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Abstract

This work investigates the potential of high performance computing (HPC) on field-
programmable gate arrays (FPGAs), highlighting concepts and programming techniques
to pursue performance using high level synthesis (HLS) tools. We compute the peak
single precision floating point performance on the AlphaData 7V3 board using a model
of replicated processing elements, then implement a benchmark to verify the predicted
performance in hardware, using both the SDAccel framework and a custom reference
design provided by Xilinx. The benchmarks reach 302 GOp/s and 548 GOp/s on the two
platforms, respectively. The techniques are applied to the field of stencil computations,
proposing a temporally pipelined streaming design for the 2D Jacobian stencil that
scales with available area on the chip, by using on-chip memory to buffer the incoming
wavefront, achieving a sustained performance of 256 GOp/s on a 256× 256 grid. Finally
the current state of FPGAs is discussed based on the results obtained, and comments
are made on the future of reconfigurable computing in HPC.
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1. Introduction and background
Riding the last nanometers of Moore’s law towards the quantum barrier, modern hard-
ware vendors spend their extra transistors on introducing specialized components and
replicating existing ones. For high performance computing (HPC), replication is the
name of the game, with NVIDIA having gone into the hundreds of processors performing
thousands of floating point operations every cycle, and Intel establishing themselves in
the business with their Xeon Phi many-core architecture, sporting an order of magnitude
more x86 cores than a desktop processor.

A hardware segment that arguably benefits even more from increasing transistor densi-
ties is that of reconfigurable computing, with field-programmable gate arrays (FPGAs)
being the only prominent example, as they do not have to delegate the additional tran-
sistors in the same sense as fixed architectures, but rather can make them available to
the end user to assign them where they’re most needed. The spread of FPGAs in HPC
has been somewhat dampened by the issue of productivity: before the massive surge in
popularity induced by the introduction of CUDA, general purpose graphics processing
unit (GPU) programming only constituted a sparse group of enthusiasts hacking the
graphics rendering pipeline, and while there are now tools aimed at high productivity for
FPGAs available, the tipping point of reconfigurable computing reaching the masses has
not yet been reached.
This work is written from the point of view of an HPC software programmer gazing

into the world of hardware engineering: the field that has so far been the dominant user
of reconfigurable computing, and perhaps for a while still will be. The aim is to apply and
adapt concepts of HPC to the only broadly available class of reconfigurable architectures,
FPGAs. The content presented will inevitably drift into hardware design when pursuing
optimal (or even feasible) implementations, as understanding the underlying machinery
is crucial to this end, but nonetheless targets the computer scientist reader.

1.1. Thesis structure
The main content of this thesis is divided into five chapters, with every chapter incre-
mentally building on work presented previously:

1. Background and introduction: provides information on FPGA architecture,
tools available to program them, and derives peak performance for well-known fixed
architectures for use with the roofline model.

2. Programming FPGAs: treats the engineering aspect of programming FPGAs
from the point of view of a software programmer, mapping the applied high level
concepts to the resulting hardware.

10



1.2. Reconfigurable computing

3. Performance modeling: proposes a model for peak performance on FPGA, then
measures peak performance of a chip using two different frameworks, as well as
memory performance for the board used, comparing them to the predicted numbers.

4. Stencils: proposes a scalable high performance design based on the lessons learned,
then presents an implementation to achieve this.

5. Discussion: evaluates the accuracy and usability of the performance models used,
summarizes results and contributions, then discusses productivity on FPGAs and
the future of HPC on reconfigurable hardware.

The peak performance and stencil chapters will conclude with individual discussion and
future work sections, but are best read in sequence with the other chapters to constitute
the road from theory to practice.

1.2. Reconfigurable computing
This section on reconfigurable computing and FPGAs draws on knowledge from litera-
ture [1], as well as insights passed on from Xilinx engineers.
Reconfigurable architecture is a general term for microchips that allow at least some

post-manufacturing alteration of the on-chip circuitry. Rather than physically adding
or removing connections, this is done solely by modifying the data path through the
chip’s fabric (its spatial extent) by configuring on-chip static memory written once at
configuration time, making all but the relevant connections redundant. The granularity
of components connected can vary widely, from simple logic gates such as AND and
NOT, to sophisticated hardened processing and memory units. This granularity varies
the trade-off between flexibility and efficiency, as coarser components allow faster and
more power efficient implementations of their intended operations by hardening them
on the silicon, but restrict the design space of circuits capable of efficiently utilizing the
hardware.
FPGAs are a commercially available implementation of a reconfigurable architecture,

often described as the middle ground between general purpose fixed architecture hardware,
such as CPUs or GPUs, and application-specific integrated circuits (ASICs), offering power
efficient application-specific circuits without the cost and iteration time of manufacturing
ASICs. The peak power consumption of FPGAs is a few tenths of watts, making
them suitable for low power environments. Modern FPGAs offer fairly fine-grained
components, imposing very few restrictions on the design, but employ some special
purpose components to accelerate typical patterns (these will be described in Section 1.4).
The high reconfigurability of FPGAs comes at two major trade-offs with respect to
fixed architectures, namely clock speed and productivity. Because of the fine component
granularity, FPGAs provide dense connectivity between a very high number of components,
requiring the clock pulse to travel far on the silicon to pass through the same amount of
gates compared to a fixed architecture, increasing the timing between stable states (see
Section 1.3.1). In terms of productivity, FPGAs live in a completely different paradigm
than traditional software design, enabling high performance by utilizing a large amount

11



1. Introduction and background

of the components on the chip simultaneously, rather than battering fewer, but faster
components, as is the norm on fixed architectures. Programming this paradigm poses
completely different challenges, and the source to hardware flow is a lot more convoluted
and time-consuming, making the iteration time of implementations much longer. The
concept of spatial programming is crucial to making efficient use of FPGAs, and will be
ubiquitous throughout this thesis.

As the implementations presented in this work were carried out using Xilinx tools and
hardware, the sections below are based on the state of Xilinx hardware as of writing,
but aim at presenting concepts that generalize to other vendors and future hardware
iterations whenever relevant.

1.3. FPGA Architecture
The FPGA fabric consists of a large area of interconnected fine-grained components. We
consider these components logic elements: taking some input and producing some (or no)
output based on their configuration. The most abundant logic elements on contemporary
FPGAs are lookup tables (LUTs), as these are Turing complete along with added flip-flops
(FFs) to hold state. More specialized components will be described in Section 1.4.

A LUT is a hardware implementation of a boolean truth table: given an N bit input,
the table is configured with 2N bits, enumerating the output for each possible input. A
2N -way multiplexer then selects the output bit according to the input. An example for
XNOR with N = 2 is given in Figure 1.1. Chaining sufficiently many LUTs together
allows the evaluation of arbitrary logic and arithmetic expressions. A flip-flop is a basic

Input Output
00 1
10 0
01 0
11 1

2

Figure 1.1.: A 2-input LUT implementing XNOR, configured with 4 bits enumerating
outputs to each of the 22 possible inputs.

storage element capable of storing a single bit of state. In Xilinx hardware these are
typically D flip-flops, which in addition to storage can act as shift registers, that when
chained together in a sequence can propagate data through the logic by shifting them
forward every clock cycle.

On the Xilinx 7-series [2] architecture used in this work, logic elements are distributed
on the board in configurable logic blocks (CLBs), each containing two slices, that each in
turn contain four 6-input LUTs and eight FFs. Each 6-input LUT can also be configured
as a pair of 5-input LUTs [3] with one FF each. The architecture differentiates between
SLICEL and SLICEM logic slices, where the latter has additional capabilities of acting as
shift registers or distributed RAM. Shift registers allow SLICEM cells to act as temporary
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1.4. Hardened components on Virtex 7

storage by delaying the propagation of 32 bit values up to 128 clock cycles, whereas
distributed RAM effectively assign the logic slices as storage. Buffering on the chip can
thus be implemented in different ways (including dedicated BRAM, see Section 1.4.2),
offering different properties and consuming different types of resources.
Running a program on this architecture means finding a mapping from the desired

algorithm to a data path routed through these components that produced the desired
output, the concepts of which we will treat throughout this chapter and the next.

1.3.1. Timing closure

Solving tasks on an FPGA means propagating an input signal through the routed and
configured components until a result is produced and output at the other end. This
happens in a pipeline of stages on the device fabric (see Section 2.3.2), where each
electrical signal must propagate to the next step in the pipeline before the following
propagating signal can take its place. The time it takes to propagate the signal to the
next stage depends on the distance it has to travel through the routed logic, and if it
cannot be guaranteed that the signal will reach the next stage within a single clock
period, all logic reasoning about the circuit will break down, and any usefulness of the
implementation along with it. The process to ensure that this does not happen is called
timing closure, and achieving it is referred to as meeting timing. Timing considerations
are typically part of every stage of the source to hardware flow (see Section 1.5), as all
mappings and transformations will affect the design’s ability to meet timing.

1.4. Hardened components on Virtex 7
This section will describe the two principal hardened components present in the Virtex 7
family of Xilinx FPGAs, namely digital signal processing (DSP) slices for computation,
and block RAM (BRAM) for bulk on-chip memory. While the exact characteristics of
these units are specific to Xilinx FPGAs and the Virtex 7 family, they represent the two
fundamental aspects most commonly abstracted in coarser components: computation
(DSPs) and memory (BRAM).

1.4.1. Digital Signal Processing (DSP) slices

As the name suggests, DSPs are oriented towards signal processing applications, with
hardware support for operations acting on particular data widths. The Virtex 7 family
specifically hosts the DSP48E1 slice [4], natively supporting operations such as fixed
point 25 × 18 bit multiplication and dual 24 bit addition, pipelined internally in the
component. A schematic from the Xilinx user guide is shown in Figure 1.2. While
these operations are odd in the context of HPC, DSPs can also be employed to facilitate
floating point operations. However, rather than supporting one or more floating point
operation natively, DSPs are used in composite Xilinx implementations (see Section 2.3)
to handle steps of the floating point operations, reducing the number of logic slices that
would otherwise be required for a logic-only implementation. Physically DSP slices are
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1. Introduction and background

7 Series DSP48E1 User Guide www.xilinx.com 9
UG479 (v1.8) November 10, 2014

Chapter 1

Overview

DSP48E1 Slice Overview
FPGAs are efficient for digital signal processing (DSP) applications because they can 
implement custom, fully parallel algorithms. DSP applications use many binary 
multipliers and accumulators that are best implemented in dedicated DSP slices. All 
7 series FPGAs have many dedicated, full-custom, low-power DSP slices, combining high 
speed with small size while retaining system design flexibility. The DSP slices enhance the 
speed and efficiency of many applications beyond digital signal processing, such as wide 
dynamic bus shifters, memory address generators, wide bus multiplexers, and 
memory-mapped I/O registers. The basic functionality of the DSP48E1 slice is shown in 
Figure 1-1. For complete details, refer to Figure 2-1 and Chapter 2, DSP48E1 Description 
and Specifics.

Some highlights of the DSP functionality include:

• 25 × 18 two’s-complement multiplier:

• Dynamic bypass

• 48-bit accumulator:

• Can be used as a synchronous up/down counter

• Power saving pre-adder:

• Optimizes symmetrical filter applications and reduces DSP slice requirements

X-Ref Target - Figure 1-1

Figure 1-1: Basic DSP48E1 Slice Functionality
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Figure 1.2.: Schematic of the DSP48E1 component for the Virtex 7 family of Xilinx
FPGAs [4, Figure 1-1, p. 9].

distributed on vertical lines along the width of the chip as sketched in Figure 1.3. This
becomes an important factor when routing designs (see Section 1.5.2) for very high area
utilization, as the path between logic and DSP slices can get increasingly long, which
can introduce timing problems.

1.4.2. Block RAM (BRAM)

BRAM are storage components distributed on-chip. On Virtex 7, BRAM is available
as single 36 kbit blocks or as dual 18 kbit blocks, supporting variable I/O widths up to
72 bit [5]. BRAM can be used to store arrays of data elements, or to buffer elements for
later use to increase bandwidth to the computational elements. Like DSP slices they are
placed in vertical lines along the area of the board, illustrated in Figure 1.3. BRAM can
be configured as random access or FIFO memory. By guaranteeing FIFO access the tool
can assume a regular access pattern when performing scheduling of pipelined code, as
well as providing the programmer with FIFO semantics (see Section 2.4.3).

1.5. Source to hardware flow

Programming an FPGA means mapping the desired semantics to the components in-
habiting the target architecture, described by a sequence of configuration bits (called
a bitstream) that will be written to the FPGA. The flow from source code to hardware
capable of performing computations is an intricate process, much less transparent than
for software compilation, and constitutes a research field of its own. An overview diagram
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1.5. Source to hardware flow

Figure 1.3.: DSP slices and BRAM are distributed in vertical lines along the horizontal
dimension of the board, illustrated in yellow and green. This diagram is
simplified, and in practice the board is further split into regions with limited
connectivity between them.

of the software to hardware flow is included in Figure 1.4, and the major steps and their
purpose will be outlined below.

High level
synthesis

C
C++

OpenCL
...

VHDL
Verilog

...

Synthesis Netlist
Place and route

Native
circuit

description Bitstream
generation Bitstream

Figure 1.4.: Overview of the steps involved in the source to hardware flow on FPGAs,
with the arrows labels indicating the input/output formats. The last three
formats are all vendor and implementation specific.

1.5.1. Synthesis
Synthesis is the process of turning the programmer’s description of the desired semantics
into a description consisting only of components that inhabit the specific target architec-
ture, such as LUTs, FFs, DSPs and BRAM. The source is most commonly written in a
hardware description language (HDL) such as VHDL or Verilog, describing the circuit
at register transfer level (RTL), but more recently vendors have started supporting high
level synthesis (HLS), which takes higher level languages such as C, C++ or OpenCL as
input and output HDL, adding an extra step to the compilation flow. The granularity
and detail, in which the programmer controls the resulting hardware, is very different
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1. Introduction and background

between these two types of input. The Xilinx tools used in this work to synthesize from
input source code will be described in more detail in Section 2.1.

1.5.2. Placement and routing

Once the necessary hardware components are known from synthesis, the toolflow has
to map these onto the target fabric. This must be done in a way that fits all required
instances while minimizing the distance between connected components, in order to reduce
the total length of routing required to connect them and meet timing (see Section 1.3.1).
Packing components too tightly can however result in congestion, where too much routing
must run in the same small area, which can subsequently lead to large detours in routing,
in turn causing timing problems or fail routing entirely. The quality of placement and
routing (often referred to as just place and route) therefore depends on a good balance
between these two factors. The total number of possible placements of n components
is n!, and finding the optimal placement is an NP-hard problem. Instead tools rely on
heuristics to find good solutions, and improving these algorithms is an active field of
research. Because of this heuristic nature, the approach of the HDL or HLS programmer
also becomes somewhat heuristic when creating designs, as there is no exact way of
determining whether an implementation will place, route and meet timing, apart from
obvious boundaries such as outright exceeding the amount of available resources.

1.5.3. Post-routing passes

Because of the amount of heuristics that go into the place and route process, designs
require additional passes that can remove routing overlaps, reduce routing distance to
improve timing, and reduce resource usage by removing redundancy. While some of these
steps are optional in the Xilinx toolflow, optional optimization steps have sometimes
proven to be the final nudge needed to meet timing for designs implemented throughout
this work, which had otherwise failed due to long routing paths.

1.5.4. Bitstream generation

Once a design has been successfully synthesized, placed and routed, it is transformed to
the sequence of bits that must be written to the device SRAM to achieve the implemented
circuit. This includes guiding the routing logic to form the paths through the circuit, the
truth tables contained in each LUT, configuration of specialized components to activate
desired features, and writing constants and default values known at initialization time.
Bitstream generation is the final phase of the compilation flow, and the output is the
FPGA analogue to binary instructions on a fixed architecture, with the key difference
that the bitstream must be written entirely to the device before it is executed. Since
binary hardware instructions are in fact streamed to the processor during execution, the
term bitstream is somewhat misleading [1, p. 402].
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1.6. Roofline model of computation

1.6. Roofline model of computation
The roofline model [6] has, since its introduction in 2008, become a popular tool to
express the performance characteristics of hardware. It combines three key concepts in a
single plot, namely peak performance, memory bandwidth and computational intensity. A
brief introduction to these concepts is given below.

1.6.1. Peak performance
Peak performance is the highest possible throughput of the hardware’s computational
resources. This is most commonly taken (including in the original roofline paper) as
the maximum number of floating point arithmetic operations performed per second, but
can be generalized to be the throughput of any useful operation in the target context.
Throughout this work performance will be denoted as:

F

[Op
s

]
(1.1)

where the peak performance Fpeak is the maximum attainable number for F in a given
context. Section 1.7 will compute this number for various fixed architectures, and a
model for FPGA will be proposed in Section 3.2.

1.6.2. Memory bandwidth
The memory bandwidth is the maximum rate at which memory can be moved from
off-chip memory to the computational resources, and is measured in bytes per second. In
practice this usually means moving data from off-chip memory to single cycle accessible
memory on fixed architectures. We will denote this as:

R

[Byte
s

]
(1.2)

This number can be found directly in the datasheet of the memory hardware, but should
also be measured by a microbenchmark for comparison. Section 1.6.6 describes how to
compute the memory bandwidth for DDR memory.

1.6.3. Computational intensity
Related to the specific application, computational intensity measures the amount of reuse
of data loaded from off-chip memory. It is computed as the ratio between the number of
useful operations performed and the amount of memory transferred to and from off-chip
memory in a given program:

I = Operations performed
Bytes transferred

[ Op
Byte

]
(1.3)

This number is by far the hardest to measure accurately on fixed architectures, as it is
largely decided by the cache access pattern, which the programmer rarely knows exactly,
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1. Introduction and background

especially in multi-layer cache systems that are ubiquitous in modern CPUs. As a first
estimate the lower and upper bound for a given application can be computed, assuming
no cache and infinite cache, respectively. On FPGA the programmer can handle buffering
explicitly rather than leaving it up to general purpose caches, suggesting some merit to
this concept applied to FPGAs.

1.6.4. The roofline model

The roofline is defined as the effective throughput of computational elements with peak
performance Fpeak as a function of the number operations per byte transferred to and
from off-chip memory I, with a bandwidth to external memory of R:

F (I) = min {Fpeak, R · I} (1.4)

The model owes its name to the shape of the resulting plot, starting as a linear increase
with slope R until it becomes constant at the ridge point where Fpeak = RI. Applications
with a computational intensity left of the ridge point are said to be memory bound, while
applications to the right of the ridge point are compute bound. This is illustrated in
Figure 1.5.

I [op/byte]

F
[o
p/

s]

Fpeak

Fpeak
R

Me
mo
ry
cei
lin
g

Compute ceiling

IR = Fpeak

Memory bound
IR < Fpeak

Compute bound
IR ≥ Fpeak

Figure 1.5.: Illustration of a roofline plot. Applications in the memory bound domain
are bottlenecked by memory bandwidth, while the compute bound domain
is bottlenecked by the throughput of the computational units.

1.6.5. Performance ceilings

Figure 1.5 also illustrates the concept of ceilings. Ceilings are tighter bounds than
rooflines, but are allowed to be “breached” by the application. They indicate boundaries
imposed by conditions affecting performance. If fused multiply-add (FMA) is available,
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performing two arithmetic operations in a single instruction, an application that does
not utilize them will be upper bounded by a compute ceiling half the height of the peak.
If an application accesses off-chip memory by strides larger than the prefetch size (see
next section), the memory bound slope will be lowered by a factor of 4 for DDR3 (see
Section 1.6.6), and so on.

1.6.6. Computing DDR memory bandwidth

All architectures treated here use a form of double access rate (DDR) random access
memory (RAM) as their off-chip memory. The peak memory bandwidth in bit/s is
computed as:

bandwidth = memory clock× transfer rate× bus clock multiplier× channels (1.5)

The DDR name comes from prefetching of data: whenever a request is serviced, the
memory bank running at the memory clock frequency returns multiple words at the
target address, known as 2n-prefetching [7]. The first generation of DDR memory had
a prefetch of 2 (n = 1), which was accommodated by allowing data transfers on both
rising and falling edges of the clock, denoted as the transfer rate in (1.5). For DDR2 the
amount of data prefetched was increased to 4 (n = 2), and to 8 for DDR3 (n = 4) and
onwards, which is instead achieved by separating the memory clock domain from the
I/O clock, increasing the I/O clock by a factor n to service all prefetched words from the
memory banks, known as the bus clock multiplier. Finally, the number of channels are
the number of I/O pins serviced at the DDR interface.
Hardware vendors typically declare memory performance either by the full memory

bandwidth computed from (1.5), or as the frequency at which data arrives through the
I/O pins (twice the I/O clock). This number is a physical upper bound on how many
bits can travel between memory banks and the interface. The actual rate at which data
arrives to the cache depends heavily on the amount of prefetching and scheduling of
requests done by the program to overlap latencies between requests and servicing memory
requests, and the amount of data read and written that is useful depends heavily on
the memory access pattern. The latter factor is incorporated into the roofline model as
computational intensity, whereas the former will constitute the gap between the actual
measured performance and the peak at the given computational intensity, given that the
computational intensity is computed exactly (this can be expressed as a ceiling in the
roofline model).

