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Abstract

The current code generation for computing segmented reductions – reducing the
innermost array of a multidimensional array – in the compiler for the purely
functional array programming language Futhark, is suboptimal. The Futhark
compiler will use a segmented scan to compute segmented reductions, which re-
quires us to store all the intermediate steps of computing the reduction for each
segment. As Futhark aims at achieving high performance on general purpose
graphics processing units (GPGPUs), using this technique is a problem: the
performance of most reductions are in nature constrained by the memory band-
width of the GPU device, so writing all intermediate results back to memory
will be inefficient.

Futhark has a special internal construct to represent the fusion of a reduction
on the result of a map, called a redomap. For segmented redomaps – using a
redomap within a map – the Futhark compiler will use a single GPU thread
to sequentially compute the redomap for a whole segment. This can give very
good performance when we launch so many threads that we fully utilize the
GPU device; however, when there are only few segments with many elements,
this technique is utterly useless.

In this thesis, we explore how to extend the Futhark compiler to generate
efficient code for both segmented reductions and segmented redomaps. As
Futhark requires that all multidimensional arrays must be regular, all segments
must have the same size. We exploit this fact, and create multiple GPU kernels
that are specialized to some configurations of number of segments and segment
sizes. At runtime, we can decide which kernel will be most suitable, given a
configuration of number of segments and segment size.

We study the performance of this implementation using simple performance
experiments. For these experiments, the new implementation has significantly
better performance than the two baseline approaches outlined above. We eval-
uate the implementation on several benchmarks ported from the Rodinia and
Parboil benchmark suites; However, only the Backprop and K-means bench-
marks from Rodinia shows any speedup, due to the fact that not all of the
benchmarks have significant computations within a segmented reduction or a
segmented redomap. From evaluation on four different GPUs, we can demon-
strate a speedup, over the unmodified Futhark compiler, by a harmonic-mean
factor of 1.39× for Backprop, and by a harmonic-mean factor of 1.36× for K-
means.
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Chapter 1

Introduction

Futhark is a purely functional array programming language, created with the
aim of getting high performance on general purpose graphics processing units
(GPGPUs) [20]. Futhark supports nested data parallelism by bulk array opera-
tors such as map, reduce, and scan. Futhark requires that all multidimensional
arrays (also intermediate values) must be regular, meaning that all dimensions
have a fixed size.

map (\ xs -> reduce (+) 0 xs) xss

A common pattern is to perform a reduction on each inner array of a multidi-
mensional array. This is called a segmented reduction, and an example computing
the sum of each row of the 2D array xss can be seen above – we call this a
segmented sum. We use the term segment size to refer to the size of the inner
array being reduced (in our example xs ), and number of segments to refer to
the number of such arrays (and thereby also the number of results). As an
example, if we want to compute a reduction over the innermost array of a
4D array with shape [dim0][dim1][dim2][dim3], the number of segments will be
dim0 × dim1 × dim2 and the segment size will be dim3.

reduce (+) 0 (map f xs)

Another common pattern is to perform a reduction on the result of a map,
such as computing the sum of the result of applying the function f to all
elements of xs , as can be seen in the example above. This pattern is recognized
by the Futhark compiler and turned into a special construct, called a redomap [18],
that will effectively compute both the reduction and the application of f in one
pass over the data in xs . This is a significant improvement as both maps and
reductions are typically memory bound computations (in subsection 3.3.4 we
will study the redomap construct in more detail). Just as with reductions, we
often see the pattern of a segmented redomap.

The current code generation for segmented reductions is suboptimal: the
Futhark compiler will create a segmented scan (which computes an array contain-
ing all the intermediate results of the reduction), followed by writing the last
element of each segment into an array, to compute the result of the segmented
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reduction. Intuitively, as the segmented scan requires us to store all intermediate
results, there must be a more efficient implementation strategy; furthermore,
the current implementation of segmented scan in the Futhark compiler does
not exploit the fact that arrays must be regular, a fact that should allow for
optimizations in the generated code.

-- xss has shape [m][n]
map (\ xs ->

loop (sum = 0) = for i < n do
sum + xs[i]

in sum
) xss

The code generated by the Futhark compiler for a segmented redomap, will
use a single GPU thread to sequentially process a whole segment. This strategy
can be very efficient when we launch so many threads that we fully utilize
the GPU, but will be very inefficient when there are only few segments with
many elements. It is possible for a programmer to implement this strategy
manually in Futhark for segmented reductions; the program code above does
so for computing a segmented sum. As this strategy is expressed using a loop
within a map, we will call this loop-in-map.

To sum up: when I started my thesis, there were two ways to compute
segmented reductions and segmented redomaps; either using a segmented
scan or a sequential loop. The main goal of my thesis is to extend the Futhark
compiler with a more efficient method for computing segmented reductions
and segmented redomaps, over all configuration of number of segments and
segment size. The baseline we will compare my implementation against is
therefore a segmented scan and a sequential loop. For the same number of total
elements, I also hope to be able to compute a segmented reduction with the
same efficiency as a normal one-dimensional reduction.

To examine the performance of the segmented scan and loop-in-map im-
plementations, I have made a simple benchmark computing the segmented
sum of a 2D-array. This is held against the performance of a reduction comput-
ing the sum of a 1D-array. We should take note of the fact that comparing a
segmented reduction with a one-dimensional reduction is inherently skewed:
when there are more segments, we need to write more results to memory, which
increases the best possible runtime (we will examine this in more detail in
subsection 5.2.1). I will also point out that the loop-in-map approach needs to
transpose the input array to effectively access memory on the GPU, while the
reduction of the one-dimensional array does not need this (we will cover this in
section 4.4).

Figure 1.1 shows the results of reducing 226 32-bit floats, total of 256 MiB,
on a NVIDIA GTX 780 Ti. The x-axis corresponds to different configurations of
number of segments and segment size. We can see that the performance of the
segmented-scan is far from the performance of the one-dimensional reduction,
but otherwise pretty stable. The loop-in-map is really slow when there are too
few segments to work on (off the charts), as a small number of threads have to
do all the work. The loop-in-map strategy becomes really fast when there are
enough segments that it can fully utilize the hardware (the GTX 780 Ti can have
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Figure 1.1: Performance of a computing segmented sum implemented as a
segmented scan, a sequential loop within a map over the segments (loop-in-
map). We use 226 floats in different configurations of number of segments and
segment size. We compare the performance with a 1D reduction computing the
sum of as many elements (reduce). Run on a GTX 780 Ti.

