UNIVERSITY OF COPENHAGEN Department of Computer
e .

Faculty of Science

Futhark - An Array Language for
Data-parallel Execution

Troels Henriksen athas@sigkill.dk
Cosmin Oancea cosmin@diku.dk

Department of Computer Science (DIKU)
University of Copenhagen

12/2014 HIPERFIT Workshop '14




University of Copenhagen Department of Computer Science

Don’t write an optimising compiler

@ Domain-Specific Languages (DSLs) have proven their worth -
they are often vastly more productive to a domain user (e.g.
financial analyst) than a general purpose language.

@ The perfect DSL is close to the language domain and gives good
performance on real hardware.

@ Obviously, you want a DSL per domain.

@ Also obviously, you do not want to re-implement similar
optimisations every time.

Solution: use the same optimising compiler backend for all your DSLs.

2/11




Translating from DSL to core language

When translating the DSL to the core language (internal
representation) expected by the optimising backend, you don’t want
to do too much work yourself.

@ The core language should capture the basic algorithmic
structure of the computation.

@ Inspection of industry-provided computational kernels suggests
that a map-reduce approach using simple data-parallel building
blocks suffices.

@ ...but in a few places, sequential loops and imperative array
updates appear necessary also.

3/11




Futhark

We have designed Futhark as a “core language”, which can be used as
a convenient target language for DSL implementations. It has

@ nested data-parallelism

@ pure functional semantics

@ imperative-like constructs when provable that these do not
violate purity
@ an optimising compiler (well, almost)

Data-parellelism is provided with built-in higher order functions
such as map, reduce and scan.

4/11




University of Copenhagen Department of Computer Science

Code generation

Going from DSL to Futhark is not enough - we also need to execute
Futhark efficiently.

Since Futhark is data-parallel, it is natural to compile to parallel
hardware, of which Graphics-Processing Units (GPUs) are prominent
examples.

5/11




University of Copenhagen

GPU Performance: the good news

5000 7]

4500

4000

Theoretical peak (GFLOP/s)
n
[4,]
o
<

Department of Computer Sc

GeForce GTX TITAN NVIDIA GPU SP

GeForce GTX 680

2000
GeForce GTX 580
1500 GeForce GTX 480
e K20X . NVIDIA GPU DP
1000 - GeForce GTX 280
GeForce BB0D GTX Tesla C2075 Hadlrel
500 GeForce 7800 GTX ‘ of Intel DP
GeForce 6800 Ulra e Bloamicid Sandy Brdge™ vy Bridge
0] winangiorce X580 Prescon sla C1060W
2000 2002 2004 2006 2008 2010 2012 2014
Release date

6/11




University of Copenhagen Department of Computer Science

GPU Performance: the bad news

GPUs have extremely high peak theoretical performance, but it is
very easy to write slow GPU code.

@ Memory cannot keep up with computation. Solution: shared
memory (manual caching) and coalesced memory access.

@ Flat parallelism at hardware level. Solution: flattening (but this
can also introduce extra memory overhead if done poorly).

@ Limited GPU memory/no paging. Solution: streaming?
o Etc...

Doing these optimisations by hand is possible, but is hard and will
make the code unreadable. Solution: write an optimising compiler!

7/11




University of Copenhagen Department of Computer Science

One size does not fit all

The optimal form of generated code is often data-sensitive. Related
solutions either:

@ optimize common case or
@ provide conservative asymptotic guarantees but may be “slow”

Hybrid analysis tediously explores the whole optimisations space at
compile-time, deriving differently-optimised versions of code that
corresponds intuitively to classes of datasets. These versions are
guarded by run-time predicates.

8/11




University of Copenhagen Department of Computer Science

Invariant-driven optimisation

It is easy to make things run fast if you don’t have to compute the
right result. Many loop optimisations are only valid when the
program fulfills certain invariants, e.g. about how array elements are
accessed or updated. Invariants...

@ ...can be given as assumptions that the Futhark compiler will

implicitly trust (“these indices are always in bounds”, “these
arrays always have the same shape”).

@ ...can be true by construction of the Futhark language elements
themselves (e.g. map has a predictable access pattern).

@ ...can be deduced by the Futhark compiler, possibly by doing
checks at runtime.

9/11




Invariants provided by the DSL

@ Correct-by-construction invariant in DSL is assumption to
Futhark.
Eg: DSL-level array permutation, which is just an array of
integral indices to the Futhark compiler.

@ We must ensure that whichever invariants the Futhark optimiser
is able to exploit, we can communicate as assumptions from the
outside.

Eg: The memory in which some function argument is stored is
not used again by the caller.

@ The Futhark compiler will still try to generate efficient code
under the assumption of unknown invariants, with a (slower)
fallback if they prove false at runtime.

Eg: Bounds checking using an, asymptotically faster, sufficient
but not necessary predicate.

10/11




Status and Future Work

Futhark currently has...
o Effective high-level data-flow optimisations, such as fusion.
@ Hybrid optimisation of bounds checks and shape analysis.
@ An in-language representation of memory allocation and access.
@ A naive sequential code generator.
And will soon have...
@ Memory allocation and access optimisations.
@ A smart sequential code generator.
And soon(?) after that...
@ A parallel GPU-oriented code generator targeting OpenCL.

11/11