1.7. Computing peak performance
On fixed architectures the number of operations performed per cycle is computed by
assuming that n computational elements on the chip each have a throughput of 1

L , where
L is the latency of reading in a new set of operands. Even fixed architectures have
small internal pipelines, so the latency of individual operations can be higher than one
cycle, despite having a throughput of 1 operand per cycle. Hardware vendors usually
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report peak floating point numbers as FMA operations that effectively perform two
computations packed in a single instruction, so the number of arithmetic operations per
operand A is also taken into account. Since floating point units are typically capable of
performing single instruction multiple data (SIMD) instructions that operate on vectors
of multiple operands, we include the number of elements that can be treated in parallel
K, which for fixed architectures is the SIMD width divided by the operand size, resulting
in the expression:

C = n
KA

L

 Op
cycle = 1 ·

operand · Op
operand

cycle
Op

 (1.6)

To obtain peak performance, we multiply the net number of arithmetic operations
performed per cycle by f , the sustained frequency that the chip is clocked at. For CPUs
and GPUs this frequency can vary, as both architectures can clock higher when allowed
by thermal levels (Intel’s Turbo Boost or NVIDIA’s Boost clock). We use the base clock,
as we are interested in sustained performance. The resulting performance is then:

F = fC

[Op
s = cycle

s · Op
cycle

]
(1.7)

We additionally consider performance per power (P ):

E = F

P

[
Op
J =

Op
s

W

]
(1.8)

This number is more delicate from the point of view of an upper bound, as datasheet
power consumption numbers are usually provided as maximum values, thus having the
nature of a lower bound in (1.8). While it might not be an unreasonable assumption that
power usage is high at peak performance, this is also affected by other factors, such as
cache performance and non-floating point units activated on the die. This collision of
upper and lower bound concepts should be kept in mind when using datasheet values for
power efficiency.

1.7.1. Examples for fixed architectures
In the following we apply Equation (1.6) to common fixed architectures. The model will
be extended to FPGA in Section 3.2. Since all numbers below are computed assuming
FMA (A = 2 Op

operand), the upper bound to many applications will in practice be closer to
a roofline ceiling at about half of this performance, as the balance between additions and
multiplications is rarely 1:1.

Intel CPU

On an Intel Xeon CPU the number n in Equation (1.6) is the number of cores on the chip.
K is the maximum number of operands that can be treated by a single SIMD instruction,
e.g. 256 bit

32 bit/operand = 8 operands for single precision floating point numbers on the 256
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bit wide AVX extensions to the x86 instruction set, or 4 for double precision. A is the
number of operations performed per operand, which is 2 for CPUs supporting the AVX2
instruction set that has hardware support for FMA instructions. The latency of FMA
instructions is 3 cycles [8], but is pipelined for a throughput of 1. Table 1.1 contains
Equation (1.6) and Equation (1.7) evaluated for contemporary CPUs, as well as CPUs
released around the time of the AlphaData 7V3 card. The roofline for the Xeon E5-2697

32 bit 64 bit
Product Year n f [GHz] P [W] R
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]
Xeon E7-8890 2016 24 3.4 165 102 384 1306 7.92 192 653 3.96
Xeon E5-2697 2013 12 3.5 130 59.7 192 672 5.17 96 336 2.59
Core i7-6700K 2015 4 4.2 91 34.1 64 269 2.96 32 134 1.47
Core i7-4771 2013 4 3.9 84 25.6 64 250 2.98 32 125 1.49

Table 1.1.: Peak floating point performance for two contemporary Intel CPUs, as well
as for two CPUs contemporary at the time of release of the AlphaData 7V3
card.

is plotted in Figure 1.6.
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Figure 1.6.: Roofline for the Intel Xeon E5-2697 x86 CPU, including ceilings for FMA
and SIMD instructions.

Case: Intel Xeon Phi

For Intel’s many-core x86 accelerator cards, Xeon Phi, the numbers in Equation (1.6)
are determined similar to above, but with 16 and 8 floats and doubles per instruction
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respectively, as the Knight’s Corner and Knight’s Landing architectures have 512 bit
wide vector registers. The numbers are included in Table 1.2. The roofline for the

32 bit 64 bit
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Xeon Phi 7120A 2014 61 1.33 300 352 1952 2596 8.65 976 1298 4.32
Xeon Phi 7290F 2016 72 1.70 260 115.2 2304 3918 15.07 1152 1958 7.53

Table 1.2.: Peak floating point performance for Knight’s Corner and Knight’s Landing
Xeon Phi devices.

Xeon Phi 7120A is plotted in Figure 1.7. The very wide vector units on Xeon Phi result
in an even lower SIMD ceiling than for the Xeon procesor.
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Figure 1.7.: Roofline for the Xeon Phi 7120A x86 accelerator, including ceilings for FMA
and SIMD instructions.

Case: NVIDIA GPU

The compute on NVIDIA GPUs is done by a number of streaming multiprocessors
(SMXes), each with a number of floating point units. Unlike on x86, the number of double
precision floating point units is not necessarily half the number of single precision units
on one SMX. Table 1.3 lists peak performance numbers computed for both workstation
and server cards. The roofline for the Tesla K40 is plotted in Figure 1.8, showing the
tremendous floating point performance potential of the GPU.
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Tesla K20 2013 706 225 13× 192 4992 3524 15.7 13× 64 1664 1175 5.2
Tesla K40 2013 745 235 15× 192 5760 4291 18.3 15× 64 1920 1430 6.1
Tesla K80 2016 560 300 2× 13× 192 9984 5591 18.6 2× 13× 64 3328 1864 6.2

Table 1.3.: Peak floating point performance for various NVIDIA Tesla accelerator cards.
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Figure 1.8.: Roofline for the Tesla K40 accelerator.
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1.7.2. Discussion
The roofline model is a useful tool for doing quick comparisons of the capabilities of
different hardware architectures, and can with the help of ceilings guide optimization
efforts, by providing an upper bound of attainable performance for a given algorithm.
When more accurate comparisons are required, the variation in tightness of the bound for
different architectures becomes hard to factor in, as one architecture might outperform
another despite scoring lower on the roofline plot, because the architecture is a better
fit. The classic example is irregular memory accesses and branching, which cause
some slowdown on a CPU, but completely destroy GPU performance, even if the GPU
undisputably wins on the roofline chart, as these factors are not accounted for in the
model. Nevertheless, the roofline model is relevant for providing bounds, and Chapter 3
will look into determining the roofline characteristics on FPGA, providing a comparison
with the architectures listed here.

Before diving into modeling performance on FPGAs, we will look into the available
tools to program them and discuss patterns that produce efficient designs.
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The exercise of coding for FPGAs is one of spatial programming: rather than designing a
temporal stream of instructions that will cause an existing circuit to transform the input
memory into the desired output, we design the circuit ourselves to produce exactly the
output we want for a given input to our target application. When transferred to achieving
high performance, the exercise becomes maximizing the amount of FPGA resources
concurrently performing useful operations to achieve this on the chip. To this end, the
first section will give an overview of the software tools available, before an introduction
is given on central concepts to efficient FPGA programs, followed by concepts specific to
the high level synthesis tool used, and a proposal for an architecture that fits the FPGA
model and will be the base for performant implementations in the following chapters.

2.1. Tools for programming FPGAs
This section describes the Xilinx tools used throughout this work to program FPGA
hardware.

2.1.1. Vivado HLS
For all implementations here the core computational kernels were written in Vivado HLS[9],
Xilinx’ high level synthesis tool. Vivado HLS is capable of synthesizing C or C++ into a
hardware description language that will (largely) follow the semantics of the source code.
This is represented by the first (optional) step in Figure 1.4, and offers an alternative
to writing HDL, intending high productivity FPGA design. The tool is configured
with the target FPGA architecture and clock frequency, and takes as input C/C++
source files augmented with HLS-specific pragmas and header files that guide the tool’s
transformation flow. Vivado HLS has three primary purposes:

1. Synthesis: compiles the source file to HDL, reporting transformations done to the
user.

2. C simulation: runs the source file using a C/C++ testbench as a regular software
application to verify correct semantics.

3. C/RTL co-simulation: emulates design on hardware by running the synthesized
representation along with an instrumented C/C++ testbench to verify correct HDL
semantics.

Implementing programs using high level synthesis typically involves many iterations of all
three steps above: checking that the program is semantically correct as a C++ program,
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verifying that it produces a desirable hardware description, then running the co-simulation
to attempt to catch hardware-related bugs in the code. The third step can be very time
consuming for large applications, and does not guarantee correct hardware, and thorough
testing of all three is primarily done for small prototypes before extrapolating to the full
implementation.
Vivado HLS uses the tool command language (Tcl) for scripting commands to the

command line tool[10]. An example of such a script for running C simulation of a source
file then synthesizing to HDL is included in Listing 1.

open_project Test
open_solution "virtex7"
set_part "virtex7"
set_top Kernel
create_clock -period 5 -name default
add_files Test.cpp -cflags "-I./"
add_files -tb Testbench.cpp -cflags "-std=c++0x -I./"
csim_design
csynth_design
quit

Listing 1: Example of Vivado HLS Tcl script setting up a project targeting the Virtex 7
architecture, adjusting the target clock period, adding source file and testbench,
specifying the entry function of the kernel, then running C simulation before
synthesizing to HDL.

Synthesizing an HLS program in the version of Vivado HLS used here takes between
tenths of seconds for small programs to an hour for many-stage, full utilization programs.
Usually synthesizing small programs is sufficient for prototyping and developing the
desired architecture, so synthesis for the high resource configuration only needs to be
done when building for hardware.
Section 2.4 will give a more thorough walkthrough of the practical aspects of Vi-

vado HLS, describing principles and techniques that can be employed to implement
efficient FPGA hardware.

2.1.2. SDAccel

With the increasing popularity of OpenCL[11] for accelerators, FPGA vendors have
turned their eyes on supporting OpenCL as a way to approach the mainstream market.
Xilinx’ effort is called SDAccel, and consists of a tool that compiles directly from source
to hardware, as well as a hardware infrastructure on the FPGA fabric that is written as a
partial bitstream to the chip, hosting a kernel space where user kernels can be placed and
executed from, illustrated in Figure 2.1. This is intended to allow programmers to focus
on writing the computational kernels, and not bother with the infrastructure specific to
each chip. The framework interfaces with DDR memory, allows transfers to and from
memory over a PCIe bridge, and exposes a memory interface to the user kernel that can
be used to issue requests to the memory controller. SDAccel provides an OpenCL runtime
that can be targeted from host code to access DDR memory over the PCIe bridge, and
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Figure 2.1.: Infrastructure instantiated on the FPGA fabric by SDAccel as a partial
configuration. User kernels will be placed and run from the designated user
space, interfacing with the SDAccel memory controller to connect to the
outside world.

can launch kernels according to the OpenCL model. Like the typical OpenCL flow, but
unlike the traditional FPGA flow, the bitstream describing the kernel is written to the
device at runtime. Kernels generated by the SDAccel build flow are therefore partial
bitstreams built to fit the designated kernel userspace, which is a subspace of the FPGA
fabric. Unlike other OpenCL platforms SDAccel does not support building kernels from
HDL or HLS source at runtime, as this process can take up to several hours (see end of
this section).

As illustrated in Figure 2.1, instantiating the SDAccel framework on the chip to provide
infrastructure for PCIe and DDR memory requires reserving part of the device fabric,
and kernels plugged into the userspace must conform to the SDAccel interface and clock
domain to be used. These restrictions are listed below:

• Clock rate: the user domain in the SDAccel framework is clocked at 200 MHz, so
user kernels must be built with a 5 ns target timing.

• Memory interface: the version of the SDAccel toolflow used for writing this
work (version 2015.4) provides a single AXI Master interface (see Section 2.4.4)
to access address mapped memory, supporting port widths of up to 64 bytes.
Along with the clock limit imposed by SDAccel this results in an upper bound of
64 Byte · 200 Hz = 12.8 GByte/s on the memory bandwidth between the user kernel
and global memory, regardless of the number of memory modules available and
their I/O clocks. Boards with multiple DDR modules will therefore only be able to
utilize a single block from SDAccel kernels.

• Available logic: since the infrastructure is instantiated on the FPGA fabric it
consumes a number of resources that will not be available to the user program.
This can be a significant fraction, and also affects the available number of DSP
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slices, which has a great impact on the number of arithmetic operations that can
be run concurrently in the user program (this is treated in Section 3.4).

Although SDAccel is marketed as being a target platform for kernels written in OpenCL,
experiments performed in the beginning of thesis research suggested that the OpenCL
language is a poor match for hardware design, at least with the current state of the
tool. While expressing the data path as processing elements and compute units seems
fitting, the mapping to pipelines was deemed too opaque, and the examples of efficient
implementations encountered seemed to fall back on nested loops in a single worker
thread, defeating the purpose of the abstraction. Instead Vivado HLS was chosen as a
more suitable abstraction for writing the computational kernels.

Compiling an SDAccel kernel runs all the steps listed in Section 1.5 behind the scenes,
packaging the bitstream in SDAccel-specific binaries. This process takes between half an
hour and several hours, with the maximum time experienced while developing for this
work being in the vicinity of four hours. While it is mostly possible to iron out bugs
before running on hardware, some bugs only occurred when running on hardware, being
near impossible to debug due to the opaqueness of the SDAccel flow. Kernels however
generally compile faster than when building a full Vivado project (see below), as they
are more restricted by the SDAccel flow.

2.1.3. Vivado

Vivado is the main workhorse of the Xilinx design suite, and encompasses every stage of
the source to hardware flow described in Section 1.5. HLS kernels, HDL components and
larger Xilinx intellectual blocks are all instantiated and configured within the application.
The tool is meant to give the user detailed control, and provides an extensive user interface
that allows tweaking everything from specific FIFO depths to which optimization strategies
and constraints should be used during place and route.
In addition to the SDAccel toolflow and infrastructure this work will use a custom

hardware design provided by Xilinx implemented as a Vivado project. This design serves
as a minimal wrapper around running user kernels, leaving the majority of resources to be
used by the kernel (only a few percentages are consumed, depending on the configuration).
The design consists of the following major components:

• PCIe interface: transfers data over the PCIe bridge in 32-bit words at 125 MHz,
and is not meant for high bandwidth use.

• PCIe input/output FIFOs: accommodates input and output to/from PCIe,
serving as temporary storage for 32-bit words. The input FIFO is populated from
the PCIe interface while forwarding to the input data width converter (see below).
The output FIFO will be populated by data from the kernel at post-execution after
passing through the output data width converter while the data from the output
FIFO will be written back over PCIe.
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• Data width converters: in order to allow narrower and wider pipelines in the
user kernel, the 32-bit words from the input/output FIFOs can be converted to/from
the required data width before and after passing through the kernel.

• Kernel input/output FIFOs: these are the entry and exit point of data stream-
ing to and from the kernel, serving as the main buffers capable of holding the full
amount of elements necessary to execute the kernel and results produced by the
kernel, respectively.

• Kernel: computational kernel provided by the user. Reads from an AXI Stream
interface (see Section 2.4.4) and writes back to an AXI Stream interface, only
consuming from the input FIFO when a start-flag is set.

• Performance counter: in order to accurately measure the number of cycles spent
in the kernel, a performance counter is incremented every cycle from when the start
flag is set and until the last element is written to the output FIFO.

• Write path: connected to the output stream from the kernel, this component
detects all elements have been written to the output FIFO (for a perfect pipeline
this is the first cycle where no element is written), stopping the increment of the
performance counter.

A diagram of the connected components is included in Figure 2.2. The purpose of
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Figure 2.2.: Layout and connectivity of major components in the Xilinx reference design.

this design as an addition to SDAccel is allowing higher resource utilization and clock
frequency to push performance further, and to circumvent design restrictions imposed by
the SDAccel model.
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Rather than calling a single command to build a hardware kernel from source code
as is the case with SDAccel, working with Vivado projects requires manually handling
every stage of the software to hardware process, as the full kernel plus infrastructure
must be synthesized, placed and routed, before writing the result to the device as a
self-contained monolithic bitstream. Synthesizing the HLS code, setting up a Vivado
project, synthesizing the HDL of the kernel plus infrastructure, placing and routing,
optimizing and generating the bitstream takes between an hour and six hours, depending
on the size and complexity of the design. As opposed to compiling kernels with SDAccel,
the Vivado flow allows starting, stopping and restarting the process at any stage, making
debugging individual stages easier, but trades off this flexibility for the total time from
source to bitstream. In addition to the long time to completion, the build process carries
an enormous memory and disk footprint, with some designs consuming up to 20 GByte
of memory while building, and taking up to 4 GByte of disk space in their post-build
state. When running on hardware only the bitstream is necessary, however, and these
are only in the order of tenths of megabytes.
Running bitstreams built by Vivado requires significantly more effort than SDAccel.

The bitstream produced is a full configuration of the device, overwriting anything already
present, including its presence to the PCIe driver of the host system. After writing the
bitstream to the device using the Xilinx tool Vivado Lab (part of the Vivado Design
Suite [12]) the PCIe device must rediscovered. This is done by rebooting the system.
A device driver provided by Xilinx must then be installed with sudo privileges, before
running a host side application, also provided by Xilinx, that can write to the PCIe
bridge and populate the device input FIFO. The host side application offers commands to
start, reset and read out results from the kernel, the latter of which will also display the
amount of cycles spent in the kernel, which will be used to verify the expected number of
cycles to completion.

2.2. Concepts of FPGA programs
Before taking a closer look at the capabilities of the high level synthesis tools, we introduce
concepts central to designing FPGA hardware.

2.3. IP cores
In addition to mapping directly from source to logic, Xilinx offers a number of intellectual
property cores (IP cores), that are composite software-defined components performing
more elaborate tasks. When working in Vivado, these are available as configurable blocks
that can be added by the user to their design, but are also automatically inserted by the
tool when synthesizing implementations in Vivado HLS. A number of data movement-
related IP cores are used in the Xilinx reference design (see Section 2.1.3), but the
most central IP cores in the scope of this thesis are the provided floating point IP cores.
As mentioned in Section 1.4.1, DSP units are optimized for low precision fixed point
computations, and do not support floating point computations natively. Instead, Xilinx
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offers IP cores that perform floating point operations using a combination of logic and
some or no DSPs. While not necessary to perform floating point operations, DSP cores
can save logic resources when implementing these operations, which will be important
for the peak performance computations in Chapter 3. Table 2.1 contains examples of

Operation Core DSPs LUTs FFs LUT/FF Pairs Max clock

32-bit add/sub
Full 2 205 309 126 462
No 0 355 562 301 556

32-bit multiply

Max 3 79 123 62 462
Full 2 92 166 75 462
Med 1 238 363 217 462
No 0 571 672 538 500

32-bit division 0 793 1354 742 532

64-bit add/sub Full 3 657 950 541 508
No 0 689 1067 574 594

64-bit multiply

Max 11 200 492 156 329
Full 10 233 503 192 462
Med 9 275 564 245 462
No 0 2230 2421 2177 368

64-bit division 0 3273 5982 3135 375

Table 2.1.: Suggested resource consumption of Xilinx floating point IP cores, updated
as of Vivado Design Suite release 2016.2 [13]. Although we use the 2016.1
release of Vivado in this thesis there should be little to no variation, as the
numbers are primarily tied to the Virtex 7 hardware architecture.

suggested resource consumption for various floating point IP cores. These logic resource
consumption values have been measured in isolation [13], but will in practice vary with
the specific constraints and surrounding logic. The number of internal pipelines stages in
the cores will also change depending on the target timing, which impacts the amount of
logic required. Additions and multiplications can be implemented using one of multiple
possible IP cores with varying amounts of logic versus DSP resources consumed. These
are marked with the official Xilinx labels (“Max”, “Full”, “Med” or “No”) in Table 2.1.