30720 active threads1). As the segment size becomes very small, we can see
the runtime takes a small hit in three cases: this is caused by the transposition,
which has a bit worse performance in these cases.

The overall plan is to use three different strategies to effectively cover all
cases of number of segments and segment size. (1) When there are few large
segments we will use an approach similar to a one-dimensional reduction,
where we use many groups of threads to cooperatively perform the reduction
over a single segment. (2) When there are so many segments that we can fully
utilize the GPU by using the loop-in-map approach, where we compute the
reduction for a whole segment in a single thread, we will do so. Finally, (3)
when there are not enough segments that using loop-in-map is effective, but the
segment sizes are small, we will use a single group of threads to cooperatively
reduce multiple segments. In this thesis, we will explore how to implement
these strategies, and study their performance:

• I give the semantics of Futhark’s reduction and redomap, and give an
intuition of why they have an efficient parallel implementation (chapter 3).
I will also give an introduction to the Futhark language, and present how a

12048 active threads on each of its 15 Streaming Multiprocessors
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segmented scan can be implemented in the Futhark source language; this
allows us to use the segmented scan to implement a segmented reduction
in the Futhark source language.

• I summarize the most important factors for achieving good performance
when programming for GPUs, with a detailed example for how reductions
can be effectively implemented in CUDA (chapter 4). I will show how a
transpose kernel can be implemented in CUDA, and why a transpose is
needed for the loop-in-map strategy to have the optimal memory access
pattern for a GPU.

• I present a prototype implementation for the three strategies outlined
above, and experiments showing the raw performance characteristics of
all three strategies (chapter 5).

I will show the cost of performing a transpose, and briefly introduce a
new transpose algorithm that will improve performance of the standard
transpose algorithm when either the width or the height of the input array
is low (subsection 5.2.4).

I will show the performance of computing a commutative and a non-
commutative segmented reduction using all three implementation strate-
gies. I present a simple algorithm to decide which strategy to use for a
given configuration of number of segments and segment size, and discuss
how this algorithm could be extended with additional parameters to allow
an autotuning project to tune which strategy is used (section 5.3).

• I give an overview of how my implementation in the Futhark compiler
will generate code for segmented reductions and segmented redomaps
(chapter 6). I will also discuss which cases can and cannot be handled by
my implementation.

I present a small performance evaluation of my implementation using
segmented sum, and a non-trivial segmented reduction, showing that my
implementation achieves performance better or equal to the two baseline
approaches (section 6.5).

• I evaluate the performance improvements from using my implementation
for segmented reductions and segmented redomaps, on ported bench-
marks from the Rodinia and Parboil benchmark suites (chapter 7). The
speedup is heavily influenced by the percentage of total work that is
performed by segmented reductions and segmented redomaps; for the
Backprop and K-means benchmarks from Rodinia, using 4 different GPUs,
I can demonstrate a speedup by a harmonic-mean factor of 1.39× and
1.36× respectively, compared to the unmodified Futhark compiler.

• I present a survey on existing work for executing segmented reductions
effectively on GPUs, and compare them with my implementation (chap-
ter 8). I show a simple performance evaluation using segmented sum, that
demonstrates that my implementation is able to get better performance
than the solutions from Thrust, and Modern GPU.
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Chapter 2

Notation and Naming
Convention

Here are some small remarks on notation and naming convention I use in this
thesis.

• For declaring the size of input data I use kibibytes where 1024 bytes =
1 KiB, mebibytes where 10242 bytes = 1024 KiB = 1 MiB, and gibibytes
where 10243 bytes = 1024 MiB = 1 GiB.

• I will often talk about time in microseconds, which is denoted by the
symbol µs. The conversion ratio to milliseconds is 1000 µs = 1 ms, and the
conversion ratio to seconds is 1 000 000 µs = 1000 ms = 1 s.

• One of the things that make GPU programming confusing, is that there are
different terminology depending on whether you use CUDA or OpenCL.
When introducing a GPU concept in chapter 4, I have striven to define
both CUDA and OpenCL terms. However, I will always use the term
thread instead of OpenCL’s work-item, and most of the time use the term
group instead of CUDA’s block (but not when explaining CUDA code).

• As a reduction can be considered a redomap with the identity function
as the “map part”, I will often only say redomap if I talk about both a
reduction and a redomap, and say reduction to mean only reduction (and
not redomap).

• I will mark long word from a programming language and small segments
of inline code as some_inline_code(foo, bar) .
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Chapter 3

The Futhark Language and its
redomap Construct

In this chapter I will give an introduction to the Futhark language, going in
detail with the reduce and redomap constructs. I will only cover the parts
needed to understand my thesis. For a more details of the Futhark language,
please see [11, 12, 17, 18, 19, 20].

3.1 Notation

I will adopt the notation from other Futhark papers [18]. When q is a name
for an object of some type, I will denote n of these as q̄(n) = q1, . . . , qn, and
q̄ = q1, . . . , qn for some n. I will also define a[i] to be the element at index i of
the array a (starting at index 0), and ā[i] = (a1[i], . . . , an[i]).

3.2 The Futhark Language

Futhark is a purely functional array programming language, created with the
aim of getting high performance on GPUs [20]. It supports nested data par-
allelism on regular arrays by parallel second order array combinators (SOACs)
such as map, reduce, and scan. Futhark is eagerly evaluated, with call-by-value
semantics. Futhark has been designed to be a fairly simple language, to more
easily allow for powerful compiler optimizations.

