
Teaching Parallelism to Freshmen

Robert Harper

December, 2011

Premises

Parallelism abounds!

• Multicores.

• Distribution.

• Graphics processors.

Parallelism is about efficiency, not correctness.

• Not about concurrency!

• Determinacy = sequential semantics, parallel cost.

Teaching Parallelism

Functional programming

• Computation by transformation.

• Persistent, not ephemeral, data structures.

• Manipulate aggregates as a whole: death to iterators!

Cost semantics

• Work = sequential complexity.

• Span = idealized parallel complexity (critical path length).

• Brent’s Principle: bound performance based on cost.

Machine Models

Traditionally, algorithms research has focused on machine models.

• Sequential RAM.

• Parallel RAM with various capabilities.

• Relentlessly imperative. No abstraction.

Cost is derived from (fictional) compilation of HLL onto RAM.

• Reason about the compiled code (with hand-waving).

• Bakes in number of processors, assumptions about
interconnect.

!"#$%&'()*+(',*-.'/0'1$('2/344,56*

!"#$%&'"%*!3789:;<=>(?@*

):*$'6)5#6&*5)*,'&)*'6A*A4A,A6)*+,%-."%+'"-*(.

**%/0%.

....1%2)-.

******$.''&A*56*A4A,A6)*3*(56B',4C*+(',*(D*

******/%+*(45.(6*56B*(7*EA*).A*&AF"A6$A&*'+*

***********A4A,A6)&*#6*(*4A&&*).56G*AF"54*)'G**

***********56B*H(A5)A(*).56*3G*(A&1A$IJA4CD*

******"%+'"-*>!3789:;<=>(4?*+'44'KAB*EC*(6**

*********+'44'KAB*EC*!3789:;<=>(7??*

%-&*

ICFP 2010 17

Language Models

Ironically, the classic AHU Quicksort is specified cleanly!

• Naturally parallel.

• No low-level details.

But conventional (especially, commercial) languages are
relentlessly low-level.

• Machine-inspired imperative model.

• OOPL’s don’t help, they make the problem worse!

Language Models

What is a language-based model of parallel computation?

• A static semantics that specifies the well-formed programs.

• A dynamic semantics that specifies both the execution and
the cost of a program.

• A provable implementation that realizes the abstract cost on a
concrete machine model.

Crucially,

• The execution semantics is not affected by parallelism.

• The cost semantics specifies both sequential and parallel
complexity.

• The provable implementation takes account of scheduling and
interconnect costs.

Parallel Functional Programming

Evaluation semantics: e ⇓ v .

λx :τ.e ⇓ λx :τ.e

e1 ⇓ λx :τ.e e2 ⇓ v2 [v2/x]e ⇓ v

e1 e2 ⇓ v

Evaluation, not execution: no effects, no interference!

Parallel Functional Programming

Cost semantics: e ⇓dw v .

• Work, w , is total number of steps (sequential complexity).

• Depth (aka span), d , is critical path length (idealized parallel
complexity).

λx :τ.e ⇓11 λx :τ.e

e1 ⇓d1w1
λx :τ.e e2 ⇓d2w2

v2 [v2/x]e ⇓d3w3
v

e1 e2 ⇓max(d1,d2)+d3+1
w1+w2+w3+1 v

Specifies parallelism by specifying cost model!

Parallel Asymptotics

The cost model allows us to assign complexity to programs.

• T1(n) = sequential execution time for input of size n.

• T∞(n) = idealized parallel execution time for input of size n.

Using this we can assess the parallelizability of an algorithm.

Quicksort of a List

Sequential partition, parallel recursive calls:

fun qs [] = []
| qs (xs as a : :) =

l e t va l l s = f i l t e r (fn x => x<a) xs
va l e s = f i l t e r (fn x => x=a) xs
va l gs = f i l t e r (fn x => x>a) xs

i n (qs l s) @ e s @ (qs gs) end

Complexity (expected, over all inputs of size n):

T1(n) = O(n log n)

T∞(n) = O(n)

Not very parallelizable!