2.3.1. Processing elements

When considering instantiating modules on an FPGA it is useful to think of them in
terms of processing elements. Processing elements are higher granularity elements that
can incorporate not just the computation itself, but all surrounding logic necessary
to implement the semantics of the application. While processing elements are not an
intrinsic FPGA element, they are a useful abstraction when designing algorithms, and
we will use this abstraction when defining FPGA performance in Section 3.2.
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2.3.2. Pipelining

In addition to maximizing the number of concurrent computations done on the chip, one
other critical condition must be fulfilled to achieve performant FPGA programs: each
computational element must work at its highest possible throughput. This is achieved by
pipelining, and any high performance FPGA implementation must implement perfect
pipelining in the computational elements to ensure that resources are kept busy at all
times by feeding them new input every cycle. This section will first cover the two principal
properties of pipelining, latency and initiation interval, then go through the levels of
pipelining that must be treated in a pipelined program.

Latency and initiation interval

A pipelined program will have a number of stages that data will flow through before a
result is produced. Latency is the number of cycles between an element entering the first
stage of the pipeline, and that same element exiting the last stage of the pipeline. The
latency is at the same time a measure for how long it takes for the pipeline to saturate
and drain, as maximum performance will not be reached before the pipeline is fully
saturated, and will degrade as the pipeline is draining.

The number of cycles between the pipeline being able to accept new elements is called
the initiation interval. In order to achieve full utilization of the compute units, the
initiation interval of the pipeline must be 1: it should consume one input (and produce
one output) every cycle. Achieving a perfect pipeline means achieving an initiation
interval of 1 in all computational stages of the pipeline and being able to feed these
pipelines every cycle.

Levels of pipelining

Pipelining comes at three different levels, and all three must be treated in order to achieve
perfectly pipelined computation.

1. Floating point units: because the Virtex 7 architecture does not have native
support for floating point algorithms, operations must be performed in a number
of internal stages. This means that the floating point operation itself has a latency
greater than one. In order to produce one result every cycle, the floating point
units are therefore themselves internally pipelined, and will exhibit a saturation and
draining phase, as well as increase the penalty of potential bubbles in the pipeline.
To achieve maximum throughput for floating point units it is crucial that all the
floating point cores are kept fully saturated.

2. Modules: these can be thought of as higher level functions in software engineering,
and are the highest level of modularity in an FPGA implementation. Each module
has an input and an output interface, and some internal logic to transform the
input data to an output. In order to have a perfectly pipelined implementation,
data passed from one module to the next must always be ready when it is needed.
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In most cases this implies producing and consuming one data element every cycle,
although this can in principle be violated if modules performing the computations
have internal reuse of data, thus maintaining full utilization of the computational
elements.

3. Dataflow: The final and strongest level of pipelining is the one across all modules
in the implementation, as it requires all modules to already be internally pipelined.
We refer to this as dataflow, and can be implemented in the Xilinx toolflow using a
dataflow optimization pragma (see Section 2.4.7). Functions will act as separate
modules connected by either ping pong buffers (requiring the programmer to
guarantee that the producer will never push a new element before the previous
element was consumed) or FIFO streams. The programmer typically wants to ensure
that the pipeline across all modules in the dataflow is perfect, but applications with
internal reuse in individual modules can still achieve full computational efficiency
as long as the compute is fed.

2.3.3. Bubbles
Although having an initiation interval of 1 cycle throughout the entire pipeline is what
allows all computational units to stay saturated, this assumes that data can be fed to
the beginning of the pipeline every cycle. If no data arrives in a cycle a bubble occurs,
which is a signal that will propagate throughout the entire pipeline without producing a
useful result, wasting operations equivalent to the latency of the pipeline (as every stage
of the pipeline will correspond to a non-operation when the signal passes it). Bubbles
seriously degrade overall performance, and having a bubble free program is essential to
achieve performance with deep pipelines.

A common source of bubbles can be feeding the pipeline from random access memory.
The latency from issuing a request until it is serviced can be substantial, although the
low latency of FPGAs means they suffer less from this issue than fixed architectures
that clock at an order of magnitude higher. In order to stay saturated, requests must
be overlapped to hide the latency before they are serviced. The amount of overlapping
needed (and the penalty if the overlap is not sufficient) is reduced if a single burst from
memory can feed multiple cycles of the pipeline.
Properties of a program that can help prevent bubbles from random access memory

are:
• Semantic support of static scheduling of requests, allowing perfect prefetching

(requesting data before it is needed). This is mandatory for a bubble free program.

• Regular access pattern that can fully utilize the data returned by each burst.

• Capable of issuing very large requests to a contiguous area in memory, making it
trivial for the memory controller to statically schedule overlapping requests.

All of these properties are fulfilled if the program conforms to a streaming interface. This
is a supported interface in the Xilinx toolchain, and will be described for HLS programs
in Section 2.4.4.
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2.3.4. Feedback loops
On the board studied in this work, floating point arithmetic operations are implemented
using Xilinx IP cores (see Section 1.4.1). These modules can involve multiple internal
pipelines stages, introducing a latency between receiving operands and outputting the
result. While this throughputs one arithmetic operation per cycle when fully saturated,
it adds latency to when the result of the operation can be used in a future iteration.
For fully pipelinable programs this only adds to the delay of the saturation phase, but
if implementing iterative structures, feedback loops can become an issue. The simplest
example is a circuit implementing the sum of an array of floating point numbers. If
we attempted to do this using a single floating point addition core accumulating the
result in a single register, we would have the wait for the full latency of the floating
point operation before the result of one accumulation was ready, effectively reducing
the initiation interval (and thus the throughput) to 1/L, where L is the latency of the
operation.

2.4. High level synthesis
The traditional way of programming FPGAs has been HDLs, mostly leaving the task to
hardware engineers. With the development of high level synthesis tools from C and C++,
as well as the increasing effort to support OpenCL from both Altera and Xilinx, the world
of FPGAs is becoming more accessible to users with software backgrounds. Not unlike
programming GPUs, however, the road from writing a functionally correct program
to writing a performant program is long, and the tools even less mature. This section
will take a closer look at the Vivado HLS tool used to produce all kernels presented
throughout this work, highlighting important programming techniques and the hardware
they produce. The goal is to provide some general insight in the mapping between the
high level C++ program that is fed to the tool and the resulting FPGA hardware.

2.4.1. Pipelining
At the heart of the spatial programming paradigm lies pipelining, and building performant
HLS programs revolves around expressing the target algorithm in a way that achieves
a perfect pipeline (with an initiation interval of 1, see Section 2.3.2). In Vivado HLS
pipelines are implemented using the PIPELINE pragma, which takes as input the desired
initiation interval (the parameter is optional, and if unspecified defaults to 1), and
attempts to transform the scope in which it is issued to hardware that can throughput
one result every cycle when fully saturated. Listing 2 demonstrates the effect of the
pipeline and unroll (see next section) pragmas by illustrating the resulting hardware
from an input code.

2.4.2. Unrolling
The pipeline pragma produces the first spatial dimension: the depth; and unrolling
generates the second: the width. Whenever a nested loop appears in a loop that is being
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void PipelineAndUnroll(const float a[4],
const float b[4],
float c[4]) {

#pragma HLS PIPELINE II=1
Unroll: for (int i = 0; i < 4; ++i) {

#pragma HLS UNROLL complete
c[i] = 0.5 * (a[i] + b[i]);

}
}

a b

+ + + +

× × × ×

0.5

c

Listing 2: Source code and illustration of resulting hardware for a pipelined function with
an unrolled loop in Vivado HLS. The horizontal dimensions represents unrolled
elements with parallel pipelines, while the vertical dimension represents the
flow through pipeline stages. The input arrays a and b are scattered to the
processing elements, then gathered after processing before outputting to c.

pipelined, the HLS tool will attempt to unroll all iterations of the inner loop in order
to execute every stage in parallel. This can only be done if there are no inter-iteration
dependencies with a latency longer than the depth of the pipeline. The UNROLL pragma
used in Listing 2 issues a complete unroll (every iteration will be unrolled), but is optional,
as pipelining the function will automatically unroll the loop to achieve an initiation
interval of 1. Unrolls such as this one control the width of the data path: in the example
shown in the listing, the data path is 4 · 4 Byte = 16 Byte wide, as four floats are read in,
computed and written out every cycle. This is somewhat analogous to SIMD units on
fixed hardware, although there is technically no restriction on performing only a single
“instruction” across the entire data path.

2.4.3. Streams

When designing pipelined modules, it is useful to abstract communication between
modules as streams, only allowing FIFO semantics when reading in and writing out
data. Restricting to FIFO behavior requires fewer control paths than random access in
hardware, as only a full/empty flag needs to be asserted when data is written/read. An
example using high level synthesis is given in Listing 3, using the Xilinx Vivado HLS
primitive hls::stream, which offers FIFO semantics.
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void AddOnePointer(float const *input, float *output) {
for (int i = 0; i < kNumElements; ++i) {

#pragma HLS PIPELINE II=1
output[i] = input[i] + 1;

}
}

void AddOneStream(hls::stream<float> &input, hls::stream<float> &output) {
for (int i = 0; i < kNumElements; ++i) {

#pragma HLS PIPELINE II=1
const float eval = input.read() + 1;
#pragma HLS RESOURCE variable=eval core=FAddSub_nodsp
output.write(eval);

}
}

Listing 3: Using stream objects over arrays restricts to FIFO semantics, allowing the tool
to produce more efficient hardware.

Vivado HLS allows specifying the depth of stream variables using the STREAM pragma,
which also makes them useful as buffer primitives. The depth is finite and must be
decided at compile-time, as it maps directly to registers or BRAM on the FPGA. Buffers
like these can be useful to implement cyclic behavior, such as inner dimensions in a multi
dimensional iteration space (this will be useful when implementing stencils). If no pragma
is given, the tool is free to implement the stream as a ping pong buffer instead, never
allowing more than a single element in flight. An example of using a stream primitive as
a buffer is included in Listing 4.

const unsigned kPeriod = 32; // Can be defined in external configuration
void FifoBuffer(hls::stream<Burst> &input, hls::stream<Burst> &output) {

#pragma HLS PIPELINE II=1
static unsigned i = 0;
static hls::stream<Burst> buffer;
#pragma HLS STREAM variable=buffer depth=kPeriod
#pragma HLS RESOURCE variable=buffer core=FIFO_BRAM
if (i < kPeriod) {

buffer.write(input.read());
} else {

output.write(buffer.read());
}
i = (i + 1) % (2 * kPeriod);

}

Listing 4: The HLS stream primitive can be used as a buffer with FIFO semantics by
using the STREAM pragma to set a FIFO depth. The function shown here
periodically loads in a number of elements, then writes them back out to be
used at a later stage.

2.4.4. Interfaces

Just like passing larger amounts of variables can be done using either arrays or streams
as described above, the entry ports to kernels written in HLS can be implemented as
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different types of interfaces. Xilinx offers three different interfaces in their Advanced eX-
tensible Interface (AXI) standard:

• AXI Lite: low throughput interface for control flow, used for narrow types that
are only read or written once.

• AXI Master: a random access interface to addressed memory, using bursts to
saturate the bandwidth to e.g. DDR memory. It offers ports for specifying address,
burst size and number of bursts to retrieve.

• AXI Stream: follows FIFO semantics, eliminating the need to issue requests, as
data will simply be streamed at the highest possible rate by statically scheduling
very long bursts from memory.

AXI Stream promises the best memory performance, as the sequential semantics allow
optimally scheduling the requests to memory to allow maximum bandwidth and prevent
bubbles (see Section 2.3.3), but sacrifice random access, requiring the given kernel to
follow streaming semantics.
In Vivado HLS interfaces are specified at the top level function (the entry to the

kernel) using the INTERFACE pragma. An example of this can be found in Listing 8 for
AXI Stream interfaces using the hls::stream primitive.

2.4.5. Packing bursts

Inside user kernels the data path can be statically scheduled, and the tool will guarantee
that data propagates through the pipeline. The pipeline can however only be kept
saturated as long as data arrives at the entry point (see Section 2.3.3), which is typically
fed from off-chip memory. For a data path with a constant width of K bytes, the pipeline
can only stay saturated if K bytes arrive at the entry every cycle, and K bytes are written
out at the exit of the pipeline every cycle. The HLS tool must therefore be guided to
how much data must be provided from memory per cycle given the relevant bandwidth
constraints. Since the user kernel is typically clocked much lower than DDR memory,
bursts are also the only way the bandwidth can be saturated.
The version of the Vivado HLS tool used for this work (release 2016.1) does not

allow directly specifying the width of the port to global memory when mapping to the
AXI Master interface, which is the only interface offered if one wishes to integrate with the
SDAccel framework (as of SDAccel 2015.4). Instead the interfaces must be implemented
using built-in arbitrary precision types of the desired width, unpacking them as arrays of
the desired type, then repacking them before writing them back to the interface. Packing
and unpacking are non-operations in FPGA logic, as they are simply reinterpretation
style casts from a single, wide type, to an array of narrower types, but must nevertheless
be implemented to follow C++ semantics. To this end a burst class was implemented,
with the semantics shown in Listing 5.
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namespace hlsUtil {
template <typename T, unsigned byteWidth>
class Burst {

static const unsigned elementsPerBurst = byteWidth / sizeof(T);
...

public:
Burst(T const arr[elementsPerBurst]) { Pack(arr); }
void Pack(T const arr[elementsPerBurst]) { /* Implementation */ }
void Unpack(T arr[elementsPerBurst]) const { /* Implementation */ }
void operator<<(T const arr[elementsPerBurst]) { Pack(arr); }
void operator>>(T arr[elementsPerBurst]) const { Unpack(arr); }
...

};
} // End namespace hlsUtil

Listing 5: Semantics of C++ burst class, implemented to guarantee wide ports to global
memory, allowing multiple elements of the desired type to be read in every
cycle. It is also convenient for passing around arrays of elements in the HLS
code. The full implementation is included in Appendix A.

With this class, all interfaces are made as reading/writing burst types, regulating the
width of the burst along with the width of the data path throughout the program. An
example of using bursts to read and write four single precision floating point numbers
every single is included in Listing 6, wrapping the function demonstrating pipelining and
unrolling, which was presented in Listing 2.

typedef hlsUtil::Burst<float, 4*sizeof(float)> Burst;
void Entry(hls::stream<Burst> &aStream,

hls::stream<Burst> &bStream,
hls::stream<Burst> &cStream,
int n) {

#pragma HLS INTERFACE axis port=aStream
#pragma HLS INTERFACE axis port=bStream
#pragma HLS INTERFACE axis port=cStream
Main: for (int i = 0; i < n; ++i) {

#pragma HLS PIPELINE II=1
float aArray[4], bArray[4], cArray[4];
#pragma HLS ARRAY_PARTITION variable=aArray complete
#pragma HLS ARRAY_PARTITION variable=bArray complete
#pragma HLS ARRAY_PARTITION variable=cArray complete
aStream.read() >> aArray;
bStream.read() >> bArray;
PipelineAndUnroll(aArray, bArray, cArray);
cStream.write(Burst(cArray));

}
}

Listing 6: Example of using bursts to achieve wider port to a C++ kernel written in
Vivado HLS, providing four floats to the kernel every cycle, assuming this can
be provided by the interface.
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2.4.6. Array partitioning

When declaring arrays, the access pattern that must be supported by the contained data
can be declared using the ARRAY_PARTITION pragma. For treating multiple elements in
parallel in an SIMD fashion, every element in an array must be accessed in a single cycle,
which can be specified with the complete option, shown in Listing 6. Conversely, arrays
that are only accessed one element at a time can be implemented as FIFOs and/or in
BRAM. The array partitioning pragma is optional, and often the tool can induce the
correct partioning from the access pattern in the code, but for codes where the array
is accessed from multiple locations it can be desirable to declare it explicitly. There
is no direct mapping from the array partitioning to hardware, as the tool can choose
implement the array in a variety of ways or optimize it out entirely, so it should merely
considered a hint for situations where the most appropriate partioning cannot easily be
extracted by the tool.

2.4.7. Dataflow

As described in Section 2.3.2, dataflow is a form of pipelining performed between different
modules in a design. This is achieved by issuing the DATAFLOW pragma in Vivado HLS,
which will attempt to instantiate all functions and loops in the scope in which it is
called as process functions, which are individual modules connected by ping pong buffers
or FIFOs. These connections are explicitly instantiated by the programmer as stream
primitives, and must follow the semantics that each stream object is only read from a
single process function and written to from a single process function. An example of
applying the dataflow optimization in Vivado HLS is included in Listing 7 and Listing 8,
demonstrating two different approaches to handling the iteration over elements passed
between the dataflow stages. The first, which is required for integrating with SDAccel,
is using large loops that communicate using stream primitives, as shown in Listing 7.
This approach is problematic for testing the behavior by simulation in C++, because the
semantics of the hardware won’t follow C++ semantics if there is feedback involved, as it
will finish all iterations of one loop before proceeding to the next rather than computing
them concurrently. Instead dataflow functions can be implemented as in Listing 8, relying
on the function being called once per iteration. This will generate similar hardware to
the loop approach, while staying semantically equivalent to the C++ code, as it instead
relies on static variables to maintain state. Apart from their C/C++ semantics, static
variables have the additional property when used in Vivado HLS that they always map to
hardware resources, and thus cannot be optimized away by the compiler. This approach
will be used in this work when not restricted by SDAccel.
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void DataflowLoops(hls::stream<Burst> &in, hls::stream<Burst> &out, int n) {
#pragma HLS INTERFACE axis port=in
#pragma HLS INTERFACE axis port=out
#pragma HLS DATAFLOW
hls::stream<Burst> pipes[2];
ComputeFirst: for (int i = 0; i < n; ++i) {

#pragma HLS PIPELINE II=1
DoCompute<0>(in, pipes[0]);

}
ComputeSecond: for (int i = 0; i < n; ++i) {

#pragma HLS PIPELINE II=1
DoCompute<1>(pipes[0], pipes[1]);

}
ComputeThird: for (int i = 0; i < n; ++i) {

#pragma HLS PIPELINE II=1
DoCompute<2>(pipes[1], out);

}
}

Listing 7: Implementing dataflow by passing data between loops using stream primitives.
Each loop will be run concurrently as three different hardware circuits connected
by FIFOs (explicitly instantiated as the pipes variable).

void DataflowStatic(hls::stream<Burst> &in, hls::stream<Burst> &out) {
#pragma HLS INTERFACE axis port=in
#pragma HLS INTERFACE axis port=out
#pragma HLS DATAFLOW
static hls::stream<Burst> pipes[2];
DoCompute<0>(in, pipes[0]);
DoCompute<1>(pipes[0], pipes[1]);
DoCompute<2>(pipes[1], out);

}

Listing 8: Instead of explicitly looping over data, static variables can be used to express
the FIFOs carrying data through the functions in the dataflow scope, consuming
all the data by repeatedly clocking the hardware generated by the code.

Since the dataflow optimization only allows writing to a given connecting stream from a
single dataflow function, feedback in the flow must be implemented with a demultiplexing
function that chooses an input but writing to the same output, as shown in Listing 9.

void DemuxInput(hls::stream<Burst> &input, hls::stream<Burst> &feedback,
hls::stream<Burst> &output) {

#pragma HLS PIPELINE II=1
if (!input.empty()) {

output.write(input.read());
} else if (!feedback.empty()) {

output.write(feedback.read());
}

}

Listing 9: Since dataflow only allows writing to a given stream from a single dataflow
function, a separate demultiplexing function as the one shown here must be
used to choose the input.
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Implementing writing to the feedback loop is conversely done by multiplexing the
incoming data to either the feedback loop or the output. This function has the respon-
sibility of stopping the feedback after the desired amount of iterations. An example is
shown in Listing 10. This code also demonstrates the RESET pragma, which instructs
the tool to wire a reset signal to the specified variable, causing it to return to its default
state if a reset flag is sent to the encapsulating kernel.

void MuxOutput(hls::stream<Burst> &input, hls::stream<Burst> &feedback,
hls::stream<Burst> &output, const unsigned feedbackIterations) {

#pragma HLS PIPELINE II=1
static unsigned i = 0;
#pragma HLS RESET variable=i
if (!input.empty()) {

Burst read = input.read();
if (i < feedbackIterations) {

feedback.write(read);
} else {

output.write(read);
}
++i;

}
}

Listing 10: Dataflow element dedicated to writing results to a feedback loop rather than
outputting it to e.g. memory. It will start outputting results when the desired
number of iterations have been performed.

It should be noted that implementations using feedback of data as shown in Listing 9
and Listing 10 have caused issues for large resource usage, causing the design to hang.
This method should therefore be used with caution, as these issues have not yet been
resolved.