Futhark programs are written in a source language; one of the first things the
compiler does after parsing a program is to convert it into a representation using
the internal core language. Figure 3.1 shows the abstract syntax for the subset of
the internal core language important for this thesis. There are a few differences
between the two languages, which I will mention below, but in general they are
very similar.
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q̄(n) ::= q1, . . . , qn (notation)
q̄ ::= q1, . . . , qn for some n (notation)

x ::= id (variable name)
z ::= id | Const (variable name or scalar value)
k ::= Const | [k1, . . . , kn] (scalar or array value)
f ::= id (function name)
p ::= x : τ (typed variable)

t ::= i8 | i16 | i32 | i64 | (basic type)
bool | f32 | f64

τ ::= t | [z1, . . . , zn]t (size-dep n-dim array type)

l,⊕ ::= (\( p̄ ) : ( τ̄ ) -> e) (anonymous function)

e ::= x (variable)
| k (scalar or array value)
| (z̄(n)) (n-tuple exp)
| x[z1, ..., zn] (array indexing)
| � z (unop)
| z1 ⊗ z2 (binop)
| f ( z̄ ) (function-call)
| if z then e1 else e2 (if)
| let ( p̄ ) = e1 in e2 (let-binding)
| iota z (the array [0,. . . , z − 1])
| map l (x̄(n)) (n-ary map)
| reduce ⊕ (z̄(n)) (x̄(n)) (reduce with n-ary op)
| reduceComm ⊕ (z̄(n)) (x̄(n)) (commutative reduce with n-ary op)
| scan ⊕ (z̄(n)) (x̄(n)) (scan with n-ary op)
| redomap ⊕ l (z̄(m)) (x̄(n)) (fusion of a reduce on the result of a map)
| x[z1,...,zn] = z (in-place update)
| loop ((p̄(n)) = (z̄(n))) = (sequential do-loop)

for z′ < z′′ do e

P ::= fun f(p̄(n)) : ( τ̄ ) = e (named function def)
| P P | ε

Figure 3.1: Syntax of Futhark’s core language.
Adapted from [18]

To summarize the information presented in Figure 3.1, a Futhark program
consists of multiple functions, which takes arguments and evaluates and ex-
pression (or multiple expressions by using let bindings). Most of the Futhark
expressions are similar to other functional programming languages, but I will
present some details for some interesting cases below. We will also explore some
properties that are important to Futhark, such as regularity of arrays and the
array-of-tuples to tuple-of-arrays transformation.

For convenience instead of writing let x = e in let y = ... we can
write let x = e let y = ... .

3.2.1 Regular Arrays

Futhark requires that all multidimensional arrays (also intermediate values)
must be regular, this means that all inner arrays must have the same shape – that
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array dimensions must have a fixed size. The array [ [1,2], [3,4], [5,6] ]
is valid and has the type [3][2]i32, but [ [1], [3,4] ] is invalid because it
is not regular.

3.2.2 Array-of-Tuples to Tuple-of-Arrays

The source language allows tuples and arrays of tuples, e.g. [ (1,true),(1,false) ]
has type [](i32,bool). Arrays of the same outer size can be combined into an
array-of-tuples with the zip operator, and this can be undone by unzip.

An important transformation performed early on in the compiler pipeline
is transforming array-of-tuples to tuple-of-arrays. This means that expressions
and functions that take a tuple as argument in the source language will take
multiple arguments in the core language – one for each of the values in the tuple.
There are edge cases where some values expressible in the source language are
no longer valid after applying this transformation; this is not important for this
thesis, but more details can be found at [11].

The reason for wanting tuple-of-arrays instead of array-of-tuples is that this
helps enable good memory access patterns on GPUs (memory coalescing, which
is introduced in subsection 4.2.1), and is a generally applied technique in the
GPU-programming domain.

In many other languages this transformation is called Array-of-Structures
(AoS) to Structure-of-Arrays (SoA).

3.2.3 Loop

loop (p̄(n) = z̄(n)) = for z′ < z′′ do e

The loop construct is a bit special for a functional language, but can be thought
of as a tail-recursive function. The loop construct works as follows: (1) Bind the
accumulator variables p̄(n) to the initial values z̄(n), and bind z′ to 0; (2) if the
condition (z′ < z′′) is false, the loop will end and the result will be the current
values of p̄(n); otherwise, (3) evaluate e (with z′ and p̄(n) in scope), bind p̄(n) to
the result from evaluating e, increase z′ by 1, and goto step (2).

fun main(xs : [n]i32) : i32 =
loop (sum = 0) = for i < n do

sum + xs[i]
in sum

An example of a loop can be found in the program above, which uses the loop in
a non-idiomatic way to compute the sum of the input list. Note that the variable
n will be bound to the length of the input list when entering the function.

3.2.4 Array Slicing

The grammar in Figure 3.1 does not show the full capabilities of indexing an
array. In fact, we can use a slice in every position where an array index is valid.
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In the source language a slice of i:j:s will take elements from i to j (excluded)
with a stride of s. In the core language i:n*s will start at i and take n elements
with a stride of s.

fun main(xss : [m][n]i32) : [][] i32 =
xss [0:m:2, 0:n:3]

As an example, the program above (in the source language) will produce a 2D
array, containing every third element from every second row.

3.2.5 In-place Update & Uniqueness

In-place updates is a special feature of Futhark, and can only happen when the
original array is marked as unique at that point in the program. An array is
unique if it, and all array variables it is aliased with, is not used on any following
execution path. The type of a unique array is prefixed with an asterisk, such as
*[]i32.

Simply put, array variables are aliased if they would share the same underly-
ing memory. Aliasing can occur from simple expressions such as let x : []i32 = y
or when accessing a slice of an array let x : []i32 = y[0] . By using the
copy x construct, we can create a unique copy of a non-unique array.

The uniqueness types in Futhark is inspired by Clean [3], but is only impor-
tant for this thesis because they allow us to perform in-place updates.

3.3 Second Order Array Combinators

Here I will give more details for some of the important SOACs that are used in
the rest of my thesis, which are not self explanatory (such as map).

