
Certified Management of Financial Contracts

Patrick Bahr

DIKU
paba@diku.dk

joint work with
Jost Berthold & Martin Elsman

10th December, 2014



Introduction

What are financial contracts?

I stipulate future transactions between different parties

I have time constraints

I may depend on stock prices, exchange rates etc.

Example (Foreign Exchange Option)

At any time within the next 90 days, party X may decide to buy
USD 100 from party Y, for a fixed rate r of Danish Kroner.

Goals

I Express such contracts in a formal language

I Symbolic manipulation and analysis of such contracts.

I Formal verification

2 / 15



Introduction

What are financial contracts?

I stipulate future transactions between different parties

I have time constraints

I may depend on stock prices, exchange rates etc.

Example (Foreign Exchange Option)

At any time within the next 90 days, party X may decide to buy
USD 100 from party Y, for a fixed rate r of Danish Kroner.

Goals

I Express such contracts in a formal language

I Symbolic manipulation and analysis of such contracts.

I Formal verification

2 / 15



Introduction

What are financial contracts?

I stipulate future transactions between different parties

I have time constraints

I may depend on stock prices, exchange rates etc.

Example (Foreign Exchange Option)

At any time within the next 90 days, party X may decide to buy
USD 100 from party Y, for a fixed rate r of Danish Kroner.

Goals

I Express such contracts in a formal language

I Symbolic manipulation and analysis of such contracts.

I Formal verification

2 / 15



Introduction

What are financial contracts?

I stipulate future transactions between different parties

I have time constraints

I may depend on stock prices, exchange rates etc.

Example (Foreign Exchange Option)

At any time within the next 90 days, party X may decide to buy
USD 100 from party Y, for a fixed rate r of Danish Kroner.

Goals

I Express such contracts in a formal language

I Symbolic manipulation and analysis of such contracts.

I Formal verification

2 / 15



Contract Language Goals in Detail

I Compositionality.
Contracts are time-relative ⇒ facilitates compositionality

I Multi-party.
Specify obligations and opportunities for multiple parties,
(which opens up the possibility for specifying portfolios)

I Contract management.
Contracts can be managed and symbolically evolved;
a contract gradually reduces to the empty contract.

I Contract utilities (symbolic).
Contracts can be analysed in a variety of ways

I Contract pricing (numerical, staged).
Code for payoff can be generated from contracts
(input to a stochastic pricing engine)

3 / 15



Example

Contract in natural language

I At any time within the next 90 days,

I party X may decide to

I buy USD 100 from party Y,

I for a fixed rate r of Danish Kroner.

Translation into contract language

if obs(X exercises option) within 90

then 100× (USD(Y → X ) & r × DKK (X → Y ))

else ∅

4 / 15



Example

Contract in natural language

I At any time within the next 90 days,

I party X may decide to

I buy USD 100 from party Y,

I for a fixed rate r of Danish Kroner.

Translation into contract language

if obs(X exercises option) within 90

then 100× (USD(Y → X ) & r × DKK (X → Y ))

else ∅

4 / 15



Contributions

I Denotational semantics based on cash-flows

I Reduction semantics (sound and complete)

I Correctness proofs for common contract analyses and
transformations

I Formalised in the Coq theorem prover

I Certified implementation via code extraction

5 / 15



An Overview of the Contract Language

∅ empty contract with no obligations

a(p1 → p2) p1 has to transfer one unit of a to p2

c1 & c2 conjunction of c1 and c2

e × c multiply all obligations in c by e

d ↑ c shift c into the future by d days

let x = e in c observe today’s value of e at any time (via x)

if e within d then c1 else c2
I behave like c1 as soon as e becomes true

I if e does not become true within d days behave like c2

Expression Language

Real-valued and Boolean-valued expressions, extended by

obs(l , d) observe the value of l at time d

acc(f , d , e) accumulation over the last d days

6 / 15



An Overview of the Contract Language

∅ empty contract with no obligations

a(p1 → p2) p1 has to transfer one unit of a to p2

c1 & c2 conjunction of c1 and c2

e × c multiply all obligations in c by e

d ↑ c shift c into the future by d days

let x = e in c observe today’s value of e at any time (via x)

if e within d then c1 else c2
I behave like c1 as soon as e becomes true

I if e does not become true within d days behave like c2

Expression Language

Real-valued and Boolean-valued expressions, extended by

obs(l , d) observe the value of l at time d

acc(f , d , e) accumulation over the last d days

6 / 15



An Overview of the Contract Language

∅ empty contract with no obligations

a(p1 → p2) p1 has to transfer one unit of a to p2

c1 & c2 conjunction of c1 and c2

e × c multiply all obligations in c by e

d ↑ c shift c into the future by d days

let x = e in c observe today’s value of e at any time (via x)

if e within d then c1 else c2
I behave like c1 as soon as e becomes true

I if e does not become true within d days behave like c2

Expression Language

Real-valued and Boolean-valued expressions, extended by

obs(l , d) observe the value of l at time d

acc(f , d , e) accumulation over the last d days

6 / 15



Example: Asian Option

90 ↑ if obs(X exercises option) within 0

then 100× (USD(Y → X ) &(rate × DKK (X → Y )))

else ∅

where

rate =
1

30
· acc(λr .r + obs(FX USD/DKK ), 30, 0)

7 / 15



Denotational Semantics

The semantics of a contract is given by the cash-flow it stipulates.