2.4.8. Recursive templates

When programming spatial designs, the exact mapping from the high level language
to the underlying hardware is opaque. If a loop containing a function call is pipelined,
Vivado HLS can choose to generate hardware for every iteration of the loop, but can also
reuse hardware across multiple iterations if allowed to by the latencies of the operations.
When the goal is to maximize performance by making pipelines as deep as possible, the
latter behavior is undesired. For the designs using the Xilinx reference design presented
later using the dataflow optimization, a recursive template approach was used to unroll
into functions that map one-to-one to function calls, thereby forcing the tool to generate
separate hardware for each pipeline stage. The technique is shown in Listing 11. As was
already suggested in Listing 7 and Listing 8, changing the value of a dummy template
parameter will generate unique instantiations, and we can use a recursive template to
produce kDepth separate instances of the function as hardware using tail recursion.
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static const unsigned kDepth = 3; // Depth defined at compile-time

template <unsigned recurse>
void UnrollCompute(hls::stream<Burst> pipes[kDepth]) {
#pragma HLS INLINE

UnrollCompute<recurse - 1>(pipes); // Tail recursion
DoCompute<recurse - 1>(pipes[recurse - 1], pipes[recurse]);

}
template <> void UnrollCompute<0>(hls::stream<Burst> *) {} // Bottom out

void StreamToStream(hls::stream<Burst> &in, hls::stream<Burst> &out) {
#pragma HLS PIPELINE II=1
out.write(in.read());

}

void DataflowStaticUnroll(hls::stream<Burst> &in, hls::stream<Burst> &out) {
#pragma HLS INTERFACE axis port=in
#pragma HLS INTERFACE axis port=out
#pragma HLS DATAFLOW
static hls::stream<Burst> pipes[kDepth + 1];
StreamToStream(in, pipes[0]); // Forward to first pipe
UnrollCompute<kDepth>(pipes); // Recursive template call
StreamToStream(pipes[kDepth], out); // Forward from last pipe

}

Listing 11: Recursive templates can be used to instantiate unique functions using tail
recursion, forcing the tool to generate separate hardware for each stage. This
program implements the same functionality as Listing 8, but can be configured
to automatically produce separate functions for any (potentially large) value
of kDepth.

Recursive templates are also useful for implementing hardware for tree reductions. By
halving the number of elements treated in the hardware at each stage and bottoming out
when two elements are reached, Listing 12 implements a fully pipelined binary reduction,
collapsing width elements of type T using Functor as the accumulator.
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template <typename T, class Functor, unsigned width>
class BinaryReduce { // Wrap in class to allow partial specialization

static const unsigned halfWidth = width/2; // HLS not fully C++11 compliant,
public: // so no constexpr available.

static T Apply(const T array[width]) {
#pragma HLS PIPELINE II=1
T reduced[halfWidth];
#pragma HLS ARRAY_PARTITION variable=reduced complete
for (unsigned i = 0; i < halfWidth; ++i) {

#pragma HLS UNROLL complete // Not required as pipeline pragma will
// automatically try to unroll.

reduced[i] = Functor::Apply(array[i], array[i + halfWidth]);
}
return BinaryReduce<T, Functor, halfWidth>::Apply(reduced); // Recursion

}
};
template <typename T, class Functor>
class BinaryReduce<T, Functor, 2> { // Bottom out recursion
public:

static T Apply(const T array[2]) {
#pragma HLS PIPELINE II=1
return Functor::Apply(array[0], array[1]);

}
};

Listing 12: Implementing fully pipelined tree reduction hardware for arbitrary types and
functors in hardware using template recursion.

Listing 13 shows an example of a kernel using tree reduction to collapse bursts of width
kWidth to a single element using an addition functor. The code will generate log2(kWidth)
stages, each internally pipelined, and produce the hardware shown in Figure 2.3.

template <typename T>
class Add { // Addition functor to pass to reduction template
public:

static T Apply(T const &a, T const &b) { return a + b; }
};

const unsigned kWidth = 8; // Could be defined by external configuration
void SumReduce(hls::stream<Burst<float, kWidth*sizeof(float)>> &in,

hls::stream<float> &out) {
#pragma HLS PIPELINE II=1
float unpacked[kWidth];
#pragma HLS ARRAY_PARTITION variable=unpacked complete
in.read() >> unpacked; // Read in 8*4=32 bytes
float reduced = BinaryReduce<float, Add<float>, kWidth>::Apply(unpacked);
out.write(reduced); // Write out 4 bytes

}

Listing 13: Kernel using the recursive tree reduction implementation from Listing 12
to collapse 8 floats to their sum using an addition functor. The resulting
hardware is shown in Figure 2.3.
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Figure 2.3.: Resulting hardware from the code included in Listing 13, performing a
reduction of 8 floats into their sum in a fully pipelined tree structure, where
the vertical dimensions indicates the flow of the pipeline.

2.4.9. Specifying resources

For many operations the desired functionality can be implemented in multiple ways using
the available resources on the FPGA fabric. The tool will attempt to determine the
most appropriate implementation for each case. Sometimes the programmer might wish
to assign a particular IP core (see Section 2.3), and to this end the RESOURCE pragma
is available. Two cases already encountered in this work are choosing floating point
cores and storage cores. Since the choice of implementation affects which resources and
how many of these resources are consumed, it can affect to total number of operations
that can be instantiated on the chip (this will be treated in more detail in Section 3.2).
For storage, when smaller amounts of memory are required and only have to be stored
for a small amount of cycles, the tool will often choose to implement such buffers by
propagating these values through the flip-flops in the logic resources rather than writing
them to a dedicated storage element. When attempting to maximize the number of logic
used for performing computational tasks, however, it is more desirable to make use of the
dedicated BRAM resources, to avoid competing for general logic resources. An example
specifying a FIFO to be implemented using BRAM is included in Listing 4, and Listing 3
shows specifying an addition to be implemented without using any DSP resources.

2.5. Streaming pipeline architecture

We will now define the streaming pipeline architecture, which will be used for the
implementations in this work. It is related to the systolic array architecture [14], where
a global clock drives data through an array or grid of interconnected processing elements,
statically scheduled to solve the target application once the input has propagated through
all elements.
A streaming pipeline is a single deep pipeline on the FPGA fabric, but with the

following additional properties:
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1. The combined flow throughout the streaming pipeline is statically scheduled:
the rate at which input is consumed and output is produced is constant in the
saturated state.

2. The pipeline consists of coarse-grained processing elements, which may in turn
be internally pipelined, but only need to meet the condition of producing and
consuming at a constant rate to allow static scheduling.

3. All computational units within the processing elements must be fully pipelined,
so that they work at their maximum throughput in the saturated state.

4. There is only a single entry and a single exit for data flowing to and from the
pipeline, each of which work at a constant rate.

5. Communication between processing elements is unidirectional, and the flow of data
through the elements constitute a directed acyclic graph.

The rate at which data is consumed and produced by the entry and exit points, or any
processing elements in the pipeline, does not have to be the same, as long as the rates
are individually constant over some number of cycles ≥ 1. For example, a pipeline that
accepts a new input every cycle, but only produces an output for every eight inputs, is
still a streaming pipeline, assuming the other conditions are met.
The performance of a streaming pipeline program will be investigated in the next

chapter.
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In order to gain insight in the performance characteristics of pipelined FPGA programs,
we model and measure the performance of replicating identical processing elements to
maximize resource utilization on the device. As we will later target the stencil class
of algorithms that compute linear combinations, we will treat floating point processing
elements with varying combinations of additions and multiplications. Stencils will be
described in more detail in Chapter 4. We will however make an argument that the
maximum of these numbers will indeed correspond to peak floating point performance
(see Section 3.2.3). To verify the theoretical numbers a synthetic benchmark is designed
to run on hardware, along with a memory benchmark to measure DDR bandwidth. These
will be combined to produce the roofline model for the target chip, in order to compare
it to the fixed architectures that were included in Section 1.7.1. While this work focuses
on single precision floating point types and target operations used in the stencil domain,
the methods apply directly to other operations, as well as other precision floating point
types, fixed point and integer computations. Other types and domains will be left as
future work (see Section 3.10). Practical benchmarks for fixed architectures will not be
performed here, as this is covered extensively in other research.

3.1. Related work

Other authors have modeled or measured floating point performance on FPGAs. Stren-
ski et al. [15] do an analysis of floating point performance on FPGA, using an approach
predicting performance numbers similar to this work, dividing predictions into a peak
section and a realistic section, but do not run benchmarks on hardware to evaluate the
quality of their predictions. Servesh et al. [16] focus on the experimental aspects of
performance and power consumption using the roofline model, comparing GPU, Xeon Phi
and FPGA accelerators for a single algorithm implemented in OpenCL. da Silva et al. [17]
also base their work on the roofline model, predicting performance numbers with a
processing element model, but do not run experiments on hardware.

This chapter will include both modeling and prediction of performance and experimental
evidence.

3.2. FPGA model of peak performance

Achieving peak performance on an FPGA is centered around maximizing utilization of
the available resources on the reconfigurable fabric. In this section we specifically consider
the performance achieved when replicating identical processing elements in a streaming
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pipeline architecture (see Section 2.5), as applications that wish to scale should be able
to consume all resources on the FPGA fabric, and these elements must be pipelined in
order to utilize their full performance. Performance on an FPGA follows most of the
same concepts as in Section 1.7, with the number of operations per cycle determined
by Equation (1.6), and the peak performance by Equation (1.7). The difference lies in
determining the numbers n and K, that for fixed architectures denoted the number of
computational elements and SIMD width, respectively. Their meaning when applied to
FPGAs will be analogous, but they will now be correlated, and we will instead refer to
them as the depth and width of the pipeline. They are correlated because expanding
either dimension increases the resource utilization of the device fabric, and the highest
attainable performance is achieved at some constant equal nK, where n and K can
vary. We consider a processing element as the basic component of computation, which
we replicate in the n and K dimensions, with the number of arithmetic operations
performed by one of these units expressed by the number A in Equation (1.6). The
highest attainable performance of a program directly relates how many of these processing
elements, characteristic to the application, can be instantiated on the chip, which we will
treat in the following.

The highest number of processing elements N that can be instantiated on a chip with
available resources Dmax, Lmax and Bmax (denoting DSPs, LUTs and BRAM, respectively)
is:

Nmax(PE) = Maximize N

subject to N · PE.D ≤ Dmax

N · PE.L ≤ Lmax

N · PE.B ≤ Bmax

(3.1)

where PE.D, PE.L and PE.B are integer counts of DSPs, LUTs and BRAM in a single
processing element. The maximum number of operations per cycle is then substitut-
ing nK = Nmax(PE) in Equation (1.6) and assuming an initialization interval (see
Section 2.3.2) of 1, setting L = 1:

CFPGA(PE) = PE.A ·Nmax(PE) (3.2)

Here we have additionally defined PE.A as the number of arithmetic (or otherwise
useful) operations performed per cycle by a single processing element, analogous to A in
Equation (1.6). The peak number of operations per cycle for a pipelined program is then
the maximum number of operations attainable among any processing element:

CFPGA,peak = max
PE
{PE.A ·Nmax(PE)} (3.3)

To compute the peak performance the frequency f is introduced, denoting the frequency
at which the FPGA fabric containing the computational elements is clocked, and is itself
an optimization parameter. The frequency is however tightly coupled to the individual
board, implementation, computational units and routing algorithm (see Section 1.5.2),
and has no useful upper bound, thus offering no direct way of optimization. This leaves
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the peak performance as an engineering problem with f and PE as coupled parameters:

FFPGA,peak = Maximize f · CFPGA(PE)
subject to design meeting timing.

(3.4)

In the following we treat the highest attainable performance obtainable with distribu-
tions of operations required by typical floating point programs (in particular stencil
computations), namely additions and multiplications. This gives a tighter upper bound
for the particular configurations and is done easily using Equation (3.1), but we will
also argue why this is an indicator of peak floating point performance. In addition, the
infrastructures used to implement algorithms in this work restrict the algorithm to use
their clock domains, fixing f from the framework. This reduces the problem of peak
performance, given our domain, to using Equation (3.1) in Equation (1.7).

3.2.1. Streaming pipeline computational intensity

The streaming pipeline model introduced in Section 2.5 defined an architecture based
on a deep pipeline with a number of additional properties. We will now look at the
computational intensity for a streaming pipeline implementation of a program on the
form of replicated identical processing elements modeled above.
Considering a pipeline of some width K and depth n, the number of operations

performed per cycle in the pipeline is simply given by Equation (1.6) with LSPL =
1 cycle/Op from the third property of streaming pipelines.

The fourth property of the streaming pipeline architecture states that the pipeline has
a single entry and a single exit point, and that the rate at which data flows through these
is constant. The memory bandwidth required to sustain the pipeline is therefore the sum
of these two numbers:

RSPL = Rentry + Rexit (3.5)

We note that this number is independent of the remaining processing elements in the
pipeline, and is therefore constant with the number of processing elements. For a pipeline
of a data path with constant width of K of size Bt elements, the required bandwidth
becomes:

RSPL,K = 2KBtf

[Byte
s = operand

cycle · Byte
operand ·

cycle
s

]
(3.6)

where f is the frequency of the pipeline’s clock domain. The pipeline needs KBt bytes
to arrive every clock with period 1/f to stay saturated, and the same amount of bytes to
leave every clock period.
We can write down the computational intensity, using the amount of operations

performed by cycle as Equation (1.6), and the number of bytes required per cycle as
RSPL/f :

ISPL = nKA/LSPL
(Rentry + Rexit)/f

 Op
Byte =

1 · operand · Op
operand/ cycle

Op
Byte

s / cycle
s

 (3.7)
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For the case of a pipeline with constant width of KBt bytes we use Equation (3.6):

ISPL,K = nKA/LSPL
2KBt

= A/LSPL
2Bt

n (3.8)

This implies that by increasing the depth of the pipeline (n), we can increase the
computational intensity without changing the width of the data path (K). The required
memory bandwidth of such a pipeline is given by Equation (3.6) and is independent of
the pipeline depth.
If we can construct a program as a streaming pipeline, and put in a form that can

arbitrarily scale n for a constant width K, the computational intensity will simply scale
with the depth of the pipeline, as the memory bandwidth required is constant.

3.2.2. Time to completion

We can express the time to completion of a pipeline in terms of the concepts introduced
in Section 2.3.2. The number of cycles (c) required to execute the pipeline is the number
of cycles it takes to push all n elements to be processed into the entry with initiation
interval V , plus the latency L before the last element leaves the exit:

c(n) = V n + L (3.9)

The time to completion depends on the clock rate f :

T (n) = c(n)
f

(3.10)

If we assume a perfectly pipelined program with V = 1 and assume a typical application
in HPC where the number of elements that are processed is large, Equation (3.9) reduces
to simply:

c(n) ≈ n for V = 1 ∧ n� L (3.11)

While Equation (3.11) might seem enticing, it assumes that a single traversal of the
pipeline can solve the problem for an element in its entirety. While this would be the
case for arbitrarily large hardware (or very small problems), we will in practice be
restricted by the amount of area available on the chip. The number of cycles (and thus
the time) to completion will then depend on how we can fold a problem of size N ≤ n to
minimize the size of n in Equation (3.11). While the number n needs to be determined
from the algorithm, this has one important implication: given a perfectly pipelined
program, and assuming data arrives every cycle, the time to completion will be exactly
as given in Equation (3.10), and can be determined using Equation (3.11) to a very good
approximation for any large problem.
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3.2.3. Domain treated
With the application of stencils in mind, we look at processing elements of n+ additions
and n× multiplications, as evaluating stencils consists of evaluating linear combinations
of neighboring cells (see Chapter 4). Since divisions (and more advanced functions such
as exponential and trigonometry) use strictly more logic resources than the no-DSP
implementations of additions and multiplications [13], a processing element with other
operations would never surpass one of just additions and multiplications in performance,
so we additionally claim that the numbers computed here reflect true peak performance
for single precision floating point types. Including a more diverse set of operations is
however proposed as future work (see Section 3.10.2). Additions and multiplications can
be implemented using different floating point IP cores. Referring to the addition and
multiplication IP cores from Table 2.1 with indices i and j respectively, we choose the
peak performance of the given configuration as the maximum evaluation of Equation (3.1)
among all permutations:

Npeak = max
i,j
{Nmax(PEi,j)} (3.12)

where PEi,j has the costs:
PE.D = n+Di + n×Dj

PE.L = n+Li + n×Lj

PE.B = 0
(3.13)

with n+ and n× fixed to the given configuration. In addition to the resulting number of
processing elements and corresponding performance, the tables below will specify the
configuration of floating point IP cores that maximized Equation (3.12).

3.3. Target hardware platform
As the target for performance predictions and measurements in this work, the Alpha-
Data ADM-PCIE-7V3 [18] (or AlphaData 7V3 for short) board is used, hosting a Virtex 7
XC7VX690T FPGA, two 8 GB DDR3 DIMMs clocked at 1333 MHz, as well as ethernet
and SATA interfaces (the latter two will not be used in this work). The Virtex family
is oriented towards high performance applications, sporting the largest amount of logic
on the chip in the 7-series of Xilinx FPGAs. Datasheet resource counts are included in
Table 3.1.

LUTs FFs DSPs 18 Kb BRAM blocks
Out of the box 433200 866400 3600 2940
SDAccel (estimated) 303240 606480 2520 2058

Table 3.1.: Available resources on the Virtex 7 XC7VX690T chip [19]. The chip has
108300 logic cells, each with four LUTs and eight FFs, resulting the numbers
above. When using the SDAccel infrastructure, ≈ 30% of the chip is reserved
for the framework, estimated on the second row.
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3.4. Expected performance
We will now apply Equation (3.1) to the domain of single precision floating point additions
and multiplications for different assumptions: datasheet values for floating point IP cores,
the restrictions imposed by the SDAccel framework, and the context of the provided
Xilinx reference design.

3.4.1. Datasheet peak performance

Based solely on the datasheet values for available resources, maximum clock speed
of operations, and assuming full area utilization is possible, Table 3.2 contains upper
bounds for attainable performance on the XC7VX690T chip. The highest performance

Add
PE /IP Mult

PE /IP #PEs Ops/cycle DSPs LUTs GOps/s 462 MHz
1/Full 0 1800 1800 1.00 0.85 832
4/Full 1/Med 400 2000 1.00 0.98 924
3/Full 1/Med 507 2028 0.99 1.00 937
2/Full 1/Med 668 2004 0.93 1.00 926
1/No 1/Max 998 1996 0.83 1.00 922
1/No 2/Full 803 2409 0.89 1.00 1113
1/No 3/Full 600 2400 1.00 0.87 1109
1/No 4/Full 450 2250 1.00 0.75 1040
1/No 5/Full 360 2160 1.00 0.68 998
0 1/Med 1820 1820 0.51 1.00 841

Table 3.2.: Upper bound on operations per cycle and per second for the Virtex 7
XC7VX690T chip for floating point units, determined between any permuta-
tions of floating point IP cores from Table 2.1, but with identically replicated
processing elements, and assuming the FPGA clocked at the highest rate
reported in the datasheet for the required IP cores.

is predicted for processing elements with more multiplications than additions, with the
highest predicted number for 1 addition per 2 multiplications. The numbers presented in
Table 3.2 are unlikely to represent any realistically attainable performance, as meeting
timing for 462 MHz is not possible outside of isolated toy scenarios. These numbers thus
have the nature of a loose upper bound.

3.4.2. SDAccel peak performance

From the two platforms used for benchmarking, we first treat the SDAccel framework
(see Section 2.1.2), intended to allow software developers to quickly implement and test
solutions on FPGA hardware, without worrying about implementation details of the
infrastructure. The accessibility of SDAccel comes at two major trade-offs: constraints on
the kernel and flexibility in the design. The kernel area is constrainted to be clocked at
200 MHz, and ≈ 30% of the chip is reserved for the infrastructure. For the XC7VX690T
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board this results in the adjusted resource numbers shown in the second row of Table 3.1.
The number of LUTs in Equation (3.1) has been further limited to 80% of the available
units to allow routing flexibility. Table 3.3 contains utilization numbers computed
assuming these constraints. The highest numbers are achieved for multiplication-heavy

Add
PE /IP Mult

PE /IP #PEs Ops/cycle DSPs LUTs GOps/s 200 MHz
1/Full 0 1183 1183 0.66 0.56 237
4/Full 1/Full 252 1260 0.70 0.53 252
3/Full 1/Full 315 1260 0.70 0.51 252
2/Full 1/Full 420 1260 0.70 0.49 252
1/Full 1/Full 630 1260 0.70 0.43 252
1/No 2/Full 450 1350 0.50 0.56 270
1/No 3/Full 384 1536 0.64 0.56 307
1/No 4/Full 315 1575 0.70 0.53 315
1/No 5/Full 252 1512 0.70 0.47 302
1/No 1/Full 1260 1260 0.70 0.27 252

Table 3.3.: Estimated performance number from maximizing resource usage under the
SDAccel framework, restricting the board to 200 MHz, 70% of available DSPs
and consuming no more than 80% of available LUTs (corresponding to 56%
of total LUTs).

processing elements, with the highest number predicted for 1 addition per 4 multiplications.
Both Table 3.2 and Table 3.3 show that the floating point IP core chosen for the processing
elements yielding the highest overall utilization depend on the distribution of operations,
as multiplications generally benefit more from using DSPs, while additions have the
highest logic consumption.

