' F# 3.0:
Strongly Typed Programming
in the Information Rich World

Don Syme, Principal Researcher,

Microsoft Research, UK i

'Visual F#

Today’s talk is very simple

Proposition 1

The world is incredibly
information-rich

Proposition 2

Modern financial enterprises are
incredibly information-rich

Proposition 3

Our languages are information-
sparse

Proposition 4
This is a problem

(especially for strongly typed programming)

With F# we want to help fix this...

The mechanism we’re adding
to F# is called Type Providers

LINQ + Type Providers

Language Integrated Data and
Services

Two aims today

Demonstrate what we’re doing in F# 3.0

Explore applications in a range of data spaces

But first...

What is F#?

F# Is...

...a practical, supported, interoperable,
functional language that allows you to write

simple code to solve complex problems.

7

Crossing boundaries

“Fresh Code” Performance
Professional Development

Programming Financial engineering

Algorithmic Trading
DSL programming

\EY
ematica...

Expressivity for

Programmin :
8 & Mathematical tasks

¥

Why is F# appealing in finance?

e Functional programming fits with financial work
— Programmatic modelling
— Compositional parallel & GPU programming
— Domain specific languages - internal and external
— Efficient execution

e Plays differently for different roles:
— Quants contribute to component development
— Architects explore hard problems fluently
— Developers tackle parallel and async programming

Functional
Data

Meta
Programming

(DSLs)

Typed
Functional
Core

Parallelism,
Asynchrony

Objects
(Nominal)

Units of
Measure

type Command = Command of (Rover -> unit)

let BreakCommand =
Command(fun rover -> rover.Accelerate(-1.0))

let TurnLeftCommand =
Command(fun rover -> rover.Rotate(-5.0<degs>))

Simplicity: Functions as Values

abstract class Command

{

public virtual void Execute();

}

abstract class RoverCommand

{

protected Rover Rover { get; private set;

: Command

public RoverCommand(MarsRover rover)

{

}
}

class BreakCommand :

{
public BreakCommand(Rover rover) : base(r¢

{
}

public override void Execute()

{
}

this.Rover = rover;

RoverCommand

Rover.Rotate(-5.0);

}

class TurnLeftCommand :

{

RoverCommand

public TurnLeftCommand(Rover rover) :

{
}

public override void Execute()

{

Rover.Rotate(-5.0);

1§
J

Simplicity: Functional Data

let swap (X, y) = (y, X) Tuple<U,T> Swap<T,U>(Tuple<T,U> t)
{

. return new Tuple<U,T>(t.Item2, t.Iteml)

let rotations (x, y, z) = ReadOnlyCollection<Tuple<T,T,T>> Rotations<T>(Tuple<T,T,T> t)
[(X, ¥, 2); {
(z, x, ¥); new ReadOnlyCollection<int>
(y, z, x) 1] (new Tuple<T,T,T>[]
{ new Tuple<T,T,T>(t.Iteml,t.Item2,t.Item3);
new Tuple<T,T,T>(t.Item3,t.Iteml,t.Item2);
new Tuple<T,T,T>(t.Item2,t.Item3,t.Iteml); });

int Reduce<T>(Func<T,int> f,Tuple<T,T,T> t)

{
let reduce f (x, y, z) = return f(t.Iteml) + f(t.Item2) + f (t.Item3);

fx+fy+fz

Understanding F# [Ritiig

WebSharper
1 (HTMLS)
Javascript...

Data Access Transformation,

Information Analysis, Preséntation,

Services, Algorithms, Publication,
External DSLs Code, Experience
Parallel,
Internal DSLs

The Big Trends

WEB MULTICORE DATA

e R\
Example #1 (Power Company)

| have written an application to balance the national power
generation schedule ... for an energy company.

...the calculation engine was written in F#.

The use of F# to address the complexity at the heart of this
application clearly demonstrates a sweet spot for the
language ... algorithmic analysis of large data sets.

Simon Cousins (Eon Powergen)

)

Examples #2/#3: Finance companies

%

Grange

Insurance

Overview
Country or Region: United States
Industry: Financial services—Insurance

Customer Profile

Headquartered in Columbus, Chio,
Grange Insurance offers automobile, life,
home, and business insurance protection
to policyholders in 13 U.S, states. It
employs 1,500 people.