3.3.1 Terminology

We define a reduction operator to be an operator ⊕ : A → A → A which is (1)
associative, so that for all elements x, y, and z in the domain A it must satisfy:

(x⊕ y)⊕ z = x⊕ (y ⊕ z)

and (2) must have a neutral element e, which for all elements x in the domain A
must satisfy:

e⊕ x = x⊕ e = x

A reduction operator can also be commutative, if for all elements x and y in
the domain A it satisfies:

x⊕ y = y ⊕ x
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Floating Points

In the following we will use floating points as the element type of reductions;
this is standard practice within the field of parallel computing, even though
floating point arithmetic is not associative [13].

3.3.2 Reduce

For this discussion we will define reduce using a bit different symbols than in
the grammar:

reduce ⊕ (e1, . . . , en) (a1, . . . , an)

where ē = (e1, . . . , en) is the neutral element, and ā = (a1, . . . , an) is the arrays
for the reduction.

The reduce expression is well typed if (1) all arrays in ā have the same size
w in the outermost dimension; and (2) the types of ē, the types of the elements
of ā, and the types of the operands of ⊕ all match.

If ⊕ is an associative reduction operator with the neutral element ē, the
reduce expression is well-defined, and the result of evaluating it will be:

reduce ⊕ ē ā = ē⊕ ā[0]⊕ ā[1]⊕ · · · ⊕ ā[w − 1]

so the result of reducing an empty list is the neutral element ē.

Parallel Execution

The requirement in Futhark that the reduction operator must be associative is
different from the fold functions known from ML and Haskell, but this allows
us to easily parallelize the computation; we can split the arrays ā into as many
parts as we want, run a reduction on each part, and finally reduce all the partial
results. As an example we could split ā into two parts, divided at the index k,
reduce each part on a different processor, and finally reduce the partial results
from the two processors:(

ē⊕ ā[0]⊕ ā[1]⊕ · · · ⊕ ā[k − 1]
)
⊕
(
ē⊕ ā[k]⊕ ā[k + 1]⊕ · · · ⊕ ā[w − 1]

)
A commutative reduction can be marked by using the reduceComm keyword

instead of reduce. When dealing with a commutative reduction, there is no
restriction on the order in which we can reduce elements. As an example we
could split ā into two parts, divided by even and odd indexes, reduce each
part on a different processor, and finally reduce the partial results from the two
processors (assuming w is an even number):(

ē⊕ ā[0]⊕ ā[2]⊕ · · · ⊕ ā[w − 2]
)
⊕
(
ē⊕ ā[1]⊕ ā[3]⊕ · · · ⊕ ā[w − 1]

)
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fun max(x: i32) (y: i32): i32 =
if x > y then x else y

-- (best , left , right , total )
fun redOp ((bx , lx , rx , tx): (i32 ,i32 ,i32 ,i32))

((by , ly , ry , ty): (i32 ,i32 ,i32 ,i32)): (i32 ,i32 ,i32 ,i32) =
( max bx (max by (rx + ly))
, max lx (tx+ly)
, max ry (rx+ty)
, tsx + tsy)

fun mapOp (x: i32): (i32 ,i32 ,i32 ,i32) =
(max x 0, max x 0, max x 0, x)

fun main(xs: [] i32): i32 =
let (x, _, _, _) = reduce redOp (0 ,0 ,0 ,0) (map mapOp xs)
in x

Figure 3.2: Parallel Futhark Implementation of Maximum Segment Sum (MSS)

Maximum Segment Sum

An interesting example of a problem that can be solved using a non-commutative
reduction is the maximum segment sum (MSS) problem. In the MSS problem
we are given an array and need to find the largest sum of all possible contiguous
subarrays. (Disclaimer: this example is used in many other places in the Futhark
documentation)

The code in Figure 3.2 shows the Futhark implementation for MSS. After
having reduced the elements of a contiguous subarray, the resulting tuple will
contain the four values (b, l, r, t), where b is the best MSS seen so far, l is the best
MSS starting from the “left” of the subarray, r is the best MSS starting from the
“right” of the subarray, and t is the total sum of the whole subarray.

Many programming languages targeting GPUs does not allow you to de-
fine a non-commutative reduction operator, so in these cases Futhark is more
expressive. We look more at this in chapter 8.

3.3.3 Scan

scan ⊕ (e1, . . . , en) (a1, . . . , an)

The scan expression is very similar to the reduce expression, and can be
thought of as computing an array containing all the intermediate results of
performing a reduction over the same arguments. The scan operator ⊕must
also be associative, and ē must be the corresponding neutral element. As before,
all input arrays must have the same size w. The result of evaluating a scan
expression will be the array:[

(ā[0]) , (ā[0]⊕ ā[1]) , . . . , (ā[0]⊕ ā[1]⊕ · · · ⊕ ā[w − 1])
]
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The resulting array has the same size w as the input arrays. This type of scan is
called an inclusive scan, as the input element at index i is used to compute the
result at index i.

A scan can be efficiently implemented in parallel on a GPU [16]. The cost of
executing a scan is intuitively larger than the cost of a reduction: For a scan we
must perform more computation and also write many more results to memory
(a significant cost on the GPU).

3.3.4 Redomap

redomap ⊕ f (e1, . . . , em) (a1, . . . , an)

A redomap is intuitively a fusion of a reduction on the result of a map. It is
not possible to use a redomap directly in the source language. To define the
semantics of redomap, I will use the following equation:

redomap ⊕ f ē(m) ā(n) ≡ let b̄(l) = map g ā(n)

let c̄(m) = (b1, . . . , bm)
let d̄(k) = (bk−l, . . . , bl)
in
(
reduce ⊕ ē(m) c̄(m) , d̄(k))

The function f is called a fold-function, and will take as parameters (1) an accu-
mulator value x̄(m) for the reduction and (2) an input from ā which we will call
ȳ(n). We apply g to ȳ(n) and as a result get z̄(l). Of these l values we will use the
first m values to compute the new reduction accumulator, and also return the
last k values of z̄(n) as the result of the “map-part” (possibly none, possibly all).

f ≡ \x̄(m) ȳ(n) -> let z̄(l) = g ȳ(n)

in
(

x̄(m) ⊕ (z1, . . . , zm) , (zl−k, . . . , zl)
)

We will assume that the g function will return the value(s) used in the reduction
as the first m return values, if this is not the case we can modify g to do so (e.g.,
if the reduction is over the unmodified elements of ā(n), we can make a function
g′ that adds ȳ(n) as the first return values).