3.4.3. Assuming reference design

The Xilinx reference design provides very minimal infrastructure, leaving most resources
available for user kernels, and is clocked at 250 MHz, higher than the SDAccel framework.
This means higher throughput per floating point unit, but makes timing closure more
challenging for the routing tool, potentially constraining resource utilization. Again the
number of LUTs used will be limited to 80% in Equation (3.1) to allow routing flexibility,
but no restriction is imposed on the number of available DSP units. Table 3.4 contains
computed performance numbers with these assumptions. The extra DSPs and higher
clock rate give a significant improvement in potential over SDAccel, highlighting the
performance restrictions imposed by using the SDAccel flow over a more manual solution
such as the Xilinx reference design.
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Add
PE /IP Mult

PE /IP #PEs Ops/cycle DSPs LUTs GOps/s 250 MHz
1/Full 0 1690 1690 0.94 0.80 423
4/Full 1/Full 360 1800 1.00 0.76 450
3/Full 1/Full 450 1800 1.00 0.73 450
2/Full 1/Full 600 1800 1.00 0.70 450
1/Full 1/Full 900 1800 1.00 0.62 450
1/No 2/Full 642 1926 0.71 0.80 482
1/No 3/Full 549 2196 0.92 0.80 549
1/No 4/Full 450 2250 1.00 0.75 563
1/No 5/Full 360 2160 1.00 0.68 540
0 1/Full 1800 1800 1.00 0.38 340

Table 3.4.: Estimated performance numbers for the Xilinx reference design clocked at
250 MHz with all DSPs available.

3.5. Peak benchmark

To test the peak numbers computed Section 3.4, a synthetic benchmark is constructed
that follows the streaming pipeline architecture. We run the design on hardware using
both the SDAccel framework and the Xilinx reference design, with some slight variations
in the implementation details. The benchmark follows the assumptions of Section 3.2
by replicating identical processing elements connected sequentially in a deep pipeline
of a variable data path width. The benchmark suite allows varying the element data
type (however going beyond single precision is left for future work, see Section 3.10.1),
the number of additions per stage, the number of multiplications per stage, the floating
point IP cores used, and the width and depth of the pipeline. The computed numbers of
processing elements from Section 3.4 will be used to configure the width and depth of
the pipeline.

3.5.1. SDAccel implementation

When integrating with the SDAccel framework, the kernel is implemented in Vivado HLS
rather than OpenCL, written to conform to the required interface specification (see
Section 2.1.2). The outer function serving as the OpenCL kernel entry is included in
Listing 14. Since there is no support for streaming interfaces, an internal BRAM buffer
is used as a feedback loop to avoid latency from reading from memory, eliminating access
to external memory for all but the initialization and termination phase, illustrated in
Figure 3.1. The loops populating and clearing the buffer from/to global memory are
not pipelined with the main compute function, so the total number of iterations run
must be much larger than the number of bursts buffered to hide the initialization and
termination latency, as we can only measure the runtime of the full kernel execution. The
outer loop over iterations and the inner loop over elements has been flattened to a single
loop to overlap the iterations in Listing 14. The width and depth are realized in the
ProcessBurst function, included in Listing 15, by unrolling a function over the width of
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Buffer

Initialization Termination

Compute

Figure 3.1.: Values are buffered in BRAM on the chip between iterations, requiring no
external memory access during execution.

the data path and pipelining the depth of the data path, respectively. In order to

void EntryAxiMasterInternal(Burst const input[kBursts], Burst output[kBursts],
const unsigned iterations) {

// Interface specifications here
// ...
Burst buffer[kBursts];

PopulateInternal: for (int i = 0; i < kBursts; ++i) {
#pragma HLS PIPELINE II=1 enable_flush
buffer[i] = input[i];

}
const unsigned totalIterations = iterations * kBursts;

MainInternal: for (int i = 0; i < totalIterations; ++i) {
#pragma HLS LOOP_TRIPCOUNT min=kBursts
#pragma HLS PIPELINE II=1 enable_flush
Burst inputBurst, outputBurst;
inputBurst = buffer[i % kBursts];
ProcessBurst(&inputBurst, &outputBurst);
buffer[i % kBursts] = outputBurst;

}
ClearInternal: for (int i = 0; i < kBursts; ++i) {

#pragma HLS PIPELINE II=1 enable_flush
output[i] = buffer[i];

}
}

Listing 14: Outer kernel function of the SDAccel peak performance benchmark. Data
is read into an internal buffer before running the kernel over the data for a
large number of iterations. The loop over elements and iterations have been
flattened into a single pipelined loop.

loop over a large number of elements to make the time spent in the initialization and
terminate phase vanish, the kernel is implemented to loop over elements of a buffer in a
cyclic fashion. The buffer must be large enough to avoid data dependencies, and for the
experiments performed below it was held at 213 elements with 214 repetitions, resulting
in a total of 227 elements being pushed through the pipeline for a single run of the
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void ProcessBurst(Burst const *input, Burst *output) {
#pragma HLS PIPELINE II=1 enable_flush
static Element_t buffers[kDepth+1][kElementsPerBurst];
#pragma HLS ARRAY_PARTITION variable=buffers complete dim=1
// Read burst from stream
Burst inputBurst = *input;
inputBurst >> buffers[0];

Depth: for (int d = 0; d < kDepth; ++d) {
Width: for (int i = 0; i < kElementsPerBurst; ++i) {

Element_t load = buffers[d][i];
Element_t eval = PerformStage(load);
buffers[d + 1][i] = eval;

}
}
Burst outputBurst(buffers[kDepth]);
*output = outputBurst;

}

Listing 15: Function defining the width and depth of the pipeline through unrolling
and pipelining of loops for the SDAccel peak benchmark. The code for the
compute is included in Listing 16.

inline Element_t PerformStage(Element_t propagate) {
#pragma HLS INLINE
#pragma HLS PIPELINE II=1
static const Element_t kAddVal =

kFillVal * ((1 << kMultsPerStage) - 1) / kAddsPerStage;
AddsPerStage:

for (int j = 0; j < kAddsPerStage; ++j) {
Element_t eval = propagate + kAddVal;
#pragma HLS RESOURCE variable=eval core=${PEAK_ADD_CORE}
propagate = eval;

}
static const Element_t kMultVal = 0.5;

MultsPerStage:
for (int j = 0; j < kMultsPerStage; ++j) {

Element_t eval = propagate * kMultVal;
#pragma HLS RESOURCE variable=eval core=${PEAK_MULT_CORE}
propagate = eval;

}
return propagate;

}

Listing 16: Compute kernel of a single processing element for the peak performance
benchmark in SDAccel. The stage performs a number of pipelined addition and
multiplication operations unrolled from the two loops, outputting a number
identical to the input (unless the number of additions or multiplications
is zero). Element_t is the chosen data type. The variables prefixed with
k are compile time constants. These cannot be declared as constexpr, as
this is not supported by the HLS compiler, and are handled by a constant
propagation optimization phase instead. The floating point core is inserted
during configuration.
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benchmark. As the number of elements pushed through the pipeline is large compared to
the overhead, we can now approximate Equation (3.10) using Equation (3.11) to compute
the expected runtime:

Tbenchmark ≈
227

200 MHz = 0.6171 s (3.14)

As Equation (3.11) is technically a tight lower bound, the actual number of cycles will
always be close to, but always slightly higher than, the number used here.

3.5.2. Reference design implementation
The implementation using the Xilinx reference design follows the same general architecture
of a deep streaming pipeline as SDAccel with a number of key differences:

• Instead of executing a single large loop, the reference design executes the kernel
function every clock cycle as a pipeline (see Section 2.4.7), using static variables to
hold state. Every static variable maps to a persistent FPGA register or BRAM
and is not optimized out by the compiler.

• The implementation uses the dataflow optimization (see Section 2.4.7) to instantiate
each stage of the pipeline as a independent module, passing data between them
using FIFOs.

• AXI Stream interfaces are used in place of AXI Master. This is a much better fit
to the streaming pipeline architecture, as it gives the desired FIFO semantics in
the HLS code.

• No memory controller: rather than reading and writing to global memory, the
infrastructure populates an input buffer over a narrow 32-bit PCIe bridge before
executing the kernel, the writes it back out over the PCIe bridge (see Section 2.1.3).

• Feedback of data is not necessary, as there is no memory overhead, and the
performance can be deduced by the number of instantiated units by verifying
against the number of cycles spent.

The HLS code of the infrastructure surrounding and instantiating the processing elements
is included in Listing 17. Listing 17 uses the trick described in Section 2.4.8 to replicate the
processing element the required number of times, by using a dummy template parameter
to direct each function call to a unique instantiation. Listing 17 includes the entry to
the kernel where the dataflow optimization is done, connecting the data movement and
compute functions as individual modules with FIFOs. As described in Section 2.1.3,
the Xilinx reference design is fitted with a cycle counter, providing the exact number of
cycles taken to execute the program. Rather than timing the benchmarks, we verify that
the reported cycle count is equal to the expected value, as only cycles spent during kernel
execution are counted. By verifying that exactly one cycle is spent per element once the
pipeline is saturated we justify computing the performance as the number of floating point
units instantiated on the chip multiplied by the clock frequency. All benchmarks were
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template <unsigned recurse>
void UnrollCompute(Stream pipes[kDepth]) {

#pragma HLS INLINE
UnrollCompute<recurse - 1>(pipes);
Compute<recurse - 1>(pipes[recurse - 1], pipes[recurse]);

}
template <>
void UnrollCompute<0>(Stream *) {}

void EntryReferenceDesign(Stream &input, Stream &output) {
#pragma HLS DATAFLOW
static Stream pipes[kDepth + 1];
static Stream feedback("feedback");
...
Forward(input, feedback, pipes[0]);
UnrollCompute<kDepth>(pipes);
Forward(pipes[kDepth], feedback, output);

}

Listing 17: Core functionality of the kernel entry function in the Xilinx reference design,
piping data between the I/O interfaces and the unrolled compute elements
using dataflow optimization.

built with a 8 byte data path (2 single precision floating point numbers) and processed
65536 elements, so the number of cycles is computed using Equation (3.9) as:

cpeak = 65536
2 + L (3.15)

where L is the latency of the pipeline, which can be extracted from the synthesis report
from the HLS tool.

3.6. Performance results
Both the implementations of the peak performance benchmark will now be built and
run, comparing the results to the predicted peak numbers.

3.6.1. SDAccel
The kernel from Listing 14 is configured using the IP cores and number of processing
elements predicted in Table 3.3 and built using SDAccel, lowering the number of processing
elements if the build fails due to failing to meet timing closure, repeating this process until
the build succeeds. The highest succeeding build is included as the Built column, and
is presented as the expected performance of the successfully built number of processing
elements, and is shown next to the actual measured performance when run on hardware.
The numbers are plotted in Figure 3.2. All configurations are seen to build at or very
close to their peak resource utilization, and run in a time very close to what was computed
in Equation (3.14), with only a slightly higher runtime due to reading/writing memory
and saturating the pipeline. Configurations 3/1 and 2/1 show unexpected behavior,
as they both take exactly twice the expected execution time, despite not differing in
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Adds Mults Peak
[

GOp
s

]
Built

[
GOp

s

]
Time [s] Performance

[
GOp

s

]
Frac.

1 0 236 230 0.6714 230 0.98
4 1 252 216 0.6714 216 0.86
3 1 252 230 1.3425 115 0.91
2 1 252 240 1.3425 120 0.95
1 1 252 243 0.6714 243 0.97
1 2 270 270 0.6714 270 1.00
1 3 307 294 0.6714 294 0.96
1 4 315 288 0.6714 288 0.91
1 5 302 302 0.6714 302 1.00
0 1 252 252 0.6714 252 1.00

Table 3.5.: Peak performance, predicted performance for highest built configuration, and
measured performance of highest built configuration. All benchmarks process
the same amount of elements. Statistical uncertainties have been left out as
they are neglicible. Configurations 3/1 and 2/1 exhibit unexpected behavior,
as they run at exactly double the expected time.
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Figure 3.2.: Plotted data from Table 3.5, showing peak performance from Table 3.3 versus
highest built configuration, with both predicted and measured performance
for the latter. Configurations 3/1 and 2/1 run at exactly double the expected
time. Statistical uncertainties are left out as they are too low to be visible
in the plot.
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architecture from the other configurations, both producing correct results, and showing no
difference in their synthesis reports, suggesting a bug in the SDAccel toolflow or runtime.
The highest performance is achieved for configuration 1/4 additions to multiplications,
reaching 302 GOp

s with full resource utilization. This is to the author’s knowledge the
highest performance number measured with SDAccel on the AlphaData 7V3 card.

3.6.2. Xilinx reference design

The process above is repeated for the Xilinx reference design, starting from full resource
utilization and lowering the number of processing elements if necessary until the design
builds successfully. These numbers are included in Table 3.6 and are plotted in Figure 3.3.
The two rightmost columns include the number of cycles predicted from Equation (3.15)
using the latency reported from Vivado HLS, along with the “true” number of cycles
reported by the cycle counter in the reference design. Many results run close to or at

Adds Mults Max #PE F
[

Op
s

]
Built #PE F

[
Op
s

]
Frac. Cycles est. Cycles

1 0 1690 423 1370 343 0.81 40306 40316
4 1 360 450 248 310 0.69 38227 38237
3 1 450 450 322 322 0.72 38406 38416
2 1 600 450 504 378 0.84 39323 39333
1 1 900 450 740 370 0.82 39061 39071
1 2 642 482 642 482 1.00 39191 39201
1 3 549 549 548 548 1.00 39895 39905
1 4 450 563 434 543 0.96 39715 39725
1 5 360 540 328 492 0.91 39003 39013
0 1 1800 450 1800 450 1.00 39971 39981

Table 3.6.: Performance at full utilization, along with performance for the highest suc-
cessfully built configuration, for the benchmark application built with the
Xilinx reference design clocked at 250 MHz. The last two columns show the
predicted and actual number of cycles spent in the kernel.

the predicted peak performance. The highest performance is achieved for configuration
1/3, reaching 548 GOp/s. All benchmarks run at the number of cycles predicted, plus an
extra 10 caused by an unknown additional overhead constant across all measurements.
This means that only a single cycle is spent per work item in addition to the saturation
overhead, implying that the sustained performance is exactly as predicted. Configurations
heavy on multiplications are generally seen to come closer to the predicted performance,
perhaps due to having a more balanced ratio of DSPs to LUTs relative to the available
resources on the chip, as this is also reflected on a local level, which can affect timing
closure. The configuration required for the stencil implementation (see Section 4.3) only
reaches 322 GOp/s, which is the second lowest number among all the configurations
tested.
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Figure 3.3.: Plotted data from Table 3.6, showing performance at full resource utilization
and the performance of the highest successfully built configuration for the
Xilinx reference design clocked at 250 MHz.

3.7. Memory benchmark
To measure the other component of the roofline model, a memory benchmark was set
up in SDAccel, testing raw memory throughput when reading and writing to/from an
AXI master interface. Memory bandwidth for the Xilinx reference design could not
be measured, as it does not provide a memory controller. The benchmark is split in
three flavors: a read only benchmark, a write only benchmark, and a read and write
benchmark. The AlphaData 7V3 board comes with two DDR3 DIMMs declared at
1333 MT/s, implying a memory clock of 167 MHz for a base clock multiplier of 4 (DDR3)
with a transfer rate of 2 (DDR). Using Equation (1.5) this corresponds to a per-DIMM
memory bandwidth of:

1
2R7V3 = 167 Mcycle/s · 2 bit/cycle · 4 · 64 = 85.5 Gbit/s = 10.7 GByte/s (3.16)

For both DDR modules the peak bandwidth is then R7V3 = 21.4 GByte/s, but because
the version of SDAccel used for this work only supports a single DIMM, the practical
ceiling will be Equation (3.16).
The code for the read-and-write benchmark is included in Listing 18, and simply

consists of a pipelined loop reading bursts of 512 bits from an input interface and
writing it back out to an output interface. Although the input and output are separate
ports to the kernel, they map to the same memory DIMM, because of the restriction
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in SDAccel described above. Since SDAccel kernels are clocked at 200 MHz and the

void EntryBoth(Burst const *input, Burst *output) {
#pragma HLS INTERFACE m_axi port=input offset=slave bundle=gMemIn
#pragma HLS INTERFACE m_axi port=output offset=slave bundle=gMemOut
#pragma HLS INTERFACE s_axilite port=input
#pragma HLS INTERFACE s_axilite port=output
#pragma HLS INTERFACE s_axilite port=return

Main:
for (unsigned long i = 0; i < kBursts; ++i) {

#pragma HLS PIPELINE II=1
output[i] = input[i];

}
}

Listing 18: Memory benchmark for read/write written in HLS consisting of a pipelined
loop reading and writing 512-bit values from and to two AXI master ports,
both wired to the same memory controller.

kernel reads and writes 512-bit values, the kernel attempts to read at a bandwidth
of 200 cycle/s · 64 Byte/cycle = 12.8 GByte/s, which is sufficient to keep the memory
controller busy. The variable kBursts in Listing 18 is known at compile time, so the HLS
tool can statically schedule the full series of bursts to the memory controller, and the
number of bursts is reported by the tool during synthesis. For the benchmarks carried out
here, 2 GByte is read/written, issuing ≈ 33 million bursts of 512 bits. Results for each of
the three benchmarks are included in Table 3.7. All three numbers are significantly lower

Benchmark Measured [GByte/s] Fraction of peak (10.7 GByte/s)
Read 3.54 0.33
Write 4.09 0.38
Both 5.44 0.51

Table 3.7.: Memory benchmarks for a single DDR3 DIMM on the AlphaData 7V3 cards
along with their fraction of the theoretical peak bandwidth. Errors are in the
order of 10−4 GByte/s and have been left out.

than the theoretical bandwidth, and seem to suggest poor scheduling to the memory
controller, as the access pattern by the benchmark is completely sequential. This could
possibly be improved by moving to the AXI Stream interface, but this is not yet supported
by the SDAccel tool (as of release 2015.4).

3.8. Resulting FPGA roofline

Using the peak numbers for performance and memory bandwidth computed in this
section, we now generate a roofline plot of the AlphaData 7V3 card, shown in Figure 3.4,
and compare it to the fixed architectures presented in Section 1.7, shown in Figure 3.5.
The measured numbers for FPGA are included for reference. For both the predicted and
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measured performance the highest number obtained is used, which are the 1 addition/3
multiplication and 1 addition/4 multiplication configurations, respectively.
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Figure 3.4.: Roofline for the AlphaData 7V3 card, including the highest measured memory
bandwidth and peak performance under both frameworks.

3.9. Discussion

Using a streaming pipeline design, the benchmarks implemented here achieve numbers
that lie close to the predicted peak performance, and in some cases even reach the
theoretical maximum for the given configuration. The highest measured performance is
302 GOp/s for SDAccel and 548 GOp/s for the Xilinx reference design, for 1/5 and 1/3
configurations of additions to multiplications respectively, both using the “No” and “Full”
DSP IP cores, spending all DSPs on multiplications, while implementing additions using
logic only. It is clear that the restrictions imposed by SDAccel are a significant hindrance
to performance, which raises doubts to its viability as a high performance computing
framework. It should be mentioned, however, that including a memory controller in the
Xilinx reference design would consume in the order of 20000 LUTs (according to Xilinx
engineers), but leaving DSP resources untouched. This would amount to a decrease in
performance of between none (if only limited by DSPs) to 20000/433200 ≈ 5% (if only
limited by LUTs).