Quicksort on a Tree

datatype ’ a seq = Empty
| L e a f of ’ a
| Node of ’ a seq ∗ ’ a seq

fun app Empty b = b
| app a Empty = a
| app a b = Node (a , b)

fun f i l p Empty = Empty
| f i l p (L e a f x) = i f p x then L e a f x e l s e Empty
| f i l p (Node (a , b)) = Node (f i l p a , f i l p b)

Quicksort on a Tree

fun qs Empty = Empty
| qs xs =

l e t va l a = head xs
va l l s = f i l (fn x => x<a) xs
va l e s = f i l (fn x => x=a) xs
va l gs = f i l (fn x => x>a) xs

i n app (qs l s) (app e s (qs gs)) end

Complexity:

• T1(n) = O(n log n)

• T∞(n) = O(log2 n).

Parallelizable!

Parallel Merge

!"#$%&$'

Merge(A,B) =

let

 Node(AL, m, AR) = A

 (BL ,BR) = split(B, m)

in

 Node(Merge(AL,BL), m, Merge(AR,BR))!!!

ICFP 2010 25

m

AL AR
BL

BR

A B

m

Merge(AL ,BL)
Merge(AR ,BR)

Span = O(log2 n)

Work = O(n)

Merge in parallel

Parallel Merge
!"#$%&'()$*&#+,-./$

datatype ‘a seq = Empty

 | Node of ‘a * ‘a seq * ‘a seq

fun split (p, Empty) = (Empty, Empty)

| split (p, node(v, L, R)) =

 if p < v then

 let val (L1 ,R1) = split(p ,L)

 in (L1,node(v, R1, R)) end

 else

 let val (L1,R1) = split(p ,R)

 in (node (v, L, Ll), R1) end;

ICFP 2010 24

BL BR

B

p

Provable Implementation

Theorem (Brent; Blelloch and Greiner)

If e ⇓dw v, then v can be calculated on a CREW PRAM with p
processors in time O(max(w/p, d log p).

The lg p factor accounts for the interconnect.

The proof is essentially a scheduler for the parallel tasks, using
Brent’s Principle.

• Do work in chunks of w/p insofar as possible.

• Critical path length imposes a lower bound of d steps.

Parallelizability

The parallelizability ratio is (by definition) T1(n)/T∞(n).

• Parallelizable if ratio is larger than p.

• Not parallelizable otherwise.

• Can compare ratios for different algorithms.

Provides a metric for assessing the potential to exploit parallelism
in a given program.

Collections

Evaluation of collections in parallel:

e ⇓ [v1, . . . , vn] [v1/x]e ′ ⇓ v ′1 . . . [vn/x]e ′ ⇓ v ′n
{ e ′ : x ∈ e } ⇓ [v ′1, . . . , v

′
n]

Cost semantics:

e ⇓dw [v1, . . . , vn] [v1/x]e ′ ⇓d1w1
v ′1 . . . [vn/x]e ′ ⇓dnwn

v ′n

{ e ′ : x ∈ e } ⇓d+max(d1,...,dn)+1
w+w1+···+wn+1 [v ′1, . . . , v

′
n]

Fork n threads, one for each element, store results in pre-allocated
array.

Matrix Multiplication

fun mm A B =
l e t

fun vv b a =
r e d (+) (fn (i , x) => sub (b , i)∗ x) 0 . 0 a

fun mv B a =
tab (fn i => vv (sub (B, i)) a)) (l e n B)

i n
tab (fn i => mv B (sub (A, i)) (l e n A)

end

New Curriculum at CMU

15-150: Functional Programming (Harper, Licata).

• Computing by transformation.

• Persistent, as well as ephemeral, data structures.

• Verification of correctness.

• Parallel thinking: cost semantics, aggregates.

• Modularity and abstraction.

• Example: Barnes-Hut.

See: http://www.cs.cmu.edu/~15150

http://www.cs.cmu.edu/~15150

New Curriculum at CMU

15-210: Parallel Data Structures and Algorithms (Blelloch).

• Complete re-boot of classical DS+A course: no objects, no
pointers, no machine models.

• Functional programming over persistent data structures.

• Abstract types: separating abstraction from implementation.

• Asymptotics: work and depth.

• Example: shotgun method for genome sequencing.

See: http://www.cs.cmu.edu/~15210

http://www.cs.cmu.edu/~15210

New Curriculum at CMU

15-122: Imperative Programming (Pfenning).

• C0, a safe C-like language (aka Pascal with curly braces).

• Emphasize verification, run-time checking.

• Classic pointer mentality, including null’s.

• No parallelism.

Questions?

Thanks for your attention!