A redomap can be either commutative or non-commutative, depending
on the reduction it represents. We will denote a commutative redomap as
redomapComm. Redomap has a very efficient parallel implementation, compara-
ble to hand optimized Thrust code [18].

-- input program ( source language )
fun main (ys : [] i32) : (i32 , [] i32) =

let ys_doubled = map (\y -> y*2) ys
in ( reduceComm (+) 0 ys , ys_doubled )

-- as redomap (core language )
fun main (ys : [] i32) : (i32 , [] i32) =

redomapComm (+)
(\x y -> let z = y*2 in (x+y, z))
0
ys
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An example of how the transformation to a redomap works can be seen above,
with a program that computes both the sum of the input array ys but also an
array with the result of multiplying all elements in ys with 2.

If we look back at the MSS example, this will be converted to a redomap
by the compiler; This means that the result of map mapOp xs will never be
manifested as an array in memory.

Naming Convention for Redomaps and Reductions

As a reduction can be considered as a redomap with g as the identity function, I
will often only say redomap if I talk about both a reduction and a redomap, and
say reduction to mean only reduction (and not redomap).

3.4 Segmented SOAC

We denote a SOAC as segmented if it is mapped over a multidimensional array,
for example segmented reduction means map (\xs -> reduce ⊕ ē xs) . In
the same way we can have a segmented scan and a segmented redomap. Such
segmented operations are not uncommon, for example they appear often in the
translation of APL programs to Futhark [10, 21].

We can make a segmented version of the MSS program, by simply changing
the main function to the following1:

fun main(xss: [m][n]i32): [m]i32 =
map (\ xs -> let (x, _, _, _) = reduce redOp (0 ,0 ,0 ,0) (map mapOp

xs) in x) xss

As mentioned in the introduction, when the Futhark compiler encounters a
segmented reduction it will generate code using first a segmented scan, followed
by picking off the last element from each segment. For a segmented redomap,
it will use one thread to process a segment sequentially. The main goal of this
thesis is to improve on this state of affairs.

3.4.1 Implementing Segmented Scan

We can implement a segmented scan in a source language Futhark program by
using a normal scan and a flag array, a method that was pioneered by NESL
[5]. The code below uses this method to compute a segmented prefix-sum. I
mention this example because it is the way a segmented scan is implemented in
the Futhark compiler.

To mark the beginning of a segment, we use true as the flag value; all other
flags should be set to false initially. In the flag-reduction operator, if the flag
for the right operand is true this means that we are computing the result for an
element in another segment, so we return the element from the right operand

1I named the dimension of the input array in this case, but we do not need to
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unchanged. When combining values of the same segment, we will propagate
the flag value of the left operand. This ensures that once an element has been
combined with the first element of the segment (have gotten its final value) it
will not be changed later.

fun seg_scan_sum_op ( x_flag : bool , x: i32)
( y_flag :bool , y :i32) : (bool ,i32) =

if y_flag
then ( x_flag || y_flag , y)
else ( x_flag || y_flag , x + y)

fun segmented_scan_sum ( flags : [n]bool , as: [n]i32): [n]i32 =
let (_, res) = unzip (scan seg_scan_sum_op (false , 0) (zip flags

as))
in res

3.4.2 Implementing Segmented Reduction

We can now use this segmented scan to implement a segmented reduction. For
a regular 2D array with shape [m][n], we create the flag array by setting every
nth entry to true and the rest to false , we must make the input array flat,
compute the segmented scan, and finally we must read the last element from
each segment.

An implementation using the segmented scan functions can be seen below.
iota n will create the array [0, 1, . . . , n− 1] and the reshape expression will
make a flat version of xs without performing a copy (the two arrays are aliased).
The last line reads the last element from each segment.

fun segmented_reduce_sum (xs: [m][n]i32) : [m]i32 =
let flags = map (\i -> i % n == 0) (iota (m*n))
let xs_flat = reshape (m*n) xs
let scanned = segmented_scan_sum (flags , xs_flat )
in map (\i -> scanned [((i+1)*n) -1]) (iota m)

When I started my thesis, this was the strategy the Futhark compiler would
use to implement a segmented reduction. This strategy has two major flaws,
(1) it requires us to compute and store all intermediate results of the reduction,
which is unnecessary; and (2) it does not exploit the fact that the input array is
regular, which could allow for major simplification of the generated code.
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Chapter 4

Achieving Good Performance
on GPUs

In this chapter I will give a small introduction to GPU programming and summa-
rize the most important factors for achieving good performance for GPU code.
I will show how to implement reduction and transposition using CUDA (two
important algorithms for the rest of my thesis), and I will show how transposing
an array can help achieve a good memory access pattern (memory coalescing).

4.1 Basics of GPU Programming

A GPU has a number of streaming multiprocessors (SM) (OpenCL: compute unit)
that each can run a large number of threads concurrently. A number of threads
are bundled together in a warp: All threads within a warp executes the same
instruction simultaneously.

In an if-then-else statement, if all threads within the same warp evaluate
the condition to the same value only that branch will be executed; otherwise
both branches will be executed, one after the other, and the threads will idle
while the incorrect branch is being executed. The same logic applies to for-loops
and the like.

The main idea of GPU programming is that we spawn a lot of threads to
execute the same instructions on different parts of our input data. We do this by
creating a single function, called a kernel, which all threads will execute. Threads
are organized into groups (CUDA: blocks), and the groups are organized into a
grid. All groups have the same size, which should be a multiple of the warp size.
There is a maximum allowed group size so we must use multiple groups to
work on large input. It is common practice to launch significantly more threads
than can be active at once, called oversubscribe the hardware, because this lets
the scheduler on the GPU start executing a new group of threads as soon as
another group of threads have all finished executing their kernel.

To let each thread work on a different part of the input data, there are
special variables/functions for a thread to get its index within a group, and
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variables/functions to get the index of the group – a unique index can now be
calculated as thread_id = local_id + group_id * group_size .