The memory bandwidth on the AlphaData 7V3 card was measured to be only 0.51 of
the datasheet value with a completely regular access pattern. The low memory bandwidth
already put the required computational intensity to achieve peak performance far to the
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Figure 3.5.: Combined rooflines for examples from all hardware architectures discussed
in this work.

right in Figure 3.4, and the measured result pushes the around 27 operations per byte for
the datasheet memory bandwidth to more than 100 for the bandwidth measured off the
single DIMM in SDAccel. Although the measured bandwidth would be doubled once the
tool supports two DIMMs, it is clear that FPGA applications will need to be implemented
in a way that allows scaling the design with constant memory bandwidth, such as the
streaming pipeline architecture, in order to perform on contemporary hardware. The
next chapter will look at doing this for the application of stencils.
When compared to the same generation of fixed architecture hardware, the FPGA

does not seem competitive for single precision performance when looking at Figure 3.5.
One aspect where the FPGA could hold its own is power efficiency, but this is left as
future work (see Section 3.10.4). Perhaps the most encouraging result of the benchmarks
performed here is the accuracy of benchmark results to the predicted numbers: measured
performance can converge to peak performance, and we can show extremely precise
measurements by verifying against the exact number of cycles spent in the benchmark.
The question remains whether this can be transferred to a real application, which will be
treated in the following chapter.

3.10. Future work

This section will go over paths to pursue on the subject of peak performance on FPGA,
some of which have already been hinted at above.
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3.10.1. Floating point precision

Throughout this chapter we have only looked at 32 bit floating point numbers. The Xilinx
toolflow also offers IP core support for 16 and 64 bit floating numbers. Repeating the
predictions and measurements for these precisions would give a more complete picture of
the state of floating point precisions on FPGA.

3.10.2. Operation diversity

Because we focused primarily on achieving peak floating point performance, additions
and multiplications were chosen as the constituents of the replicated processing elements.
The method used to predict and measure performance can be applied directly to a more
diverse set of operations, making it a useful tool for computing the peak performance
of any input application with a given distribution of operations. Incorporating division
and advanced math functions in the benchmarks would give a broader idea of what
performance to expect from a wide range of applications.

3.10.3. Fixed point

As mentioned in Section 1.4.1, the DSP units on the Virtex 7 architecture are optimized
for signal processing applications, and in particular fixed point types, that achieve
computation of reals using just integer logic. Moving to fixed point requires a lot more
attention from the programmer, as all numbers entering computation must be in a similar
order of magnitude to prevent fatal overflow. If this suits the target domain, however, and
the fixed point precision can be limited to 18 bit, every DSP unit can be pipelined with two
additions and one multiplication per cycle, offering 3 · 3600 Op/cycle = 10 800 Op/cycle
from DSPs alone on the XC7VX690T, corresponding to 2700 GOp/s at 250 MHz. It would
thus be interesting carrying out the procedure done for single precision floating point
numbers in thie chapter for DSP-native fixed point types on the Virtex 7 architecture.

3.10.4. Power measurements

FPGAs are often praised for their power efficiency over fixed architetures, running at an
order of magnitude less power than GPU and many-core accelerators. On the road to
exascale computing, power efficiency has become a crucial factor when choosing hardware,
which so far seems to be dominated by GPUs. It would therefore be relevant to include
performance per power comparisons for peak performance configurations on FPGA and
compare them to major fixed architectures. In the following chapter we will make a rough
approximation from power numbers measured in other works, but a proper study would
require accurate power measurements during operation of the given implementation.

3.10.5. Memory

Breaking free from the constraints imposed by SDAccel proved to be a significant
improvement on peak performance, and the same exercise should be done for memory
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bandwidth. The Xilinx reference design did not offer a memory controller when these
experiments were run, but once such a design is available offering an AXI Stream interface,
the memory performance might do a better job at approaching the theoretical DDR
numbers than the address mapped memory supported by SDAccel.

3.10.6. Other chips
The measurements here assumed Virtex 7 and were done for a single chip, but the methods
applied should generalize to any FPGA. Altera claim 9.2 TOp/s for their largest device
in the unreleased 14 nm Stratix 10 series. If this is indeed achievable it would be an order
of magnitude higher than was measured here, and would challenge top-end contemporary
GPU performance (the Tesla K80 is reported as having a peak of 8.73 TOp/s). Xilinx
themselves have released the 16 nm Virtex Ultrascale series as the followup to the 7-series,
offering a 50% increase in logic and DSP slices, and the benchmarks performed here
suggest that this translate directly into an equivalent factor of increase in performance,
but this would have to be seen.
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Stencil codes are commonly found in HPC, as they are a simple, but powerful method
capable of numerically solving partial differential equations [20] for a wide range of
applications [21, 22]. Their regular structure mean that much can be done in terms of
optimization to achieve the highest possible hardware utilization on various architectures.

Stencil algorithms work on a regular k-dimensional grid, iteratively applying updates
across the grid cells over a number of sequential timesteps. Updates to a grid point are
performed using a stencil kernel. The kernel specifies a neighborhood around the cell
coordinate from which the updated value will be computed. This can be represented as
a dependency set S of relative tuples of k-dimensional indices s = (x0, ..., xk):

S = {s0, ..., sl} (4.1)

Each timestep is computed exclusively using values from previous timesteps, meaning
there are no intra-timestep dependencies. This locality of dependencies means that grid
updates can easily be partitioned in space, computing each partition independently, only
requiring overlaps at the border between partitions to be resolved between timesteps,
making stencil codes well-suited for heterogeneous and distributed systems. Because the
computation performed to evaluate a cell update based on its neighbors are simple as
linear combinations, the ratio between computation and data movement (computational
intensity) is often low. This makes stencil algorithms very sensitive to cache access
patterns, and make them good candidates for architectures that can provide high memory
bandwidth, such as GPGPU. This chapter will look into an approach to attain high
performance of stencil code on FPGA, where memory bandwidth is not available in
abundance.

4.1. Related work
Optimizing stencil codes on fixed architecture is an active and ongoing field of research.
Revolving around the polyhedral model, many frameworks have been created to generate
performant architecture specific code from formal representations of the iteration spaces
and dependencies of nested loops [23, 24, 25]. Stencil codes on FPGA have received
less attention. Kobori et al. [26] demonstrate a cellular automaton implementation for
integer data, dividing the approach into three cases depending on the grid size, where the
largest uses invalidation of results and repeated passes to achieve a regular structure of
computation. Anshuman et al. [27] evaluate two OpenDwarf benchmarks implemented in
OpenCL on various architectures, but dismiss stencils on FPGAs as not being competitive
with GPU. The algorithm implemented in this work follows the design presented by
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Sano et al. [28], who demonstrate 260 GOp/s for a 2D Jacobian on nine older Stratix III
FPGAs connected in sequence as systolic array nodes.

4.2. Proposed architecture
To bring a program to the constant memory bandwidth form described in Section 3.2.1,
we restrict the global memory access pattern of the program to a single input stream
and a single output stream, reading and writing KBt bytes every cycle. For a stencil
program this means that data will flow from the first coordinate to the last coordinate in a
lowest-to-highest index fashion, wrapping around when the end is reached. A performant
program on this form must be able to scale the depth parameter n in order to saturate
the floating point resources on the FPGA (increasing the computational intensity, as
the bandwidth is constant, according to Equation (3.8)). This requires every element
necessary to evaluate the stencil, that is not currently on the wavefront, to be either
buffered internally from when it is read and until the last coordinate depending on it is
evaluated, or propagated throughout the pipeline according to the access pattern.

4.2.1. Systolic array

(a) Cellular automaton architecture, where
cells are represented as a physical grid of
identical processing elements on the chip,
communicating with neighboring elements
during execution.

last

first

(b) Systolic array architecture, where identical
processing elements are connected in se-
quence, feeding results downstream as they
become available.

Figure 4.1.: Cellular automaton versus systolic array architecture. All processing elements
represented by squares are identical replicated circuits.

We wish to achieve indefinitely replicable processing elements without scaling the
required memory bandwidth along with the number of processing elements, in order to
approach peak performance with constant memory bandwidth (see Section 3.2.1).
One option is cellular automata, intuitively expressing cells or clusters of cells as

identical processing elements, distributing processing elements like a physical grid on the
chip. Neighboring cells will then communicate with each other through local connections
(Figure 4.1a). Once the initial data has been written to the automata’s local memories,
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there is no dependence on global memory, as data will be buffered locally throughout the
entire computation. This design has the severe issue of being bound in either direction
by the problem size: too small grids will not make full use of the computational resources
on the fabric, and too large grids will not fit the on-board memory. It is therefore not a
fitting design to achieve peak performance on an arbitrary chip.
Instead we will focus on systolic arrays. Like cellular automata the architecture

consists of a number of identical processing elements, but orders them from upstream
to downstream (Figure 4.1b). Each element receives data from one or more upstream
elements, and sends data to one or more downstream elements. Data is fed to the first
element and propagates downstream until it has passed through all processing elements,
and is then written back out. While systolic arrays are often used in networks where
processing elements represent hardware nodes, elements will for this architecture be
represented by replicated components across the FPGA fabric, connected by on-chip
interfaces (either ping-pong buffers or FIFOs) in a streaming pipeline architecture (see
Section 2.5). This can potentially be extrapolated to multiple FPGAs, connecting the
last element in one FPGA with the first element of the next via e.g. ethernet, but this
work will focus on a single device.

4.2.2. Temporal pipelining

Processing elements in systolic arrays receive data from upstream, solve part of the
problem, then pass it downstream to the next processing element. As we only have one
streaming entry to the design, a constant memory bandwidth will not be able to saturate
a spatial split of the iteration space. Instead we approach stencils by pipelining the outer
time dimension, letting processing element treat the full spatial dimension for subsequent
timesteps. The width of the pipeline will extend in the spatial dimension, controlling the
number of elements travelling the data path for a single timestep according the memory
bandwidth, while the depth of the pipeline will correspond to the number of timesteps
treated in parallel. The number of timesteps to be processed is assumed to be much
larger than the maximum depth of the pipeline, so the depth of the pipeline will decide
a folding factor that will decide the final number of steps n in Equation (3.11) (not
to be confused with the pipeline depth, which we also denote as n). For N processing
elements processing T timesteps, the total number of steps is reduced to n = T/N , where
processing element 0 ≤ i < N processes timesteps Nt + i where t is the folded iteration
variable 0 ≤ t < n.

4.2.3. Folding and feedback

To achieve time folding the pipeline must process the same spatial elements multiple
times, requiring a feedback design where elements written out from the last element in
the pipeline are written back to memory, before being read in again to compute the next
folded timestep. In order to maintain a fully saturated pipeline, subsequent folds must
overlap, requiring elements to fall out of the end of the pipeline before they are required
at the entry. For smaller grids, the feedback can happen exclusively in on-chip memory,
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and the latency of the pipeline will offset the amount of memory required. For large grids
off-chip memory can be used as the feedback storage between folds.

4.2.4. Logic and BRAM requirements
Because the spatial dimension will only pass through the systolic array once per fold,
each processing element is responsible for buffering data necessary to evaluate future
iterations of that same timestep. The amount of on-chip storage space required per
processing element depends on the grid dimensions, the shape of the stencil and to a
lesser extent the latency of evaluating the stencil. The maximum number of processing
elements that can be instantiated on the chip due to BRAM limitations only is:

Nmax,BRAM = Bmax
PE.B

(4.2)

The optimization expression in Equation (3.1) determines the maximum number of
processing elements that can be instantiated taking both compute and memory resources
into account, but since PE.B varies with the size of the spatial domain, it is useful to
treat logic and memory constraints separately:

Nmax = min {Nmax,FP, Nmax,BRAM} (4.3)

where Nmax,PE is the maximum number of processing elements that can be instantiated
due to logic and DSP limitations only, as computed in Section 3.4. We can then compute
the tipping point Nmax,FP = Nmax,BRAM where the performance is limited by the BRAM
resources on the board in terms of the grid parameters, effectively giving us the maximum
grid dimensions where peak performance can theoretically be reached. This will be done
for the specific case treated below.

4.3. 2D Jacobian stencil
This work will focus on the case of a 2D Jacobian stencil. This stencil averages the
immediate neighborhood of the evaluated cell:

h(x, y, t + 1) = 1
4(h(x− 1, y, t) + h(x, y − 1, t) + h(x + 1, y) + h(x, y + 1)) (4.4)

where h(x, y, t) is the value of grid coordinate (x, y) at time t. The dependency set is:

S = {(−1, 0), (0,−1), (1, 0), (0, 1)} (4.5)

and the required on-chip memory per processing element is:

MJacobi2D = 2dx (4.6)

Figure 4.2 illustrates the systolic array architecture for this stencil, feeding data from
the input stream to PE0, passing the computed result for time t downstream, computing
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PE0, t PE1, t + 1 PE2, t−N + 2

...

External memory

Figure 4.2.: Data flowing between processing elements in the systolic array architecture.
A processing element at position i processes every Nth timestep with offset
i, passing along evaluated values are they become available throughout the
pipeline. This results in a total of N timesteps being evaluated in parallel.
Orange indicates the element currently being evaluated, blue indicates the
current wavefront of the dataflow, gray indicates elements already evaluated
for the current timestep, and shaded squares indicate elements currently held
in buffers.

t + 1 in PE1, repeating until the result falls out at the end of the pipeline and is written
back to the output stream. The input and output streams will then wrap around for n
iterations until all folds have been computed, by using either on-chip or off-chip memory
as feedback buffer. In the saturation phase the wavefront populates the buffers until it
reaches the first element where all necessary values are available, which in the case of the
2D Jacobian stencil is on the second row, as there is only a dependency one row forward.
For following spatial iterations, processing the last row of t overlaps with reading in
values into the buffers for the first row of t + 1, as all elements for the last row are already
available by then, as seen in the second and third processing element in Figure 4.1b.

4.3.1. Determining resource bottleneck

A processing element is responsible for evaluating the stencil for every element in the data
path every cycle, consisting of 3 additions and 1 multiplication per element (3 + 1 = 4
operations for a data path of 1 element, 12 + 4 = 16 for a data path of 4 elements etc.).
Assuming that the design is limited by LUT and DSP resources, the peak performance
of this stencil will be taken as the numbers presented in Table 3.3 and Table 3.4. In
practice the number of processing elements will be constrained by either the amount of
computational resources or the amount of on-chip memory. An 18 kbit BRAM block can
read and write a 32-bit floating point number every cycle. If we can exploit reuse of
the horizontal elements the minimum number of BRAM blocks required per processing
element is 2, one for each line buffered Equation (4.6). For 32-bit entries, each BRAM
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block can hold a maximum of 18 kbit/32 bit = 562 elements, which combined with
Equation (4.6) gives us the amount of BRAM blocks required per processing element.
The resources required per processing elements are then:

PE.D = 3Di + Dj

PE.L = 3Li + Lj

PE.B = 2 dx

562

(4.7)

where i and j and indices to the chosen floating point IP core and the BRAM number
is computed using integer division. Since the chosen floating point IP core is not
affected by the addition of BRAM, the maximum number of floating point units that
can be instantiated from Equation (3.12) is unaffected, which we’ll denote Nmax,FP. The
maximum number of processing elements in terms of BRAM only is:

Nmax,BRAM = Bmax
2(dx/562) (4.8)

We can now compute the tipping point Nmax,FP = Nmax,BRAM of Equation (4.3) where
the performance becomes limited by the BRAM resources on the board, in terms of the
grid x-dimension dx:

Bmax
2(dx/562) = Nmax,FP ⇒ dx = 562

2
Bmax

Nmax,FP

Plugging in the peak floating point performance for the Xilinx reference design from
Table 3.6 and available BRAM resources on the XC7VX690T board we obtain:

dx = 562
2 · 2940

450 = 1835 (4.9)

Meaning we can buffer grids of up to 1835 elements in the smallest dimension on the
board and still theoretically obtain peak performance. This argument extends to k
dimensions, where dx is simply replaced with the product of the k−1 smallest dimensions
in Equation (4.9).

4.4. Stencil implementation

This section will describe a systolic array stencil implementation on FPGA, representing
the kernel module in the Xilinx reference design in Figure 2.2. The main kernel design
is synthesized with Vivado HLS from C++ code augmented with HLS pragmas, and is
integrated with the infrastructure of the reference design using the main Vivado tool, in a
fully automated flow that generates the appropriate hardware from a given configuration.
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4.4.1. Choice of framework
The stencil design was originally intended to be implemented in SDAccel to avoid dealing
with performance-unrelated components on the FPGA. While the peak performance
benchmark ran as expected, SDAccel (release 2015.4) would hang up when introducing a
feedback loop in internal BRAM for a dataflow program, possibly related to issues with
memory latency. Instead Xilinx provided the reference design described in Section 2.1.3
to test stencil codes, which also offers a higher maximum resource count for the ker-
nel. This framework does not provide a memory controller, so the designs tested here
rely on emulating external memory using on-chip memory. While this limits the grid
dimensionality that can be treated, all concepts related to the performance are the same,
assuming a design including a memory controller would expose a streaming interface
to memory that could feed the pipeline every cycle, which is not unrealistic given the
perfectly regular access pattern and low bandwidth requirements.

4.4.2. Dataflow and modularity
The processing element is designed as a single C++ function, using the same dataflow
infrastructure as the peak benchmark kernel described in Section 3.5.2, unrolling the
compute function as dataflow functions with the recursive template included in Listing 17.
The unrolled functions are compiled separately and connected by FIFOs on the fabric,
which lets the toolflow treat them as separate smaller pipelines rather than having to
do static scheduling for the full depth. The C++ functions are implemented expecting
to be executed every clock cycle, rather than being based on loops. Each stage will
execute whenever data is received from the input stream, producing output triggering
the following steps. The amount of compute elements to unroll is adjusted by the
configuration-time parameter kDepth, deciding when the template recursion bottoms
out.

4.4.3. Buffering dependencies
A given element must be buffered from the time it is first read in via the wavefront until
the last time it is used by a computation. This is illustrated by the gray area in Figure 4.3,
where the arrows indicate the flow of the data from when it arrives at the wavefront to
the cells where the values are needed. After used as south values, data is first propagated
to the center row buffer. When it is read out from the center buffer it is passed along
iterations in registers to be used as eastern and western value, as well as being written to
the north buffer, where it will read out for the following row. Dependencies have very
different characteristics in terms of buffering in hardware depending on their relative
position to the cell being evaluated:

• Dependencies backwards in the inner dimension can be handled by shifting values
through registers.

• Dependencies forward in the inner dimension will shift the iteration space by the
distance to the center cell, and are otherwise handled using shift registers.
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4.4. Stencil implementation

Figure 4.3.: Elements currently held in buffer are shaded in gray, as they are still necessary
to evaluate one or more future iterations of the stencil. The cell currently
being evaluated is marked in orange, and the current position of the incoming
wavefront is marked in blue. Arrows indicate flow of data through buffers.

• Dependencies backward in an outer dimension increase the amount of rows (or
planes/hyperplanes in higher dimensions) that must be buffered.

• Dependencies forward in an outer dimension increase the number of rows that must
be buffered and shifts the iteration space by the vertical distance to the center cell
times the number of elements per row.

Shifting the iteration space means displacing the iteration over cells being evaluated
from the wavefront of incoming data. The hardware circuit designed to buffer these
dependencies will be presented in the following section.

4.4.4. The processing element

Figure 4.4 includes a diagram of the proposed circuit for a single processing element,
simplified to not include control logic for saturating and draining the pipeline. Handling
the saturation and draining phase adds a significant amount of logic to the circuit, as
many cases must be handled, potentially causing congestion in the processing element
due to multiplexers that must route the relatively wide data path. The way in which this
logic is implemented is seen to cause large variations in the amount of LUTs consumed
despite having the same semantics, highlighting the opaqueness of the HLS to hardware
flow.

4.4.5. Deviation from proposed design

The processing element used in the design that was built for hardware and used for the
benchmarks below differs somewhat from the circuit presented in Figure 4.4, and uses
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Figure 4.4.: Simplified diagram of the circuit of a single processing element. Connections
are annotated with the index in (x, y, t)-space they provide an element from.
The wavefront coming from the input stream is one row ahead of the row
being evaluated, storing the row being evaluated and the previous row in
the two buffers.

four buffers rather than two, storing western and eastern values separately to the two
row buffers. This consumes twice the amount of BRAM (halving the maximum grid
size in Equation (4.9)), but was used because an implementation of the more memory
efficient design was not finished in time for writing this thesis.
Appendix B contains both the implementation used for the benchmarks run here

(functions suffixed with Four, due to using four buffers rather than the minimum two
required), and a proposal for a new design, splitting the buffering and computational
elements to increase readability and modularity. This design uses the FIFOs between
the buffering module and the computational module as the buffer, shipping data to the
compute elements when they’re ready, thereby decoupling the computational iteration
space from the wavefront. The newer design produces correct results, but was found to
fail timing at lower resource utilization than the old, so the older one was kept for the
sake of maximizing performance.

