
Elsman & Annenkov

A Prototype Framework for Parallel 
Valuation and Risk Calculation

Presentation at the 2014 HIPERFIT Workshop

December 10, 2014

Martin Elsman, Associate Professor, PhD

Danil Annenkov, PhD Student

Department of Computer Science

University of Copenhagen (DIKU)



Elsman & Annenkov

Why a Prototype Framework

Benefits of a Prototype
 1. Research results to the test
 2. Projects unite
 3. Visibility
 4. Student activities
 5. Giving back to society
     (open source)

Requirements/drawbacks
 1. Some startup cost
 2. Active development required
 3. Project management
 4. Low short term publ. payoff
 5. Work outside of domain
 6. Ownership?

Goal: In two years time, say, we would like our partners, 
and industrial peers, to look towards HIPERFIT to find 
parallel (i.e., scalable) techniques for solving demanding 
computational problems within the domain of finance.



Elsman & Annenkov

HIPERFIT Projects & Vision

F
A High-Level, Parallel, 
Functional Language

Financial Contract 
Specification (DIKU, IMF)
Use declarative combinators for 
specifying and analyzing financial 
contracts.

Automatic Parallelization of 
Loop Structures (DIKU) 
Outperform commercial 
compilers on a large number 
of benchmarks by parallelizing 
and optimizing imperative loop 
structures.Streaming Semantics for 

Nested Data Parallelism (DIKU)
Reduce space complexity of 
"embarrassingly parallel" functional 
computations by streaming.

Parallelization of Financial 
Applications (DIKU, LexiFi)
Analyze real-world financial 
kernels, such as exotic option 
pricing, and parallelize them to 
run on GPGPUs.

Optimal Decisions in Household Finance 
(IMF, Nykredit, FinE)
Investigate and develop quantitative methods to solve 
individual household's financial decision problems.

Risk (IMF, DIKU, SimCorp)
Parallelize calculation of VaR 
and exposure to counterparty 
credit risk.

Bohrium (NBI)
Collect and optimize bytecode 
instructions at runtime and 
thereby efficiently execute 
vectorized applications 
independent of programming 
language and platform.

APL Compilation (DIKU, Insight Systems, SimCorp)
Develop techniques for compiling arrays, specifically a subset 
of APL, to run efficiently on GPGPUs and multicore-
processors.

Key-Ratios by Automatic 
Differentiation (DIKU)
Use automatic differentiation for 
computing sensibilities to market 
changes for financial contracts.

Big Data – Efficient queries
(DIKU, SimCorp)
Parallelize big data queries. 

uthark



Elsman & Annenkov

HIPERFIT Projects & Vision

F
A High-Level, Parallel, 
Functional Language

Financial Contract 
Specification (DIKU, IMF)
Use declarative combinators for 
specifying and analyzing financial 
contracts.

Automatic Parallelization of 
Loop Structures (DIKU) 
Outperform commercial 
compilers on a large number 
of benchmarks by parallelizing 
and optimizing imperative loop 
structures.Streaming Semantics for 

Nested Data Parallelism (DIKU)
Reduce space complexity of 
"embarrassingly parallel" functional 
computations by streaming.

Parallelization of Financial 
Applications (DIKU, LexiFi)
Analyze real-world financial 
kernels, such as exotic option 
pricing, and parallelize them to 
run on GPGPUs.

Optimal Decisions in Household Finance 
(IMF, Nykredit, FinE)
Investigate and develop quantitative methods to solve 
individual household's financial decision problems.

Risk (IMF, DIKU, SimCorp)
Parallelize calculation of VaR 
and exposure to counterparty 
credit risk.

Bohrium (NBI)
Collect and optimize bytecode 
instructions at runtime and 
thereby efficiently execute 
vectorized applications 
independent of programming 
language and platform.

APL Compilation (DIKU, Insight Systems, SimCorp)
Develop techniques for compiling arrays, specifically a subset 
of APL, to run efficiently on GPGPUs and multicore-
processors.

Key-Ratios by Automatic 
Differentiation (DIKU)
Use automatic differentiation for 
computing sensibilities to market 
changes for financial contracts.