It is not possible for threads within different groups to synchronize their
execution. If we want to perform multiple steps of computation with synchro-
nization in-between, we can simply launch the first kernel and wait for it to
finish before launching the second kernel.

Threads within the same group can exchange data, and have a fast mecha-
nism to synchronize their execution. When launching a kernel, we can request
an amount of fast on-chip memory only accessible by the threads in the same
group, called local memory (CUDA: shared memory). Whenever we want to read
data from local memory that has been written by a thread in a different warp, we
need to synchronize all the threads in the group, because we do not know if the
other warp has reached the point yet where the data would be written.

All threads have access to a large amount of slow off-chip global memory
(CUDA: global memory). All NVIDIA GPUs above compute capability 2.x tries
to speed global memory access up by employing a shared L2 cache, and some
GPUs have a L1 cache per SM [8]. The global memory resides on the GPU
device, so when we want to run a kernel on some data currently in the host
memory (normal RAM of your node), we first need to transfer the data to the
GPU; once the kernel is done we need to transfer the data back from the (GPU)
device to the host.

When using a GPU to accelerate only parts of the computation of a program,
before the GPU kernel can start, we will have to wait on transfering data from
the host to the GPU device; After the GPU kernel is finished, we will also have
to wait for the data to be transferred back to the host from the GPU device. In
this thesis we are interested in making the most efficient implementation of the
computation phase, so we will completely ignore this aspect. However, I will
note that it is possible to apply pipelining to the process of transferring data
and performing computation, which is called streaming in GPU terminology.
Streaming can improve the total performance of accelerating parts of a program
tremendously.

You can run multiple kernels at the same time on a GPU, but I do not use
this in my thesis, so we will not go into details about this.

4.2 Important Factors for Good Performance

I will go over the most important factor for getting good performance from
GPU code.

4.2.1 Memory Coalescing

Using the correct memory access pattern is the alpha and omega of GPU pro-
gramming, because it has such a high impact on performance. In general terms
the access pattern we are looking for is the following: If the threads in a warp is
numbered i, i + 1, . . . , i + k, the threads should access elements j, j + 1, . . . , j + k
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of the array respectively. This is called memory coalescing, and it also works if the
threads access the same elements in a permuted fashion (e.g., in reverse order).

When accessing global memory in this way, we only need a single memory
transaction to get the requested data for all k threads. I am skipping over some
low level details to this, such as the fact that if the first element is not aligned to a
128-byte address, we might need two memory transactions; and that depending
on whether the global memory is configured to be cached or not, the amount of
data transferred in a single memory transaction changes; but overall this is the
key insight.

Local memory (the fast-per group memory) is implemented using a number
of equally sized memory modules, called banks, that can be accessed at the same
time. I will consider the case of NVIDIA GPUs above compute capability 2.x,
which has 32 banks, one for each thread in the warp. Successive data elements
(32 or 64 bits) are stored in successive banks1. If all threads in a warp access data
from a different bank, even if the access is not coalesced, all requests will be
handled simultaneously. However, if multiple threads want to access different
data elements from the same bank, the requests will be handled sequentially. So
if thread i want to access data element i× 32, the total time for memory access
will be 32 times longer than if each thread was using its own bank. It is not
a problem if multiple threads access the same data element, it will simply be
broadcasted.

4.2.2 Occupancy

Once we are performing coalesced memory accesses, to get high performance
we need to run enough threads to hide the latency of memory accesses. Usually
we want to run as many threads as possible.

The theoretical occupancy of launching a kernel is defined as the number of
active threads possible in this configuration, over the maximal number of active
threads that can be run on the GPU.

theoretical occupancy = possible active threads in this configuration
maximal number of active threads on this GPU

The number of threads it is possible to run on a single SM is determined by
a number of things:

1. There is a hard limit on the maximum number of threads, maximum al-
lowed group size, and maximum number of groups per SM. Only launch-
ing one large group, or many small groups will not give high occupancy.

As an example, on the GTX 780 Ti, a SM can have a total of 2048 threads,
has a maximum group size of 1024, and the maximum number of groups
is 16. So launching 16 groups with size 32, will only give us 16×32

2048 =
512

2048 = 25% occupancy. Launching a single group with size 1024 will give
us 50% occupancy, however we could just launch 2 groups of size 1024 to

1compute capability 3.x allows this to be configured to either 32-bit or 64-bit.
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get to 100% occupancy. If we are using a group size of 768 we can at most
fit 2 groups on a SM, and thus get 2×768

2048 = 1536
2048 = 75% occupancy.

On the GTX 780 Ti, to get 100% occupancy with the smallest possible group
size we need to use all 16 possible groups, so the group size must be 2048

16 =
128. Generally speaking group sizes of 128 and 256 are recommended
because multiples of these can easily hit the maximum number of threads
per SM within the limit of maximum number of groups per SM.

2. There is a hard limit on the number of registers, and on the amount of
local memory per SM. If a kernel uses many registers per thread, or a large
amount of local memory per thread, the limit of the maximum number
of threads will come from these constraints – and therefore also what the
best group size and number of groups is.

On the GTX 780 Ti, there is 49152 bytes of local memory2 and 65536 32-bit
registers per SM. This means that to get 100% occupancy each thread can
use at most 65536

2048 = 32 registers, and 49152
2048 = 24 bytes of local memory.

If you want to play around with different configurations on NVIDIA GPUs,
I can recommend an occupancy calculator excel sheet NVIDIA have made: http:
//developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.
xls

Higher Performance with Lower Occupancy

For memory bound kernels it is possible to get higher performance with lower
occupancy. This might seem like a contradiction, but the idea described in [31]
is actually quite straightforward.

If all threads process multiple elements instead of one, they might be able to
have multiple global memory transactions in flight at once. To store this data
each thread might need more registers, which then forces the occupancy down.
However, there might be a net benefit here; if we need to halve our group size,
but each thread can process four elements in the same time as before, we have
achieved a 2x speedup.

Generally speaking processing multiple elements per thread will lead to
better performance for memory bound kernels, and will not always make the
occupancy go down.

4.3 Example CUDA Programs

I will show a few examples of how to implement algorithms in CUDA, specifi-
cally how to perform a parallel reduction and how to perform a parallel trans-
position of an array. (For this section I will use the term block instead of group).