Reducing the required BRAM blocks to the number in Equation (4.8) is left for future
work.

4.4.6. Control flow
As suggested in Section 4.4.4, some control flow is necessary to handle the saturation and
draining phase of the pipeline. Listing 19 includes the general structure of these conditions
in the code, showing the flow between the buffer and compute elements. The code follows
the four buffer (rather than two) design for the performance reasons described above.
In addition to the natural saturation of the pipeline by incoming data, the algorithm
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if (!isDraining) {
streamIn.read() >> inputValues;

}
if (onFirstRow) { // North row

FillBoundary(northValues);
} else if (isSaturated) {

northBuffer.read() >> northValues;
}
if (isSaturated) { // Center row

centerBuffer.read() >> ...;
westBuffer.read() >> westValues;
eastBuffer.read() >> eastValues;

}
if (onLastRow) { // South row

FillBoundary(southValues);
} else {

inputBurst >> southValues;
}
// ...do compute and forward values...
if (!isDraining) {

if (!onLastRow) {
northBuffer.write(...);

} // Overlap to next timestep
centerBuffer.write(...);
westBuffer.write(...);

}
if (i > 0 && i < kTotalBursts * kTimestepsPerStage + 1) { // Shift by one

eastBuffer.write(...);
}
if (isSaturated) {

streamOut.write(...);
}

,
Listing 19: Skeleton of the control flow handling the saturation and draining phase, as

well as overlapping between consecutive timesteps.
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requires buffering the first incoming row of data before starting the computations, as
three rows are required to compute the 2D Jacobian stencil, but the boundaries are
computed as constant values. This additional saturation phase is only done at the first
folded timestep, as subsequent folds will overlap to hide this delay. The added latency is
equivalent to the number of cycles required to read in a single row, multiplied by the
folding factor N .

4.4.7. Width of data path

In order to allow peak performance at constant memory bandwidth the width of the
pipeline data path only needs to be smaller than or equal to the bandwidth. This
allows some flexibility in the granularity of pipelines stages in order to optimize resource
consumption and meet timing. We will build the stencil code using various widths and
depths where nK = const to see the effect of this. Section 4.6 will look at the scaling of
resources with varying configurations.

4.5. Performance results

Based on the results obtained for the peak performance benchmark in Section 3.6, we
follow the same procedure for obtaining the maximum performance of the stencil code.
Starting at the highest number of replications achieved for the synthetic benchmark,
the number of PEs is gradually lowered until the build is successful. The process is
also attempted for various widths of the pipeline, altering the ratio between n and K.
We additionally sweep over lower configurations in order to do investigate scaling of
resource consumption with replication, treated in Section 4.6. The build results are
included in Figure 4.5, indicating successful and failed builds with circles and crosses,
respectively. Because we perform 4 operations per cycle (3 additions and 1 multiplication)
per processing element and the kernel is clocked at 250 MHz, the reported number of
processing elements can be translated directly into performance in GOp/s. The highest
performance result will therefore be the rightmost green circle in the plot. The depth
of a given configuration can be computed as #PEs

pipeline width , where the pipeline width is
measured in number of operands. Correctness in terms of domain and performance was
verified after determining the highest performing build, but for that build only. The
highest build meeting timing is for 256 processing elements with a data width of 8 bytes
for a 256× 256 grid, corresponding to a performance of:

FJacobi2D = 250 cycle/s · 256 · 4 Op/cycle = 256 GOp/s (4.10)

This corresponds to 256 GOp/s
322 GOp/s = 80% of the highest measured performance for the given

combination of floating point operations (see Section 3.6.2), and to 256 GOp/s
450 GOp/s = 57% of

the theoretical peak.
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Figure 4.5.: Builds for various configurations of data width, number of processing elements
and grid sizes. Because of the clock frequency of 250 MHz and the 4 operations
performed per stencil evaluation, the number of processing elements can
be directly translated into performance in GOp/s. Green circles indicate a
successful build, while red crosses are builds that failed placement or timing.
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4.5.1. Verifying performance
To verify that the design works at the expected performance for a sustained workload,
we look at the number of cycles spent in the computational kernel when running it for a
large number of iterations. The expected number of cycles for a 2D stencil built with the
architecture proposed here is:

cstencil = domain saturation + hardware saturation + number of iterations⇒

cstencil = rows to saturate · pipeline depth · cols
pipeline width + latency

+ rows · cols
pipeline width ·

timesteps
pipeline depth

(4.11)

In the case of our 2D Jacobian result, we need to saturate the pipeline with a single row
before we can start evaluating values, as we use fixed boundaries. The highest performance
build achieved has 256 processing elements and a width of 8 bytes (corresponding to
2 single precision floating point numbers). The depth of the pipeline is the number of
processing elements instantiated divided by the width (256/2 = 128). The hardware
latency of the pipeline is reported by the synthesis tool as being 3460 cycles. The
benchmark was run for 16384 timesteps. The resulting expected number of cycles is:

cexpected = 1 · 128 · 256
2 + 3460 + 256 · 256

2 · 16384
128 = 4214148 (4.12)

In comparison, the cycle counter of the reference design reports 4214158 cycles, which
is 10 cycles more than the expected number, exactly as seen for the peak performance
benchmarks in Table 3.6. We can thus conclude that the program runs at the expected
performance for a sustained workload, as the circuit only spends one cycle per work item
in addition to the saturation overhead accounted for above.

4.5.2. Failing wide data paths
The stencil designs generally did not meet timing for data paths wider than 8 bytes. This
is likely due to routing congestion, as too many BRAM blocks and DSP slices have to
route to the same logic where the control flow is located. The failing paths are both from
BRAM blocks to logic and between logic and DSP slices. Which designs passed timing is
included as circles in Figure 4.5.

4.6. Resource scaling
In order to gain insight in the scalability of systolic array designs, we investigate the
increase in resource consumption with increasing number of processing elements. For the
design to scale to arbitrarily large FPGAs, the resource consumption when replicating
processing elements must be linear. Scaling with number of processing elements is
plotted in Figure 4.6 for LUTs and FFs, where every vertical slice is a constant number
of processing elements, and thus a constant number of DSPs consumed. The y-axes
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are given as fraction of the maximum available resources on the XC7VX690T board,
with the exception of the power plot, which is a fraction of the highest measured power
consumption between all configurations. The power numbers reported here are as reported
by the Vivado tool, and are merely an estimate. They have only been included as a
relative comparison between the different configurations, as the absolute numbers have
little meaning without taking the whole board (as they are for the FPGA chip only) into
account and performing measurements.
These plots reveal two key observations. The first is that scaling of logic resources

is linear in the number of processing elements, with the exception of power, which
is sublinear. The second observation is that, for a vertical slice, the number of logic
resources consumed decreases for wider data paths. Despite the algorithm in principle
offering peak performance at any memory bandwidth, the amount of control logic saved
by gathering more computations in a single processing element means fewer resources
consumed, which in turn could allow for more processing elements on the board. With
the current design, however, only data paths up to 8 byte wide meet timing. If the
fundamental issue of wider data paths not meeting timing could be solved, the resources
saved could potentially lead to higher number of floating point units on the chip.

4.7. Discussion
The high memory bandwidth of GPUs has made them a popular target for stencil
code generators, and much research has gone into developing optimal tiling strategies
of the iteration space to optimize the memory access pattern and reducing redundant
computations [29, 30, 31], increasing the effective computational intensity. To the au-
thor’s knowledge, the highest measured performance by the time of writing this work
for the 2D Jacobian stencil on a single accelerator is by Rawat et al. [32], demon-
strating 396 GOp/s on a Tesla K20 GPU. The implementation presented here reaches
256/396 = 65% of this performance. As the stencil computation can not make use of FMA
(since the multiplication is done after the additions), the GPU number corresponds to
396 GOp

s /1762 GOp
s = 22.5% of the FMA ceiling. As noted above, the stencil performance

of 256 GOp/s achieved on the AlphaData 7V3 card corresponds to 57% of the theoretical
peak performance given the distribution of additions and multiplications. We make three
important observations from this:

• When algorithms can be fit in to the streaming pipeline model, FPGA performance
can achieve high fractions of board utilization for a non-synthetic application.
By tweaking the processing elements there is potential for increasing the number
instantiated significantly, further approaching peak utilization. This is interesting
in particular when moving to larger FPGAs (see Section 4.8.5), as the algorithms
on the form of the systolic array used for stencils proposed here scale directly
with the peak performance, because the computational intensity scales with the
number of processing elements instantiated (we can consider it infinite in practice
for this architecture). The stencil results presented here have been limited by the
place and route process not meeting timing due to congestion or high resource
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Figure 4.6.: Scaling of various resources for increasing number of processing elements for
the stencil design. Only builds configured with a 64× 64 grid are included
to allow comparing BRAM, so not all builds from Figure 4.5 are included.
Circles indicate successful builds, while crosses indicate builds that failed to
meet timing.
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utilization, rather than by conceptual barriers, and Section 4.6 showed that the
resource scaling for increasing number of processing elements in linear. It however
remains to be shown that the timing issue is due to high fractional utilization, and
not the absolute utilization number, in order to scale to bigger chips. This can not
be asserted here, as we only have data for a single chip.

• Contemporary FPGAs are not optimized for floating point computations. Although
there is potential in moving to fixed point types supported natively by the DSP
units (see Section 4.8.3), there is vast potential in FPGAs engineered specifically
for HPC. This would involve supporting the required data types by implementing
fewer but wider routing paths to accommodate large data types, and in particular
offering native support in the hardened components (perhaps even small vector
units). The Altera Stratix 10 generation promises an HPC-oriented device, but is
not yet commercially available.

• The performance offered on the FPGA relative to the GPU is interesting in terms
of power efficiency (see below).

The next section will elaborate on the third point. A final thing to note is that Rawat et al.
use an implementation based on streaming, suggesting that this is a promising pattern
at least in the field of stencils.

4.7.1. Power efficiency

When FPGAs come up in an HPC context, power efficiency is usually a key point. To
properly address this, accurate power measurements must be made of all compared
architectures. Not unlike peak performance numbers, datasheet power consumption
does often not reflect reality well [16]. As mentioned in Section 1.7, datasheet power
consumption are upper bounds, thus clashing with peak performance when used in
the denominator of computing power efficiency. Still we below compute a ballpark
number for the stencil kernel using measured peak power consumption numbers from
Servesh et al. [16] for floating point performance microbenchmarks, who arrive at 225 W
and 25 W for the Tesla K20 and the AlphaData 7V3 card, respectively. These numbers
include power consumption of off-chip memory on the accelerators. Equation (1.8) then
evalutates to:

Estencil,K20 = 396 Op/s
225 W = 1.76 Op/J

Estencil,7V3 = 256 Op/s
25 W = 10.24 Op/J

(4.13)

corresponding to a factor of 10.24/1.76 = 5.82 increase in power efficiency for a 35% drop
in performance on a single accelerator card. While these numbers are rough estimates
and should be taken as such, the FPGA implementation shows promise of delivering high
performance per power, in particular if there is still significant untapped potential in the
HLS implementation. To make any definite conclusions, however, accurate performance
and power measurements must be made of each accelerator (see Section 4.8.7).
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4.8. Future work
We will now address some of the many paths that can be taken to improve upon the
work of implementing efficient stencil code on FPGA presented here.

4.8.1. Finish proposed implementation
As noted in Section 4.4.5, the proposed design was not finished in time for writing this
thesis, so the benchmarked design uses twice the amount of BRAM resources necessary.
The next step is to finish implementing the proposed design to halve the on-chip memory
cost.

4.8.2. Generalizing the model
In this work we treated a specific 2D stencil. Generalizing the method in a more
formal way than what was done in Section 4.4.3 to at least 3-dimensional stencils for
arbitrary dependency sets would create an interesting framework in which to pursue
stencil computations on FPGA. This would also help in assessing the feasibility of larger
stencils given the available BRAM resources on the FPGA.

4.8.3. Fixed point types
As suggested for the peak performance benchmark in Section 3.10.3, moving to fixed
point types supported natively by the DSP units and requiring significantly less logic
due to their integer nature has a significant potential for increase in performance. This
would also cut the amount of DSPs required for each stencil evaluation by up to two
thirds, which could help the timing issues by reducing congestion.

4.8.4. Off-chip memory
Because we were restricted to a narrow PCIe bridge when developing the stencil algorithm
presented here, we used a large BRAM buffer on chip in place of streaming data from off-
chip memory. While this successfully emulated the required streaming semantics, it needs
to be investigated whether the memory controller can sustain feeding the pipeline without
introducing bubbles (see Section 2.3.3). A future version of the implementation should
use two AXI Stream interfaces to stream to and from memory once this is introduced to
the Xilinx reference design or a similar framework.

4.8.5. Larger FPGA
As for the peak performance benchmark, building the stencil kernel for a larger FPGA and
comparing resource utilization would be an important sign of scalability of the algorithm.
SDAccel supports the Virtex Ultrascale KU115 FPGA with 5520 DSP slices, and the
Xilinx reference design used here is being built to support this as well. AlphaData has
released a board using this chip, the ADM-PCIE-KU3, so running the stencil code on
this board would be an obvious next step.
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4.8.6. Scaling with grid size
Because data is streamed from a top left to bottom right fashion and must be buffered
until the last time it is used, the method described here requires storing in order of n
elements, where n is the smallest dimension in a 2D grid. For 3D this would increase
to n ×m, where n and m are the two smallest dimensions in a 3D grid. For real life
applications these numbers can become significantly higher than e.g. the maximum
computed in Equation 4.9, so a general algorithm would have to deal with these memory
considerations. One solution could be scaling to multiple FPGAs, exchanging borders
via FIFOs over an interconnect, as maximum performance can always be reached on each
FPGA by unrolling the time dimension, regardless of the per-FPGA grid size. Other
solutions could involve increasing the reliance on higher memory bandwidths, but any
solution where the amount of bandwidth scales with the amount of processing elements
loses the benefits of the infinite computational intensity offered by the streaming pipeline
architecture. The deep pipelining architecture presented here will suffer even more than
fixed architectures from waiting for memory, as this will introduce bubbles to the pipeline,
effectively losing C in Equation (1.6) operations for every cycle waiting for memory.
Fixed architectures use tiling to minimize the amount of memory transferred from global
memory, and looking into a tiling approach that preserves a perfect pipeline despite
loading elements at the borders between tiles multiple times and breaking up the iteration
space is among the highest priority of future work. Deest et al. [33] have presented a
work in progress looking into tiling on FPGA, but their preliminary results have not
exceeded 40 GOp/s.

4.8.7. Accurate power measurements
To accurately assess the power efficiency of stencil computations on FPGA, power
measurements should be done and compared to other architectures running respective
state of the art implementations. The preliminary estimate done in Section 4.7.1 suggests
a factor of 5.6, which is promising enough to warrant further investigation, especially
considering the potential for further optimizations of the FPGA stencil code.
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This chapter discusses the lessons learned throughout the thesis, touches upon the issue
of productivity when programming FPGAs, and comments on the future of HPC on
FPGAs. The work is concluded with a list of the contributions made and a summary of
proposed future work.

5.1. Performance modeling
Here we discuss the usefulness of the two models used for this work, namely the peak
performance model based on maximizing resource utilization presented in Section 3.2,
and the well known roofline model used to compare the FPGA to other architectures in
Section 3.8.

5.1.1. Peak performance model
The model of peak performance by replicating identical processing elements presented in
Section 3.2 proved effective in predicting performance for synthetic benchmarks run on
hardware (see Section 3.6). Many synthetic benchmarks achieved 100% of the expected
performance for their configuration, and the best result reached 98% of the highest
performance predicted. The highest performing stencil build corresponded to 57% of
peak performance (see Section 4.5), and 80% of the highest measured performance for
the given configuration using the synthetic benchmark. Because of the opaque coupling
between frequency and resource utilization, the model is however restricted to predict
the the number of operations C performed per cycle using Equation (3.2) for a given
set of available resources, and leaves the optimization of the coupled frequency and
utilization parameters, Equation (3.4), as an engineering challenge. This did not affect
the benchmarks done here, as f was fixed by the frameworks used. As expected for a
peak model, it also revealed some shortcomings when it comes to realistic applications,
such as the stencil program:

• Predicting the amount of resources consumed by a processing element can only
be done to some approximation, typically as a lower bound computed from the
computational units and storage units following the characteristics of the problem.
In real applications a non-neglicible part of logic will be consumed for control and
routing, and this number is hard to predict before having a ready implementation.

• Varying the width of the pipeline K can impact the resource utilization of the
processing element, thus affecting the peak performance achievable with the same
amount of computational units instantiated on the chip. This was demonstrated in
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Section 4.6, where it was seen that wider pipelines significantly reduced the total
amount of control logic needed, ultimately affecting the number of computational
units that could be instantiated.

• For a more complex design such as the stencil, meeting timing is not just a constraint
when approaching maximum utilization, but also when dealing with congestion
inside the processing elements. Even though they use fewer overall resources, almost
all configurations with a data path wider than 8 bytes fail timing (see Section 4.5).

Despite these limitations, predicting peak performance on FPGA is a satisfying exercise,
as it is accurately confirmed by the benchmarks, and can be deduced directly from the
pipeline achieved, assuming there are no bubbles introduced by memory hiccups.

5.1.2. Roofline model

Using the peak numbers predicted and measured, we constructed a roofline model for
the AlphaData 7V3 card in Section 3.8 and plotted it alongside the fixed architectures
from Section 1.7.1. From the plot we see that the theoretical peak performance is not
competitive with GPU and many-core, and the memory performance in particular s far
behind the competitors (even without the further constraints of SDAccel), requiring a
massive computational intensity to reach the ridge point. Current generations of FPGA
hardware are not optimized for HPC, as the hardened DSP units are optimized for low
precision fixed point computations (see Section 1.4.1). Likewise, memory bandwidth
has not been central in designing the chip used, as it only offers enough pinouts for
two DDR3 modules, and leaves the rest up to the third party board vendor. The merit
of the FPGA comes from its predictability: once a design is successfully built we can
predict its performance down to the exact number of cycles, and we showed that synthetic
benchmarks can reach the predicted peak with a fairly straightforward implementation.
Additionally, because we have such fine-grained control over how data is buffered, it is
actually possible to push the computational intensity to the high levels needed to achieve
performance, as was shown for the stencil implementation, although it did not quite
reach the performance levels of the synthetic benchmark. Because of this control, the
roofline arguably becomes a more accurate tool to describe FPGA performance, as it is
more likely that we can extract the parameters exactly.

5.2. FPGA programming productivity

The subject of productivity has been left largely untouched throughout the thesis, but is
a central argument when discussing the viability of a hardware architecture. As briefly
noted in Section 2.1, running the source to hardware flow is very time consuming for
large designs with both SDAccel and Vivado, and since aiming for peak performance
always involves high resource utilization, most benchmarks presented here took four to
five hours to build for each individual configuration. The massive memory footprints
of up to 20 GB also mean that few personal computers would be able run the software
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without heavy swapping to disk, let alone run multiple concurrent compilations to save
time. What makes FPGA design more realistic are the tools that can test correctness
before or during the full build, such as reports generated by the high level synthesis and
simulation tools.

While high level synthesis makes FPGAs more accessible to users coming from software
design, there is no way around diving into hardware design when implementing efficient
codes. There seems to be a gap to be filled by a suitable abstraction to the FPGA
architecture, and OpenCL in its current form does not look like a satisfactory choice
(briefly discussed in Section 2.1.2). When using Vivado HLS, as is often the case when
trying to fit into the C/C++ language, the power and flexibility of the language become
the programmer’s biggest enemy, as their semantics do little to restrict bad implementation
patterns. However, once the correct patterns have been established (an attempt was
made in Section 2.4), HLS offers fast prototyping and decent diagnostics while designing
the hardware, and can be fairly easily integrated onto the FPGA using the SDAccel
framework. Still, the total road from algorithm to hardware is long, and devising the
fairly simple stencil code included here took of the order of months and has much work
ahead of it yet, failing FPGAs on the scale of speedup per programming hour.

