
Streaming Nested Data Parallelism

Frederik M. Madsen
fmma@diku.dk

HIPERFIT

December 2014

Array languages: Background

I Functional data-parallel array languages express concise and
compositional programs.

I The building blocks are simple but powerful combinators, such
as map, reduce, scan and filter.

I The combinators run efficiently on many different platforms.

I From single-core to highly parallel machines.

Array languages: Background

I High-level array languages allows domain
experts to focus on the pure algorithm,
and still expect high performance.

I Even when running on specialized
hardware.

I Benefits: Low development costs, code
re-use.

I In computational finance, application
areas include statistical analyses, option
pricing and high-frequency trading.

Array languages: Background

I The language implementer must provide an
efficient implementation of the language for
all supported target architectures.

I Separation of knowledge: The domain expert trusts the
compiler to do the right thing.

I The compiler maps any algorithm to the target architecture
with “reasonable” performance.

I Particularly difficult to achieve for parallel targets.

Array languages: Static analysis

I The static analysis approach: Optimizing compiler.

I The criteria for a given optimization to be applicable are not
always obvious to the domain expert.

I Traditional sequential-code optimization:

I Constant-factor speedup.
I If the optimization does not fire, it’s not the end of the world.

I Parallelizing optimization:

I #processors-factor speedup.
I If the optimization does not fire,

the program will be significantly slower.

I In order to write efficient re-usable programs, the domain
expert must have some knowledge of the compiler and the
target architecture.

Array languages: Cost models

I A formal cost model, provides a contract between the domain
expert and the language implementer.

I Implementation must respect the cost model.
I The cost model provides guarantees to the domain expert.

I To have any value, the cost model must be.

I Optimistic: Provide reasonable performance guarantees.
I Simple: Understandable by the domain expert.

Array languages: Cost models

I Assuming strict evaluation, what is the cost of (map f xs)?

I The cost of computing f x for each x in xs.

I Cost of f x may depend on the value of x .
I Not a static analysis.

I Time cost:

I The total work is the sum of the work for each f x .
≈ time on a single-processor machine.

I The number of parallel steps is the maximum of the parallel
steps taken in each f x .
≈ time on a ∞-processor machine.

I Actual time on a P-processor machine is (morally)
work/P + steps.

I Space cost:

I The size of the result plus the sum of the size used in each f x .
I Not good enough, exemplified later.

Array languages: Nested data parallelism

I Implementing (map f) for a GPU target:

I Naive approach: In a single kernel call, make each thread
computes f for each element.

I This works if f is a simple scalar expression, such as

f x = sqrt (x ∗ x + x ∗ x).

I This will not work if f contains nested data parallelism (NDP):

f x = sum [1..x].

I GPUs cannot handle nested kernel-calls (in general).

Array languages: Nested data parallelism

I Therefore, the language implementer must make a choice:

I Reject NDP expressions.

I Hand over the problem to the programmer.
I Perfectly fine (although less expressive) solution.

I Implement troublesome combinators as sequential loops.

I Does not obey cost model.
I Bad work-balancing, non-full utilization.

I Eliminate NDP by flattening transformation1.

1Blelloch, Guy E. Vector models for data-parallel computing, vol. 75.
MIT press Cambridge, MA, 1990.

Blelloch’s flattening transformation

I Blelloch’s flattening transformation eliminates NDP in maps.

I NDP disallowed in other combinators.

I Scans and reductions are restricted to a predefined set of
scalar combination functions.

I ⊕-scan, ⊕-reduce ⊕ ::= + | × | max | · · ·

I Arrays are (potentially nested) vectors; Vector type is [A].

I The transformation requires segment-descriptor
representation:

[[10], [20, 30], [40, 50, 60]]

is represented by

([1, 2, 3], [10, 20, 30, 40, 50, 60])

Blelloch’s flattening transformation

I First, the language implementer must implement basic
segmented combinators: (map sum), (zipWith (+)), etc.