2This size is configurable, as 65KB of fast on-chip memory is divided between the L1 cache and
the local memory. We use the configuration of 49152 bytes of local memory.
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4.3.1 SAXPY – A Simple Example Program

To start off, we will look at a very simple example to get familiar with the code
used to program CUDA. Below is a CUDA kernel for looping over all elements
x, y of the arrays X, Y and computing y = y + a ∗ x, with the constant a. Both
of the arrays Y and X have size n. This computation is called single precision a
times x plus y (SAXPY).

__global__ void saxpy (int n, float a, const float * X, float * Y)
{

int global_id = blockIdx .x * blockDim .x + threadIdx .x;
if ( global_id < n) {

Y[ global_id ] = Y[ global_id ] + a * X[ global_id ];
}

}

The keyword __global__ marks the function as a CUDA kernel callable from
the host. A block is made up of a 3D arrangement of threads, and a grid is made
up of a 3D arrangement of blocks; Most of the time we only use one dimension
as in this example (transposition is an exception). The blockIdx has x,y,z
fields for the index of the block in the grid, and threadIdx has x,y,z for the
index of the thread inside the block. Likewise, blockDim has information on
the shape of the block, and gridDim the shape of the grid.

We can compute a global index for a thread as
blockIdx.x * blockDim.x + threadIdx.x . To fully process the array, we
must launch d n

blockDim.xe blocks.

float *h_X , *h_Y;
... // initialize h_X and h_Y

// copy data to device memory
float *d_X , *d_Y;
cudaMalloc (&d_X , n* sizeof ( float ));
cudaMalloc (&d_Y , n* sizeof ( float ));
cudaMemcpy (d_X , h_X , n* sizeof ( float ), cudaMemcpyHostToDevice );
cudaMemcpy (d_Y , h_Y , n* sizeof ( float ), cudaMemcpyHostToDevice );

// launch kernel
dim3 dimBlock (256 , 1, 1);
dim3 dimGrid ((n+256 -1) /256 , 1, 1);
saxpy <<<dimGrid , dimBlock >>> (n, a, d_X , d_Y);

The code above shows how to launch the saxpy kernel. We must first allocate
memory on the GPU device for X and Y. Then we must copy the data X and Y
from the host to the device. We must configure the shape of the blocks and the
shape of the grid (we compute da

b e as a+b−1
b ). Finally, we can launch the kernel

with the special syntax <<< grid , block >>> .

4.3.2 Parallel Reduction

I will give an example for how to compute a sum-reduction in parallel us-
ing CUDA. I will only consider an implementation that can handle a non-
commutative reduction operator. I will treat the simple case where each thread
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Figure 4.1: Computing reduction inside block using the first kernel version.
Adapted from [15].

reads one element from the input array. Making each thread read multiple
elements will improve performance: we will investigate this in subsection 5.2.2.

This example is partially based on [15], which gives a detailed explanation
for how to compute an efficient commutative parallel reduction in CUDA. For
simplicity, we will only handle cases where the size of the input data is a
multiple of the block size, and the block size is a power of 2.

We will use multiple phases to compute the reduction. First we will launch
multiple blocks to perform reductions on multiple separate parts of the array,
and then we will reduce these intermediate results further until we have a single
result. The main idea for computing a reduction within a block is to use a binary
tree approach: at each level of the tree we will perform a reduction between the
nodes are connected by the same parent.

We will explore two different implementations: the second implementation
will improve on the performance of the first.

First version

The code for the first version of the kernel is listed below (and is adapted from
[15]).

Each thread will put an element of the input array into shared memory. Then
the tree-based reduction begins, which is illustrated in Figure 4.1. If we let s
denote the size of a block, the iterations will proceed as:

• In the first iteration, the first s/2 threads will perform a reduction – thread
with index tid will reduce element tid × 2 and element tid × 2 + 1, and
store result at tid×2. Then we need to synchronize threads in the block, to
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ensure that threads in different warps have all finished performing their
reductions in this iteration before moving on to the next iteration.

• In the second iteration, the first s/4 threads will perform a reduction;
thread tid will reduce element tid× 2 and element tid× 2 + 1, and store
the result at tid× 2. Again we need to synchronize threads here.

• We will continue iterating and halving the number of threads to perform a
reduction, until there is only one thread left performing the last reduction.

__global__ void first_reduce_kernel ( const float * idata , float *
odata ) {
extern __shared__ float sdata [];
const unsigned int tid = threadIdx .x;
const unsigned int offset = blockDim .x * blockIdx .x + tid;

sdata [tid] = idata [ offset ];
__syncthreads ();

for ( unsigned int s=1; s < blockDim .x; s*=2) {
int index = 2 * s * tid;

if ( index < blockDim .x) {
sdata [ index ] += sdata [ index +s];

}

__syncthreads ();
}

if (tid == 0) odata [ blockIdx .x] = sdata [0];
}

If we look at the access pattern for the shared memory, we can see that in
iteration with index i there is a stride of 2i. So in the 5th iteration, we will use a
stride of 32, and at most 32 threads3. This has the unfortunate consequence that
all threads will use the same bank for their access to shared memory. If we are
using a block size of 1024, we will get a 32-way bank conflict.

In the 6th iteration, we will use a stride of 64, and again all active threads
(max 16) will use the same bank. It’s not really looking good in the 4th iteration
either to be honest, by using a stride of 16 there will be two 16-way bank conflicts
in each warp.

If we could get rid of these bank conflicts, we should be able to get better
performance, and that is what we will do in the second version.

Second version

This version of the reduction kernel uses the same overall idea: put one input
element into the shared memory and then perform the reduction. However,
the way of performing the reduction is significantly changed: We start by
performing a reduction within each warp, then pass the intermediate values to
the first warp which will reduce these values to get a final result.

3because of the max block size of 1024
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Performing reductions within a warp has the benefits that there will be no
bank conflicts, and we do not need to use __syncthreads() . As CUDA has a
warp size of 32 and a maximum block size of 1024 = 322, we will always be able
to fit all the intermediate results of all warps in the first 32 elements of shared
memory, and thus only use one warp for this step-2 reduction.