Business Situation

To maintainits competitive standing and
its reputation among agents for being
easyto do business with, Grange
Insurance needed to keep itsrating
engine working at top performance.

Solution
Using Microsoftz Visual Studioz Team
System and Visual F#, the company

Insurance Company Improves Time-to-

Market with Enhanced Rating Engine

"With this streamlined development cyc
rapidly deliver more powerful solutions
they can deliver more choicesand bette
policyholders thatmuch faster.”

Glenn'Watson, Associate Vice President, Personal Lines, IT, Grangs]

For nearly 75 years, Grange Insurance has offer|
products and services to policyholders in more
states. To maintain its well-earned reputation g
company decided to enhance its rating engine-
for rating policies and performing what-if mod
analyses, and other vital activities. Working witl
Group and using the Microsoft= Visual Studio=
development environment and Microsoft Visug
ming language, Grange Insurance parallelized i

ICustomer: Financial services firm
Country or Region: Europe
Industry: Financial services—Banking

Customer Profile

Alarge Europeanfinancial services firm
offers banking and asset-management
services to clients in 50 countries. In
2009, the bank earned more than U556
billioninincome.

Software and Services
m Microsoft Visual Studio
- Microsoft Visual F#
- Microsoft Visual Studio 2010
m Technologies
= Microsoft MET Framework
- Windows Presentation Foundation

Banking Firm Uses Functional Language to
Speed Development by 50 Percent

“We could not have developed 200 models in two
years without F# and Visual Studio. It would have
taken us at least twice as long with our previous tools.”

Director at a large European financialservices firm

Alarge financial services firmin Europe sought new
development tools that could cut costs, boost productivity, and
improve the quality of its mathematical models. To address its
needs, the bank deployed Microsoft F#, the Microsoft .NET
Framework, and Microsoft Visual Studio. It will soon upgrade to
Visual Studio 2010 and the integrated Microsoft Visual F# With
its new tools, the bank can speed develepment by 50 percent or
more, improve quality, and reduce costs.

Business Needs desktop and ona remote cluster of servers

Al c £ ; i dlot incliad £ ook,

Part 2

F# 3.0 Information Rich
Programming

A Challenge

Task #1: A Chemistry Elements Class Library

Task #2: Repeat for all Sciences, Businesses, ...

Language Integrated
Web Data

A Type Provider is....

“A compile-time component that provides a computed
space of types and methods on-demand ...”

“A compiler plug-in...”

“An adaptor between data/services and the .NET type
system...”

\\ »,

// Freebase.fsx

// Example of reading from freebase.com in F#

// by Jomo Fisher

#r "System.Runtime.Serial

#r "System.ServiceModel.W let Query<'T>(query:string) : 'T =

#r "System.Web" let query = query.Replace("'","\"")

#r "System.Xml" let queryUrl = sprintf "http://api.freebase.com/api/service/mqlread?query=%s"
"{\"query\":"+query+"}"

open System

open System.IO let request : HttpWebRequest = downcast WebRequest.Createlaiervlicl)

open System.Net request.Method <- "GET"

open System.Text request.ContentType <- "application/x-www-form-u HOW WOUId We do

open System.Web

open System.Security.Auth let response = request.GetResponse()

open System.Runtime.Seriz

this previously?

let result =
[<DataContract>] try
type Result<'TResult> = { use reader = new StreamReader(response.GetResponseStream())
[<field: DataMember(N reader.ReadToEnd();
Code:string finally
[<field: DataMember(N response.Close()
Result: 'TResult
[<field: DataMember(N let data = Encoding.Unicode.GetBytes(result);
Message:string let stream = new MemoryStream()
} stream.Write(data, @, data.LlLength);
stream.Position <- @L
[<DataContract>]
type ChemicalElement = { let ser = Json.DataContractJsonSerializer(typeof<Result<'T>>)
[<field: DataMember(N let result = ser.ReadObject(stream) :?> Result<'T>
Name:string if result.Code<>"/api/status/ok" then
[<field: DataMember(N raise (InvalidOperationException(result.Message))
BoilingPoint:string else
[<field: DataMember (N result.Result
AtomicMass:string
} let elements = Query<ChemicalElement
array>("[{'type':"'/chemistry/chemical_element', 'name’:null, 'boiling point':null, 'atomic_mass
":null}]™)

elements |> Array.iter(fun element->printfn "%A" element)