I Secondly, all maps containing NDP are fissioned:

map (λx .sum [1..x]) mapSum ◦map (λx .[1..x])

 mapSum ◦mapRange ◦map (λx .(1, x))

I Finally, mapped maps are eliminated by “looking under” the
top-most segment descriptor. E.g.:

map mapSum λ(segdsc , xs).(segdsc ,mapSum xs)

The space problem

I Blelloch’s language has simple and optimistic time costing.

I Because of the flattening transformation, all potential
parallelism is exposed.

I For the same reason, space is in order of the exposed
parallelism.

I Example: Evaluation of (map (λx .sum [1..x]) [3, 5]):

 mapSum ◦mapRange ◦map (λx .(1, x)) $ [3, 5]

→ mapSum ◦mapRange $ [(1, 3), (1, 5)]

→ mapSum ([3, 5], [1, 2, 3, 1, 2, 3, 4, 5])

→ [6, 15]

I Note: Dependent parallel degree prevents GPU-kernel fusion of
(mapSum ◦mapRange).

The space problem

I More interesting example:

map (λx .sum [1..x]) [3E 10, 5E 10]

I Huge data-parallel computation, substantial performance gain
from acceleration.

I Unfortunately, space cost ≈ 320 gigabytes.

I GeForce GTX Titan Black has 6 gigabytes.

I Have to evaluate in chunks.

I Domain expert must explicitly encode chunking in program.

I Loose compositionality.
I Platform-dependent magic numbers.

I Research question:
Is it possible to design an expressive functional array language
based on implicit chunking that supports nested data
parallelism and has a simple optimistic time-space cost
model?2

2Frederik M. Madsen and Andrzej Filinski. Towards a Streaming Model
for Nested Data Parallelism. In 2nd ACM SIGPLAN Workshop on Functional
High-Performance Computing. Boston, Massachusetts. September 2013.

Space costing

I Eager space costing is insufficient.

I Cost model must account for actual parallelism, not just
potential.

I Similar to work and steps for time costing.

I Proposal, good space cost model:

I Sequential space: Space on a single-processor machine.
I Parallel space: Space on a ∞-processor machine.
I Actual space on a P-processor machine is (morally)

min(P × sequential space, parallel space).

I map (λx .sum [1..x]) [3E 10, 5E 10]:

I Sequential space: 1.
I Parallel space: 8E 10.
I Actual space: min(P × 1, 8E 10) = P.

Dataflow execution

I Chunked evaluation strategy: Strict, non-eager.

I Arrays compute as chunk streams.
I Expressions compile to dataflow networks.

I What is required to realize cost model?

I Time costing:

I The chunk size utilizes all processors.
I Streams are only traversed once.

I Space costing:

I Chunks are not persistent; For a given stream, only one chunk
is live at any given time.

I The chunk size is bounded.

I The compiler picks a chunk size bound that is suitable for the
target machine.

Sequences

I These requirements precludes:

I Constant-time random-access.
I Constant-time length.
I Array sharing in bulk operations.

I E.g. assume xs and ys are bound to arrays. Then
map (f xs) ys cannot be streamed (xs would have to be
traversed multiple times).

I Dependence on future values. E.g.
let x = sum xs in map (+ x) xs

I Language design: Allow explicit use of eager vectors.

I More general use allowed. Bad space costing.
I Referred to simply as vectors.
I All other arrays are referred to as sequences.

The resulting language: SNESL

Scalars 3 π ::= Bool | Int | Float | · · ·
Eager 3 τ ::= π | (τ1, ..., τk) | [τ]

Non-Eager 3 σ ::= τ | (σ1, ..., σk) | {σ}

e ::= constant
| x
| let x = e1 in e2
| (e1, ..., ek) | e.k
| op e
| {e1 : x in e2}

+ : (Int, Int)→ Int

.

.

