
 (%

)

 

 

25

75

45

35

65

55

Funding costs case. Swap margins pc

EP[ST ]
− 1 against Lee-Carter mortality

improvements quantiles for ∆ = 0 (dashed), ∆ = 100 bps (solid): no collateral

(squares), full collateralization (circles).
24/32



Overview Consistent valuation of swaps Equilibrium swap rates Cost of collateralization: case study Conclusion

Longevity swap margins

5 10 15 20 25
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

payment date

sw
ap

 m
ar

gi
n 

an
d 

pe
rc

en
til

es
 (%

)

 

 

25

75

45

35

65

55

λA=λB

Funding costs case. Swap margins pc

EP[ST ]
− 1 against Lee-Carter mortality

improvements quantiles for ∆ = 0 (dashed), ∆ = 100 bps (solid): no collateral

(squares), full collateralization (circles).
24/32



Overview Consistent valuation of swaps Equilibrium swap rates Cost of collateralization: case study Conclusion

Longevity swap margins

5 10 15 20 25
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

payment date

sw
ap

 m
ar

gi
n 

an
d 

pe
rc

en
til

es
 (%

)

 

 

25

75

45

35

65

55

λA=λB

λA=λB+∆
no collateral

Funding costs case. Swap margins pc

EP[ST ]
− 1 against Lee-Carter mortality

improvements quantiles for ∆ = 0 (dashed), ∆ = 100 bps (solid): no collateral

(squares), full collateralization (circles).
24/32



Overview Consistent valuation of swaps Equilibrium swap rates Cost of collateralization: case study Conclusion

Longevity swap margins

5 10 15 20 25
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

payment date

sw
ap

 m
ar

gi
n 

an
d 

pe
rc

en
til

es
 (%

)

 

 

25

75

45

35

65

55

λA=λB+∆
full collateral

λA=λB

λA=λB+∆
no collateral

Funding costs case. Swap margins pc

EP[ST ]
− 1 against Lee-Carter mortality

improvements quantiles for ∆ = 0 (dashed), ∆ = 100 bps (solid): no collateral

(squares), full collateralization (circles).
24/32



Overview Consistent valuation of swaps Equilibrium swap rates Cost of collateralization: case study Conclusion

One-sided vs. two-sided collateralization
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Capital charges approach
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Understanding longevity swap rates

Two effects at play here

• longevity risk

• interest rate risk

pc = EQ[ST ] +
CovQ

(

exp
(

−
∫ T

0
(rt + Γt)dt

)

, ST

)

EQ

[

exp
(

−
∫ T

0
(rt + Γt)dt

)]

27/32



Overview Consistent valuation of swaps Equilibrium swap rates Cost of collateralization: case study Conclusion

Understanding longevity swap rates

Two effects at play here

• longevity risk

• interest rate risk

pc = EQ[ST ] +
CovQ

(

exp
(

−
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0
(rt + Γt)dt

)
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)

EQ

[

exp
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−
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(rt + Γt)dt

)] ↑↑

Intuition

• A receives collateral when ST is high, liability more capital intensive

• A posts collateral when ST is low, liability less capital intensive
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Understanding longevity swap rates

Two effects at play here

• longevity risk

• interest rate risk

pc = EQ[ST ] +
CovQ

(

exp
(

−
∫ T

0
(rt + Γt)dt

)

, ST

)

EQ

[

exp
(

−
∫ T

0
(rt + Γt)dt

)] ↓↓

Intuition

• If A is ITM, collateral higher in low interest rate environments

• If A is OTM, collateral lower in higher interest rate environments
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Comparison with IRS market

IRS spreads: difference betweeen futures price (δ = r) and swap rate of
collateralized IRS of corresponding maturity

IRS longevity
Maturity cA = 0 cA = 1 cA = 1 cA = 0 cA = 1 cA = 1

payment cB = 1 cB = 0 cB = 1 cB = 1 cB = 0 cB = 1

(yrs) (bps) (bps) (bps) (bps) (bps) (bps)

λA,B = λ, 15 -7.96 -44.97 -52.86 11.34 -11.76 0.05
δA,B = δ, 20 -12.68 -42.64 -56.22 19.93 -17.94 0.86
δ = λ 25 -17.94 -40.98 -58.92 21.25 -18.35 1.24

λA = λB +∆, 15 -8.00 -67.87 -75.23 16.79 -17.29 -5.84
δi = λi, 20 -12.65 -63.84 -77.42 28.95 -27.08 -8.23

∆ = 100 bps 25 -17.65 -60.63 -77.64 30.75 -27.76 -9.19

28/32



Overview Consistent valuation of swaps Equilibrium swap rates Cost of collateralization: case study Conclusion

Agenda

1 Overview

2 Consistent valuation of swaps

3 Equilibrium swap rates

4 Cost of collateralization: case study

5 Conclusion

29/32



Overview Consistent valuation of swaps Equilibrium swap rates Cost of collateralization: case study Conclusion

Conclusion

Swap valuation with counterparty risk and liquidity risk

• Swap rates endogenize collateral flows generated by MTM procedure and
associated funding/opportunity costs

• Root finding and stochastic approximation algorithms

• Even standard collateral rules may pose significant challenges

Impact of collateral rules / conventions

• Partial vs. full collateralization

• Symmetric vs. asymmetric collateral rules

• Segregation vs. rehypothecation

• Funding costs vs. opportunity costs

Quantifying the cost of collateralization

• The case of IRSs and bespoke longevity swaps

• Sign and magnitude of costs are far from obvious
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End

THANK YOU
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