C J·K· : Contr

× Env

→ CashFlow

Env

CashFlow = N→ Transactions

Transactions = Party × Party × Asset→ R

8 / 15



Denotational Semantics

The semantics of a contract is given by the cash-flow it stipulates.

C J·K· : Contr

× Env

→ CashFlow

Env

CashFlow = N→ Transactions

Transactions = Party × Party × Asset→ R

8 / 15



Denotational Semantics

The semantics of a contract is given by the cash-flow it stipulates.

C J·K· : Contr × Env→ CashFlow

Env = Label× Z→ B ∪ R

CashFlow = N→ Transactions

Transactions = Party × Party × Asset→ R

8 / 15



Denotational Semantics

The semantics of a contract is given by the cash-flow it stipulates.

C J·K· : Contr × Env→ CashFlow

Env = Labelα × Z→ α

CashFlow = N→ Transactions

Transactions = Party × Party × Asset→ R

8 / 15



Contract Analyses

Examples

I contract dependencies

I contract causality

I contract horizon

Semantics vs. Syntax

I these analyses have precise semantic definition

I they cannot be effectively computed

I we provide sound approximations, e.g. type system

9 / 15



Contract Analyses

Examples

I contract dependencies

I contract causality

I contract horizon

obs(FX USD/DKK , 1)× DKK (X → Y )

Semantics vs. Syntax

I these analyses have precise semantic definition

I they cannot be effectively computed

I we provide sound approximations, e.g. type system

9 / 15



Contract Analyses

Examples

I contract dependencies

I contract causality

I contract horizon

Semantics vs. Syntax

I these analyses have precise semantic definition

I they cannot be effectively computed

I we provide sound approximations, e.g. type system

9 / 15



Contract Causality

Refined Types

I e : Exprtα value of e available at time t (or later)

I c : Contrt no obligations strictly before t

Typing Rules

t1, t2 ∈ Z l ∈ Labelα t1 ≤ t2
Γ ` obs(l , t1) : Exprt2α

p1, p2 ∈ Party a ∈ Asset

` a(p1 → p2) : Contr0

` e : ExprtR ` c : Contrt

` e × c : Contrt
d ∈ N ` c : Contrt

` d ↑ c : Contrt+d

...

10 / 15



Contract Causality

Refined Types

I e : Exprtα value of e available at time t (or later)

I c : Contrt no obligations strictly before t

Typing Rules

t1, t2 ∈ Z l ∈ Labelα t1 ≤ t2
Γ ` obs(l , t1) : Exprt2α

p1, p2 ∈ Party a ∈ Asset

` a(p1 → p2) : Contr0

` e : ExprtR ` c : Contrt

` e × c : Contrt
d ∈ N ` c : Contrt

` d ↑ c : Contrt+d

...

10 / 15



Contract Causality

Refined Types

I e : Exprtα value of e available at time t (or later)

I c : Contrt no obligations strictly before t

Typing Rules

t1, t2 ∈ Z l ∈ Labelα t1 ≤ t2
Γ ` obs(l , t1) : Exprt2α

p1, p2 ∈ Party a ∈ Asset

` a(p1 → p2) : Contr0

` e : ExprtR ` c : Contrt

` e × c : Contrt
d ∈ N ` c : Contrt

` d ↑ c : Contrt+d

...

10 / 15



Contract Causality

Refined Types

I e : Exprtα value of e available at time t (or later)

I c : Contrt no obligations strictly before t

Typing Rules

t1, t2 ∈ Z l ∈ Labelα t1 ≤ t2
Γ ` obs(l , t1) : Exprt2α

p1, p2 ∈ Party a ∈ Asset

` a(p1 → p2) : Contr0

` e : ExprtR ` c : Contrt

` e × c : Contrt
d ∈ N ` c : Contrt

` d ↑ c : Contrt+d

...

10 / 15



Contract Transformations

Contract equivalences

When can we replace a sub-contract with another one, without
changing the semantics of the contract?

Reduction semantics
What does the contract look like after n days have passed?

Contract Specialisation

What does the contract look like after we learned the actual value
of some observables?