.
lengthτ : [τ]→ Int
!τ : ([τ], Int)→ τ

mkseqkσ :

k︷ ︸︸ ︷
(σ, .., σ)→ {σ}

concatσ : {{σ}} → {σ}
partσ : ({σ}, {Bool})→ {{σ}}
⊕-scanπ : {π} → {π}
⊕-reduceπ : {π} → π

.

.

.
tab : {τ} → [τ]
seq : [τ]→ {τ}

I Type system (almost) ensures schedulability of sequences:

I Random access and length disallowed for sequences.
I Array sharing in bulk operations {e1 : x in e2}: Typing of e1 is

restricted to a non-sequence typing context.
I Sadly, future dependencies are not handled yet.

Experiments

I We do not generate CUDA code yet.

I To test the validity of the execution model, we wrote dataflow
CUDA programs, simulating what the compiler would
conceivably output.

I Compared to: CPU reference, traditional CUDA code,
Accelerate and GPU-NESL3.

I NVIDIA GeForce GTX 690 (2 GB memory, 1536 cores, 915
MHz). Dual AMD Opteron 6274 (2 × 16 cores, 2200 MHz).

3References can be found in paper (2).

Experiments

I Computing a simple log-series:
∑n

i=1 log i

12 14 16 18 20 22 24 26 28 30 32
−2

−1

0

1

2

3

4

5

6

log
2
(n)

lo
g

1
0
(m

s
)

Logsum wall−clock

CPU

SaC

CUDA

Accelerate

NESL

Streaming

12 14 16 18 20 22 24 26 28 30 32
−1

0

1

2

3

4

5

6

log
2
(N)

lo
g

1
0
(m

s
)

Log−sum wall−clock

Streaming (B=10)

Streaming (B=12)

Streaming (B=14)

Streaming (B=16)

Streaming (B=18)

Streaming (B=20)

Streaming (B=22)

Streaming (B=24)

Experiments

I Sum of multiple log-series:
∑N

n=1

∑n
i=1 log i

I Nested data parallelism.

4 5 6 7 8 9 10 11 12
−2

−1

0

1

2

3

4

5

6

7

log
2
(N)

lo
g

1
0
(m

s
)

Sum of logsums wall−clock

CPU

CUDA (inner loop)

CUDA (outer loop)

NESL

Streaming

4 5 6 7 8 9 10 11 12
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

log
2
(N)

lo
g

1
0
(m

s
)

Sum of log−sums wall−clock

Streaming (B=10)

Streaming (B=12)

Streaming (B=14)

Streaming (B=16)

Streaming (B=18)

Streaming (B=20)

Streaming (B=22)

Streaming (B=24)

Experiments

I Naive N-body simulation.

6 7 8 9 10 11 12 13 14 15 16
−2

−1

0

1

2

3

4

5

6

log
2
(N)

lo
g

1
0
(m

s
)

N−Body wall−clock

CPU

Accelerate

CUDA

NESL

Streaming (B=18)

SaC

6 8 10 12 14 16
−1

0

1

2

3

4

5

6

log
2
(N)

lo
g

1
0
(m

s
)

N−body wall−clock

Streaming (B=10)

Streaming (B=12)

Streaming (B=14)

Streaming (B=16)

Streaming (B=18)

Streaming (B=20)

Streaming (B=22)

Streaming (B=24)

Experiments

I Positive results:

I Reasonable execution times.
I Reliably scales to big problem sizes.
I Execution time converges as chunk size increases.

I This suggests an optimal chunk size of 218 elements for all
three experiments.

I Knowing the target machine, the compiler can fix the chunk
size.

Concluding remarks

I Has the research question been answered? No.

I Standing issues:

I Space costing of sequences of vectors {[τ]}.
I Sequential space: Maximum of size of elements.
I Actual space (P × sequential space) is pessimistic.

I Future dependencies:

I Conservative solution: Linear type system.
I Schedulability analysis.

I Full compiler stack.
I More benchmarks.
I Recursion: Dynamically evolving dataflow network.

I Flat version with shape-polymorphic regular arrays currently
being implemented in Accelerate.