Note: F# itself still contains no data

Open architecture

You can write your own type
provider

Language Integrated
Data Market Directory

LMax

SOL

type Data = SqglDataConnection<”Server=".\\SQLEXPRESS'..

let db = SQL.GetDataContext()

db.Customers

Fluent, Typed

Access To
SQL

OData

type Netflix = ODataService<"http://odata.netflix.com">
let service = Netflix.GetDataContext()

service.Titles

Fluent, Typed
Access To
OData

Web Services

type Data = WsdlService<"http://www.xignite.com/xFutures.asmx?WspL" >
let financials = Data.GetServiceContext()

financials.GetQuotes "IBM"

Fluent, Typed

Access To
WSDL

F# 3.0: Queries

let avatarTitles =
query { for t in netflix.Titles do

where (t.Name.Contains "Avatar")

select t }

F# 3.0: Queries

let avatarTitles =
query { for t in netflix.Titles do

where (t.Name.Contains "Avatar")

sortBy t.Name

select t }

F# 3.0: Queries

let avatarTitles =

query { for t in netflix.Titles do
where (t.Name.Contains "Avatar")
sortBy t.Name
select t
take 100 }

Conclusion 1

Huge Information Spaces can be
Software Components

Conclusion 2

Multiple data standards with one

simple mechanism

Conclusion 3

Integrated Data Access Empowers
Both Programmers and Analysts

Summary

The financial world is massively
information rich

Our enterprise financial programming needs
to be information-rich too

Information-richness changes how we think
about programming and analysis

Thank You!

Questions?

Contacts: dsyme@microsoft.com
www.fsharp.net, http://blogs.msdn.com/b/fsharpteam

Twitter: @dsyme, #fsharp

mailto:dsyme@microsoft.com
http://www.fsharp.net/
http://blogs.msdn.com/b/fsharpteam

z

F# and Open Source

F# 2.0 compiler+library open source drop
Apache 2.0 license

Runs on Linux, Mac, Windows, Browser

(F# for the Browser & Web

www.tryfsharp.org

(F# Console + Tutorials)

pitfw.posterous.com
(F# to JS/HTML5, Community)

websharper.com
(F# to JS/HTMLS5, Product)

http://www.tryfsharp.org/
http://pitfw.posterous.com/

	F# 3.0: �Strongly Typed Programming �in the Information Rich World
	Today’s talk is very simple
	Proposition 1�The world is incredibly �information-rich�
	Proposition 2�Modern financial enterprises are �incredibly information-rich
	Proposition 3�Our languages are information-sparse
	Proposition 4�This is a problem��(especially for strongly typed programming)
	With F# we want to help fix this…��The mechanism we’re adding �to F# is called Type Providers�
	LINQ + Type Providers�= �Language Integrated Data and Services�
	Two aims today��Demonstrate what we’re doing in F# 3.0��Explore applications in a range of data spaces�
	But first…��What is F#?
	F# is…
	Crossing boundaries
	Why is F# appealing in finance?
	Slide Number 14
	Simplicity: Functions as Values
	Simplicity: Functional Data
	Understanding F#
	The Big Trends
	Example #1 (Power Company)
	Examples #2/#3: Finance companies
	Part 2��F# 3.0 Information Rich Programming
	A Challenge��Task #1: A Chemistry Elements Class Library��Task #2: Repeat for all Sciences, Businesses, …�
	Language Integrated Web Data
	A Type Provider is….��“A compile-time component that provides a computed space of types and methods on-demand …”��“A compiler plug-in…”��“An adaptor between data/services and the .NET type system…”
	Slide Number 25
	Note: F# itself still contains no data��Open architecture��You can write your own type provider
	Language Integrated Data Market Directory
	LMax
	SQL
	OData
	Web Services
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Conclusion 1��Huge Information Spaces can be Software Components
	Conclusion 2��Multiple data standards with one simple mechanism��
	Conclusion 3��Integrated Data Access Empowers Both Programmers and Analysts�
	Summary��The financial world is massively �information rich��Our enterprise financial programming needs to be information-rich too��Information-richness changes how we think about programming and analysis�
	Thank You!��Questions? ��Contacts: dsyme@microsoft.com�www.fsharp.net, http://blogs.msdn.com/b/fsharpteam �Twitter: @dsyme, #fsharp
	F# and Open Source
	F# for the Browser & Web