5.3. Reconfigurable computing in HPC
As was demonstrated and mentioned multiple times already, both FPGA floating point
performance and memory bandwidth are hampered by the chip design not being oriented
towards HPC. Addressing these two issues could potentially allow for Moore’s law to
benefit the end user’s domain directly, rather than through further replication of existing
general purpose units. Adding in the potential for energy efficiency, assuming that more
HPC-oriented devices could keep the power consumption at the low rates of current chips,
FPGA vendors could set themselves on a path to become a central player on the road to
exascale computing.

Although they have become so in practice, reconfigurable architectures are not princi-
pally synonymous with FPGAs. Reconfigurability can be employed at different levels of
granularity, and developing products working at a less general purpose level, but more
optimized towards common HPC patterns, could be the step needed for reconfigurable
architectures to become a dangerous competitor to fixed ones, although this was already
proposed in 1994 [34], and has not seemed to pick up since. The trade-off is at tricky
one, as specializing in any direction will be a disadvantage for others, therefore opening
new markets but closing others.
Perhaps more than anything, the issues of productivity mentioned above need to be

addressed, giving programmers a powerful and easy to use abstraction to go from domain
to hardware, encouraging laymen to dive into the world of reconfigurable computing.
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5.4. Contributions and conclusion
The main contributions of this work are:

• Descriptions of useful HLS patterns and how they map to hardware.

• A model of peak performance for replicable processing elements on an FPGA based
on the available hardware resources, which we applied to the AlphaData 7V3 board
and compared to common fixed architectures.

• Benchmarks to demonstrate the predicted performance on hardware. In the SDAccel
framework we reached 302 GOp/s, which to the author’s knowledge is the highest
number obtained with SDAccel on the Virtex 7 architecture. Based on a custom
platform provided by Xilinx we achieved 548 GOp/s, and we showed how to verify
the results by accounting for the exact number of cycles spent in the kernel.

• Applying the developed methods to the domain of stencils, we proposed a temporally
pipelined streaming design that scales with the amount of area on the chip for
a constant memory bandwidth. A variation of the design was implemented in
hardware, and we obtained a performance of 256 GOp/s for the 2D Jacobian stencil.
The exact number of cycles spent in the kernel was accounted for in order to verify
the performance claimed.

Finally, we discussed the current state of FPGAs based on the results measured,
tools used to program them and the productivity that they offer, as well as the role of
reconfigurable computing the future of HPC. We concluded that there is potential for
FPGA on the road to exascale computing, but that steps need to be taken to better
accommodate the needs of HPC, in particular in terms of productivity and the potential
of floating point performance.

5.5. Future work
Section 2.4 enumerated a number of programming techniques to guide the implementation
of efficient FPGA hardware using the Vivado HLS tool. To promote investigations into
the viability of FPGAs in HPC, a thorough guide on general performance concepts and
specifics on to how to wrangle the available tools would be a valuable contribution.

Section 3.10 and Section 4.8 proposed future work for the peak benchmarks and stencil
implementation.
Peak performance predictions and benchmarks were only done for single precision

floating point units, and expanding this to include other floating point precisions, as
well as fixed point and integer computations, would give a more complete picture of the
performance potential of FPGAs. Additionally, the hardware used for the experiments
has already been succeeded by a new generation, and upgrading to a more modern chip
would give a better picture of the contemporary state of the art.

The 2D Jacobi systolic array design proposed was only partially achieved, leaving
the work on reducing the required buffer space to the minimum required of two lines.
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Even with this improvement, the issue of scaling to very large grid dimensions must be
addressed, and the method should be generalized to arbitrary stencils in order to make the
proposed architecture useful in real scenarios. The measured performance did not reach
the level of a state of the art GPU implementation, but was close enough, in particular
on power efficiency, that improvements on the architecture could make it competitive.
Measuring power consumption and comparing to other hardware architectures is also left
for future work.
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A. Burst class implementation

Vivado HLS implementation of a class to facilitate reading and writing wide bursts to
and from memory interfaces.

/// \author Johannes de Fine Licht (jannesd@xilinx.com)
/// \date April 2016
#pragma once
#include "ap_int.h"

namespace hlsUtil {

namespace {

template <unsigned byteWidth>
struct UnsignedIntType {};

template <>
struct UnsignedIntType<sizeof(unsigned char)> {

typedef unsigned char T;
};

template <>
struct UnsignedIntType<sizeof(unsigned short)> {

typedef unsigned short T;
};

template <>
struct UnsignedIntType<sizeof(unsigned int)> {

typedef unsigned int T;
};

template <>
struct UnsignedIntType<sizeof(unsigned long)> {

typedef unsigned long T;
};

} // End anonymous namespace

template <typename T, unsigned byteWidth>
class Burst {

typedef typename UnsignedIntType<sizeof(T)>::T Pack_t;
static const int kElementsPerBurst = byteWidth / sizeof(T);
static const int kBits = 8 * sizeof(T);

public:
Burst() {}
Burst(T const arr[kElementsPerBurst]) {

#pragma HLS INLINE
Pack(arr);

}
void Pack(T const arr[kElementsPerBurst]) {

#pragma HLS INLINE
#pragma HLS PIPELINE II=1 enable_flush
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Burst_Pack:
for (int i = 0; i < kElementsPerBurst; ++i) {

#pragma HLS UNROLL
T element = arr[i];
Pack_t temp = *reinterpret_cast<Pack_t const *>(&element);
data_.range((i + 1) * kBits - 1, i * kBits) = temp;

}
}
void Unpack(T arr[kElementsPerBurst]) const {

#pragma HLS INLINE
#pragma HLS PIPELINE II=1 enable_flush

Burst_Unpack:
for (int i = 0; i < kElementsPerBurst; ++i) {

#pragma HLS UNROLL
Pack_t temp = data_.range((i + 1) * kBits - 1, i * kBits);
arr[i] = *reinterpret_cast<T const *>(&temp);

}
}
void operator<<(T const arr[kElementsPerBurst]) {

#pragma HLS INLINE
Pack(arr);

}
void operator>>(T arr[kElementsPerBurst]) const {

#pragma HLS INLINE
Unpack(arr);

}

private:
ap_uint<8 * byteWidth> data_;

};

} // End namespace hlsUtil
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B. Stencil kernel implementation

Implementation of stencil kernel in Vivado HLS. Functions suffixed with Four were used
for the benchmarks in the thesis, while the non-suffixed functions are a newer design
in progress decoupling buffering the computation. All variables prefixed with k are
compile-time constants configured by CMake in a configuration header file.

#include "Stencil.h"
#include "Dataflow.h"
#include <hls_stream.h>
#include <cstring>

void ReadFeedbackSingle(hls::stream<Burst> &in, hls::stream<Burst> &feedback,
hls::stream<Burst> &out) {

#pragma PIPELINE II=1 enable_flush
if (!in.empty()) {

out.write(in.read());
} else if (!feedback.empty()) {

out.write(feedback.read());
}

}

void WriteFeedbackSingle(hls::stream<Burst> &in, hls::stream<Burst> &feedback,
hls::stream<Burst> &out) {

#pragma PIPELINE II=1 enable_flush
static unsigned i = 0;
#pragma HLS RESET variable=i
if (!in.empty()) {

Burst element = in.read();
if (i < kTotalBursts * (kTimestepsPerStage - 1)) {

feedback.write(element);
} else {

out.write(element);
}
++i;
// i = (i + 1) % (kTotalBursts * kTimestepsPerStage);

}
}

void FillBoundary(Element_t array[kElementsPerBurst]) {
#pragma HLS INLINE

FillBoundary:
for (unsigned i = 0; i < kElementsPerBurst; ++i) {

#pragma HLS UNROLL
array[i] = kBoundary;

}
}

Burst ScalarBurst(const Element_t value) {
#pragma HLS INLINE
Element_t arr[kElementsPerBurst];
#pragma HLS ARRAY_PARTITION variable=arr complete

BoundaryBurst:
for (unsigned i = 0; i < kElementsPerBurst; ++i) {
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#pragma HLS UNROLL
arr[i] = value;

}
return Burst(arr);

}

void Move(Element_t const src[kElementsPerBurst],
Element_t tgt[kElementsPerBurst]) {

#pragma HLS INLINE
Move:

for (unsigned i = 0; i < kElementsPerBurst; ++i) {
#pragma HLS UNROLL
tgt[i] = src[i];

}
}

template <unsigned stage>
void GatherData(Stream &in, Stream &northOut, Stream &westOut, Stream &eastOut,

Stream &southOut) {
#pragma PIPELINE II=1 enable_flush

// Iteration counter
static int i = -kBurstsPerLine;
#pragma HLS RESET variable=i

// Compute various indices
const unsigned time = i / kTotalBursts;
const unsigned iGrid = i % kTotalBursts;
const unsigned iRow = iGrid / kBurstsPerLine;
const unsigned iBurst = iGrid % kBurstsPerLine;

const bool streaming = i >= 0 && i < kTotalBursts * kTimestepsPerStage;
// Shifted north by one, because the last row is never used as a north value,
// and to saturate the pipeline to begin with.
const bool streamingNorth =

i < kTimestepsPerStage * kTotalBursts - kBurstsPerLine;
// Shifted south by one, because the first row is never used as a south value,
// and to drain the pipeline in the end.
const bool streamingSouth =

i >= kBurstsPerLine &&
i < kTimestepsPerStage * kTotalBursts + kBurstsPerLine;

// Shifted east by one because we need to get the eastern border from the next
// iteration
const bool streamingCenter =

i >= 1 && i < kTimestepsPerStage * kTotalBursts + 1;

Burst inputBurst;
Element_t inputArr[kElementsPerBurst];
#pragma HLS ARRAY_PARTITION variable=inputArr complete

if (streaming) {
if (in.empty()) {

return;
}
inputBurst = in.read();
inputBurst >> inputArr;

}

if (streamingNorth) {
if (iRow == kNX - 1 || !streaming) {

northOut.write(ScalarBurst(kBoundary));
} else {

northOut.write(inputBurst);
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}
}

if (streamingSouth) {
if (iRow == 0 || !streaming) {

southOut.write(ScalarBurst(kBoundary));
} else {

southOut.write(inputBurst);
}

}

// Forward elements from previous iteration
static Element_t forwardWest[kElementsPerBurst];
#pragma HLS ARRAY_PARTITION variable=forwardWest complete
static Element_t forwardEast[kElementsPerBurst];
#pragma HLS ARRAY_PARTITION variable=forwardEast complete
static Element_t eastBorder = kBoundary;

// Append edge to burst forwarded from previous iteration
forwardEast[kElementsPerBurst - 1] = iBurst > 0 ? inputArr[0] : kBoundary;

if (streamingCenter) {
westOut.write(Burst(forwardWest));
eastOut.write(Burst(forwardEast));

}

// Gather west and east values
ShiftData:

for (unsigned j = 0; j < kElementsPerBurst; ++j) {
#pragma HLS UNROLL
if (j > 0) {

forwardWest[j] = inputArr[j - 1];
}
if (j < kElementsPerBurst - 1) {

forwardEast[j] = inputArr[j + 1];
}

}
if (iBurst == 0) {

forwardWest[0] = kBoundary;
} else {

forwardWest[0] = eastBorder;
}
eastBorder = inputArr[kElementsPerBurst - 1];

++i;
}

template <unsigned stage>
void Compute(Stream &northIn, Stream &westIn, Stream &eastIn, Stream &southIn,

Stream &out) {
#pragma HLS PIPELINE II=1 enable_flush

Element_t north[kElementsPerBurst];
#pragma HLS ARRAY_PARTITION variable=north complete
Element_t west[kElementsPerBurst];
#pragma HLS ARRAY_PARTITION variable=west complete
Element_t east[kElementsPerBurst];
#pragma HLS ARRAY_PARTITION variable=east complete
Element_t south[kElementsPerBurst];
#pragma HLS ARRAY_PARTITION variable=south complete

if (northIn.empty() || westIn.empty() || eastIn.empty() || southIn.empty()) {
return;

98



}

northIn.read() >> north;
westIn.read() >> west;
eastIn.read() >> east;
southIn.read() >> south;

Element_t result[kElementsPerBurst];
#pragma HLS ARRAY_PARTITION variable=south complete

PipelineWidth:
for (unsigned j = 0; j < kElementsPerBurst; ++j) {

#pragma HLS UNROLL
result[j] = static_cast<Element_t>(0.25) *

(north[j] + west[j] + east[j] + south[j]);
}

out.write(Burst(result));
}

template <unsigned recurse>
void UnrollCompute(Stream pipes[kDepth]) {

#pragma HLS INLINE

UnrollCompute<recurse - 1>(pipes);

static const unsigned kNorthDepth = 2 * kBurstsPerLine + 1;
static const unsigned kCenterDepth = kBurstsPerLine;
static Stream north("north");
#pragma HLS STREAM variable=north depth=kNorthDepth
static Stream west("west");
#pragma HLS STREAM variable=west depth=kCenterDepth
static Stream east("east");
#pragma HLS STREAM variable=east depth=kCenterDepth
static Stream south("south");

GatherData<recurse - 1>(pipes[recurse - 1], north, west, east, south);

Compute<recurse - 1>(north, west, east, south, pipes[recurse]);
}

template <>
void UnrollCompute<0>(Stream *) {}

void EntryReferenceDesign(Stream &input, Stream &output) {

#pragma HLS INTERFACE axis port=input
#pragma HLS INTERFACE axis port=output

#pragma HLS DATAFLOW

static Stream pipes[kDepth + 1];
#pragma HLS STREAM variable=pipes depth=kPipeDepth
static Stream feedback("feedback");
#pragma HLS STREAM variable=feedback depth=kNX*kBurstsPerLine
#pragma HLS RESOURCE variable=feedback core=FIFO_BRAM

ReadFeedbackSingle(input, feedback, pipes[0]);

UnrollCompute<kDepth>(pipes);

WriteFeedbackSingle(pipes[kDepth], feedback, output);
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}

template <unsigned stage>
void ComputeFour(Stream &in, Stream &out) {

#pragma PIPELINE II=1 enable_flush

static Buffer northBuffer("northBuffer");
#pragma HLS STREAM variable=northBuffer depth=kBurstsPerLine
#pragma HLS RESOURCE variable=northBuffer core=FIFO_BRAM

static Buffer westBuffer("westBuffer");
#pragma HLS STREAM variable=westBuffer depth=kBurstsPerLine
#pragma HLS RESOURCE variable=westBuffer core=FIFO_BRAM

static Buffer centerBuffer("centerBuffer");
#pragma HLS STREAM variable=centerBuffer depth=kBurstsPerLine
#pragma HLS RESOURCE variable=centerBuffer core=FIFO_BRAM

static Buffer eastBuffer("eastBuffer");
#pragma HLS STREAM variable=eastBuffer depth=kBurstsPerLine
#pragma HLS RESOURCE variable=eastBuffer core=FIFO_BRAM

// One extra line to flush the pipeline
static const unsigned kTotalIterations =

(kNX + 1) * kBurstsPerLine * kTimestepsPerStage;

// Iteration counter
static unsigned i = 0;
#pragma HLS RESET variable=i
// #pragma AP DEPENDENCE variable=i inter false

const unsigned time = i / kTotalBursts;
const unsigned iLocal = i % kTotalBursts;
const unsigned inputRow = iLocal / kBurstsPerLine;
const unsigned workingRow = (inputRow + kNX - 1) % kNX;
const unsigned lineBurst = iLocal % kBurstsPerLine;

// Input burst fanout
Element_t northInputArr[kElementsPerBurst];
#pragma HLS ARRAY_PARTITION variable=northInputArr complete
Element_t westInputArr[kElementsPerBurst];
#pragma HLS ARRAY_PARTITION variable=westInputArr complete
Element_t eastInputArr[kElementsPerBurst];
#pragma HLS ARRAY_PARTITION variable=eastInputArr complete
Element_t southInputArr[kElementsPerBurst];
#pragma HLS ARRAY_PARTITION variable=southInputArr complete

// Handy conditions
const bool isSaturated = time > 0 || inputRow > 0;
const bool onFirstRow = workingRow == 0;
const bool onLastRow = workingRow == kNX - 1;
const bool isDraining = time >= kTimestepsPerStage;

// Read from wavefront
Burst inputBurst;
Element_t inputArr[kElementsPerBurst];
#pragma HLS ARRAY_PARTITION variable=inputArr complete
if (!isDraining) {

if (in.empty()) {
return;

}
inputBurst = in.read();
inputBurst >> inputArr;
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} else if (!onLastRow) {
return;

}

Burst centerBurst; // Need this later for propagating to north buffer

// North
if (onFirstRow) {

// On first row: no northern value
FillBoundary(northInputArr);

} else if (isSaturated) {
northBuffer.read() >> northInputArr;

}

// Read buffers
if (isSaturated) {

// Center
centerBurst = centerBuffer.read();

// West
westBuffer.read() >> westInputArr;

// East
eastBuffer.read() >> eastInputArr;

}

// South
if (onLastRow) {

// On last row: no southern value
FillBoundary(southInputArr);

} else {
// The wavefront provides the south and final value
inputBurst >> southInputArr;

}

// Output burst fanin
Element_t outputArr[kElementsPerBurst];
#pragma HLS ARRAY_PARTITION variable=outputArr complete
Element_t westOutputArr[kElementsPerBurst];
#pragma HLS ARRAY_PARTITION variable=westOutputArr complete
Element_t eastOutputArr[kElementsPerBurst];
#pragma HLS ARRAY_PARTITION variable=eastOutputArr complete

// Inter-iteration dependencies
static Element_t forwardWest(kBoundary);
static Element_t forwardEast[kElementsPerBurst];
#pragma HLS ARRAY_PARTITION variable=forwardEast complete

// Append edge to burst forwarded from previous iteration
forwardEast[kElementsPerBurst - 1] = lineBurst > 0 ? inputArr[0] : kBoundary;

// Append edge forwarded from previous iteration to burst
westOutputArr[0] = forwardWest;

PipelineWidth:
for (unsigned j = 0; j < kElementsPerBurst; ++j) {

#pragma HLS UNROLL

const unsigned col = lineBurst * kElementsPerBurst + j;
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B. Stencil kernel implementation

// Fan out values
const Element_t north = northInputArr[j];
const Element_t west = westInputArr[j];
const Element_t east = eastInputArr[j];
const Element_t south = southInputArr[j];

// Evaluate stencil
const Element_t eval = EvaluateStencil(north, west, east, south);

// Buffer east values from previous iteration
eastOutputArr[j] = forwardEast[j];

if (j > 0) {
// Buffer west values
westOutputArr[j] = inputArr[j - 1];
// Forward east values to be buffered by next iteration
forwardEast[j - 1] = inputArr[j];

}

// Fan in evaluated stencil
outputArr[j] = eval;

}

// Forward eastern edge to be the western edge of next iteration
if (lineBurst == kBurstsPerLine - 1) {

forwardWest = kBoundary;
} else {

forwardWest = inputArr[kElementsPerBurst - 1];
}

// Write back buffers
if (!isDraining) {

if (!onLastRow) {
// Overlap to next timestep, values can be discarded
northBuffer.write(centerBurst);

}
centerBuffer.write(inputBurst);
Burst westOutputBurst(westOutputArr);
westBuffer.write(westOutputBurst);

}
if (i > 0 && i < kTotalBursts * kTimestepsPerStage + 1) {

// Shift forward by one, as eastern values are buffered by the following
// pipeline step
Burst eastOutputBurst(eastOutputArr);
eastBuffer.write(eastOutputBurst);

}
if (isSaturated) {

// First row of first timestep does not have meaningful buffered values yet,
// because there has been no overlap from a previous iteration
Burst outputBurst(outputArr);
out.write(outputBurst);

}

++i;
// Process one extra row
// i = (i + 1) % kTotalIterations;

}

template <unsigned recurse>
void UnrollComputeFour(Stream pipes[kDepth]) {

#pragma HLS INLINE
UnrollComputeFour<recurse - 1>(pipes);
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ComputeFour<recurse - 1>(pipes[recurse - 1], pipes[recurse]);
}

template <>
void UnrollComputeFour<0>(Stream *) {}

void EntryReferenceDesignFour(Stream &input, Stream &output) {

#pragma HLS INTERFACE axis port=input
#pragma HLS INTERFACE axis port=output

#pragma HLS DATAFLOW

static Stream pipes[kDepth + 1];
#pragma HLS STREAM variable=pipes depth=kPipeDepth
static Stream feedback("feedback");
#pragma HLS STREAM variable=feedback depth=kNX*kBurstsPerLine
#pragma HLS RESOURCE variable=feedback core=FIFO_BRAM

ReadFeedbackSingle(input, feedback, pipes[0]);

UnrollComputeFour<kDepth>(pipes);

WriteFeedbackSingle(pipes[kDepth], feedback, output);

}
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