11 / 15



Contract Equivalences

e1 × (e2 × c) ' (e1 · e2)× c

d1 ↑ (d2 ↑ c) ' (d1 + d2) ↑ c
d ↑ (c1 & c2) ' (d ↑ c1) &(d ↑ c2)

e × (c1 & c2) ' (e × c1) &(e × c2)

d ↑ (e × c) ' (d ⇑ e)× (d ↑ c)

d ↑ ∅ ' ∅
r × ∅ ' ∅
0× c ' ∅
c & ∅ ' c

c1 & c2 ' c2 & c1

d ↑ if b within e then c1 else c2 '
if d ⇑ b within e then d ↑ c1 else d ↑ c2

(e1 × a(p1 → p2)) &(e2 × a(p1 → p2)) ' (e1 + e2)× a(p1 → p2)

12 / 15



Reduction Semantics

c
τ

=⇒ρ c
′

a(p1 → p2)
τa,p1,p2=⇒ ρ ∅

c
τ

=⇒ρ c ′ E JeKρ = v

e × c
v∗τ
=⇒ρ (−1 ⇑ e)× c ′

...

Theorem (Reduction semantics correctness)

(i) If c
τ

=⇒ρ c ′, then

(a) C JcKρ (0) = τ , and
(b) C JcKρ (i + 1) = C Jc ′K1⇑ρ (i) for all i ∈ N.

(ii) If C JcKρ (0) = τ , then there is a unique c ′ with c
τ

=⇒ρ c ′.

13 / 15



Reduction Semantics

c
τ

=⇒ρ c
′

a(p1 → p2)
τa,p1,p2=⇒ ρ ∅

c
τ

=⇒ρ c ′ E JeKρ = v

e × c
v∗τ
=⇒ρ (−1 ⇑ e)× c ′

...

Theorem (Reduction semantics correctness)

(i) If c
τ

=⇒ρ c ′, then

(a) C JcKρ (0) = τ , and
(b) C JcKρ (i + 1) = C Jc ′K1⇑ρ (i) for all i ∈ N.

(ii) If C JcKρ (0) = τ , then there is a unique c ′ with c
τ

=⇒ρ c ′.

13 / 15



Reduction Semantics

c
τ

=⇒ρ c
′

a(p1 → p2)
τa,p1,p2=⇒ ρ ∅

c
τ

=⇒ρ c ′ E JeKρ = v

e × c
v∗τ
=⇒ρ (−1 ⇑ e)× c ′

...

Theorem (Reduction semantics correctness)

(i) If c
τ

=⇒ρ c ′, then

(a) C JcKρ (0) = τ , and
(b) C JcKρ (i + 1) = C Jc ′K1⇑ρ (i) for all i ∈ N.

(ii) If C JcKρ (0) = τ , then there is a unique c ′ with c
τ

=⇒ρ c ′.

13 / 15



Reduction Semantics

c
τ

=⇒ρ c
′

a(p1 → p2)
τa,p1,p2=⇒ ρ ∅

c
τ

=⇒ρ c ′ E JeKρ = v

e × c
v∗τ
=⇒ρ (−1 ⇑ e)× c ′

...

Theorem (Reduction semantics correctness)

(i) If c
τ

=⇒ρ c ′, then

(a) C JcKρ (0) = τ , and
(b) C JcKρ (i + 1) = C Jc ′K1⇑ρ (i) for all i ∈ N.

(ii) If C JcKρ (0) = τ , then there is a unique c ′ with c
τ

=⇒ρ c ′.

13 / 15



Reduction Semantics

c
τ

=⇒ρ c
′

a(p1 → p2)
τa,p1,p2=⇒ ρ ∅

c
τ

=⇒ρ c ′ E JeKρ = v

e × c
v∗τ
=⇒ρ (−1 ⇑ e)× c ′

...

Theorem (Reduction semantics correctness)

(i) If c
τ

=⇒ρ c ′, then

(a) C JcKρ (0) = τ , and
(b) C JcKρ (i + 1) = C Jc ′K1⇑ρ (i) for all i ∈ N.

(ii) If C JcKρ (0) = τ , then there is a unique c ′ with c
τ

=⇒ρ c ′.

13 / 15



Code Extraction

Coq formalisation

I Denotational & reduction semantics

I Meta-theory of contracts (causality, monotonicity, . . . )

I Definition of contract transformations and analyses

I Correctness proofs

Extraction of executable Haskell code

I efficient Haskell implementation

I embedded domain-specific language for contracts

I contract analyses and contract management

14 / 15



Code Extraction

Coq formalisation

I Denotational & reduction semantics

I Meta-theory of contracts (causality, monotonicity, . . . )

I Definition of contract transformations and analyses

I Correctness proofs

Extraction of executable Haskell code

I efficient Haskell implementation

I embedded domain-specific language for contracts

I contract analyses and contract management

14 / 15



Code Extraction

Coq formalisation

I Denotational & reduction semantics

I Meta-theory of contracts (causality, monotonicity, . . . )

I Definition of contract transformations and analyses

I Correctness proofs

Extraction of executable Haskell code

I efficient Haskell implementation

I embedded domain-specific language for contracts

I contract analyses and contract management

14 / 15



Future Work

I improve code extraction

I further analyses and transformations
(e.g. scenario generation and “zooming”)

I combine this work with numerical methods

15 / 15


	Introduction