Big Data – Efficient queries
(DIKU, SimCorp)
Parallelize big data queries. 

uthark



Elsman & Annenkov

Component 1: 
A Certified Contract Management Engine

● LexiFi/SimCorp style contract 
combinators for specifying financial 
derivatives [1].

● Contract kernel written in Coq, a 
functional language and proof 
assistant for establishing program 
properties (correctness).

● Certified management code 
extracted from the Coq 
implementation (fixings, decisions).

● Valuation/pricing: payoff functions 
extracted from contracts.

[1] Patrick Bahr, Jost Berthold, and Martin Elsman. Towards Certified 
Management of Financial Contracts. In Proceedings of the 26th Nordic 
Workshop on Programming Theory (NWPT’14). October, 2014.

Semantics 
inside



Elsman & Annenkov

Component 2:
A Parallel Pricing Engine

● Parallelized version of 
LexiFi pricing engine [2,3].

● Code ported to OpenCL, 
targeting GPGPUs.

● Extracted payoff function 
fused into OpenCL kernel.

[2] Cosmin Oancea, Jost Berthold, Martin Elsman, and Christian Andreetta. 
A Financial Benchmark for GPGPU Compilation. In 18th International 
Workshop on Compilers for Parallel Computing (CPC’15). January 2015.

[3] Cosmin E. Oancea, Christian Andreetta, Jost Berthold, Alain Frisch, and Fritz 
Henglein. Financial software on GPUs: between Haskell and Fortran. In 
Proceedings of the 1st ACM SIGPLAN workshop on Functional high-performance 
computing (FHPC ‘12). Copenhagen 2012.



Elsman & Annenkov

Component 3:
Calculating Risk

● Contract key-ratios (i.e., the greeks) calculated based on 
automatic differentiation techniques [4].

● Parallelization of portfolio MC VaR calculations [5].

● Potential Future Exposure (PFE) and CVA calculations:
- Multi-party contract manipulations

(one portfolio → one contract)
- Algebraic manipulations/analyses (future work)

[4] Esben Bistrup Halvorsen. Calculating Key Ratios for Financial Products 
using Automatic Differentiation and Monte Carlo Simulation. DIKU M.Sc. 
Student Project. December 2012.

[5] Casper Holmgreen. A Parallel Haskell Library for Computing Value-at-
Risk. M.Sc. Student Project. November 2014.



Elsman & Annenkov

The “Low Tech” Glue – the GUI

A simple web GUI
 - Instrument manager
 - Portfolio manager
 - Market data manager
 - Pricing form

A micro-version of SimCorp
Dimension / LexiFi Apropos



Elsman & Annenkov

The “Low Tech” Glue – the Database

A simple DB schema
 - User information
 - Market data
   (quotes, correlations)
 - Model data (calibr. data)
 - Instrument templates
 - Portfolio data

A micro-version of SimCorp
Dimension / LexiFi Apropos



Elsman & Annenkov

The “Low Tech” Glue – the Architecture

A simple flexible arch.

Use a scaffolding framework 
for getting started quickly.

A micro-version of SimCorp
Dimension / LexiFi Apropos



Elsman & Annenkov

Future Work

● Construct prototype with a rudimentary GUI.
● Expand work on risk (Greeks, CVA, PFE).
● Formulate student projects on visualization, simulation, ...
● Use Futhark implementation as the basis for pricing and 
risk calculations [6-8].

[6] Troels Henriksen and Cosmin E. Oancea. A T2 Graph-Reduction Approach 
To Fusion. In 2nd ACM SIGPLAN Workshop on Functional High-Performance 
Computing. Boston, Massachusetts. September 2013.

[7] Troels Henriksen and Cosmin E. Oancea. Bounds Checking: An Instance of 
Hybrid Analysis. In ACM SIGPLAN International Workshop on Libraries, 
Languages and Compilers for Array Programming (ARRAY’14). Edinburgh, UK. 
June, 2014.

[8] Troels Henriksen, Martin Elsman, and Cosmin E. Oancea. Size Slicing - A 
Hybrid Approach to Size Inference in Futhark. In Proceedings of the 3rd ACM 
SIGPLAN workshop on Functional High-Performance Computing (FHPC’14). 
Gothenburg, SE. September, 2014.



Elsman & Annenkov

Questions?


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