To handle the case where there are not 32 warps used in a block (i.e., block-
size < 1024), after performing the reduction in warp 0, the threads in warp 0
will fill the shared memory at positions [1, 31] with the neutral element (i.e., 0).

__device__ inline
void reduce_in_warp ( volatile float * sh_mem , const unsigned int tid)

{
const unsigned int lane = tid & 31;

// no synchronization needed inside a WARP
if (lane % 2 == 0) sh_mem [tid] = sh_mem [tid] + sh_mem [tid +1] ;
if (lane % 4 == 0) sh_mem [tid] = sh_mem [tid] + sh_mem [tid +2] ;
if (lane % 8 == 0) sh_mem [tid] = sh_mem [tid] + sh_mem [tid +4] ;
if (lane % 16 == 0) sh_mem [tid] = sh_mem [tid] + sh_mem [tid +8] ;
if (lane % 32 == 0) sh_mem [tid] = sh_mem [tid] + sh_mem [tid +16];

}

__device__ inline
void reduce_in_block ( volatile float * sh_mem , const unsigned int tid

) {
const unsigned int lane = tid & 31;
const unsigned int warpid = tid >> 5;

reduce_in_warp (sh_mem , tid);

// fill blank values in position [1..31] , if not 32 warps are
used.

if ( warpid == 0 && lane != 0) sh_mem [tid] = 0;

__syncthreads ();

// move intermediate result from this warp to the first warp.
if (lane == 0) sh_mem [ warpid ] = sh_mem [tid ];
__syncthreads ();

if ( warpid > 0) return ;

reduce_in_warp (sh_mem , tid);
}

__global__ void second_reduce_kernel ( const float * idata , float *
odata ) {
extern __shared__ float sh_mem [];
const unsigned int tid = threadIdx .x;
const unsigned int offset = blockDim .x * blockIdx .x + tid;

sh_mem [tid] = idata [ offset ];

reduce_in_block (sh_mem , tid);

if (tid == 0) odata [ blockIdx .x] = sh_mem [0];
}

I did not explore if using the threads of warp 0 to fill the intermediate array,
thus generating a 31-way bank conflict, was faster than letting the first thread of
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(b) Transposed array.

Figure 4.2: Example of transposing a [4][3] array into a [3][4] array.

each warp move its own intermediate result to the correct position in the shared
memory.

There are two small notes concerning the code: (1) the keyword __device__
marks a function as a GPU kernel callable from other GPU kernels; (2) normally
the modulo expression lane % x would be expensive, but in this case the
compiler can optimize it into lane & (x-1) because x is a power of 2.

Performance

I made a small performance comparison of the two versions, which can be
found in appendix A. Version 2 gets a speedup of more than 2x over version 1
when using a block size of 1024, and is never slower than version 1 – though the
difference is very small when using a block size of 128. The fully optimized com-
mutative reduction kernel from NVIDIA has better performance than version 2,
and in one case achieves a speedup of 2x over version 2.

4.3.3 Transposition

Transposition is an important GPU kernel because it can help us achieve memory
coalescing as we shall explore in section 4.4.

If we have a 2D array of size [height][width], we can transpose this into a
[width][height] array. For the purpose of illustration, Figure 4.2 shows the result
of transposing a [4][3] array into a [3][4] array.

To understand the implementation strategy we will go through a small
example. Assume we use a block shape of (x = 32, y = 32, z = 1), and that
we have a 2D array of size [32][64] we would like to transpose into a [64][32]
array. We can do this by launching 2 groups, each will read all elements of a
32x32 section of the input array, and write them to the correct position in the
output array. We will call the square section of the arrays a tile, and the number
of threads in each direction the tile size.

The code shown below is an optimized version of a transposition kernel
using this strategy. It uses shared memory to store the result of reading the tile,
which allows each threads to write a different element than it read – otherwise
writing from threads in the same warp would use a stride global memory
access, which is not good. The code also used a slightly larger amount of shared
memory than needed ([TILE][TILE + 1] instead of [TILE][TILE]) to avoid
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that all threads in a warp, that have the same index in the y-dimension iy but
different indexes in the x-dimension ix, should access shared memory at [ix][iy]
which would be served by the same bank (bank iy).

More details for how to arrive at this implementation can be found in [14].
The code shown here represents the transposition code Futhark uses, and differ
slightly from what is presented in [14]: this version does not process multiple
elements per thread, which can yield an improvement in performance.

// blockDim .y = TILE; blockDim .x = TILE
// each block transposes a square (TILE x TILE) part of the input

array A
template <int TILE >
__global__ void transpose_futhark ( const float * A, float * B, int

heightA , int widthA ) {

__shared__ float tile[TILE ][ TILE +1];

int x = blockIdx .x * TILE + threadIdx .x;
int y = blockIdx .y * TILE + threadIdx .y;

int ind = y * widthA + x;
if (x < widthA && y < heightA ) {

tile[ threadIdx .y][ threadIdx .x] = A[ind ];
}
__syncthreads ();

x = blockIdx .y * TILE + threadIdx .x;
y = blockIdx .x * TILE + threadIdx .y;

ind = y * heightA + x;
if (x < heightA && y < widthA ) {

B[ind] = tile[ threadIdx .x][ threadIdx .y];
}

}

Futhark Implementation

Futhark currently uses a transposition with tile size of 16. This has the unfor-
tunate effect that on NVIDIA GPUs that has warp size of 32 (and 32 banks),
we will run into 2-way bank conflicts: assuming that tile[0][0] is served by
bank 0, thread 16 within the first warp will access tile[1][0] which is served
by bank 17 (because bank 16 should serve the element at tile[0][16] ). By
the same logic, thread 31 will access the element at tile[1][15] which will be
served by bank 0. So we have a 2-way bank conflict, because two threads want
to access different elements from the same bank (This will indeed happen for
every warp, and not just the first one).

This problem will not occur when using TILE size of 32, as all threads in a
warp will access their own bank. I will show the difference in performance in
subsection 5.2.4.
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Figure 4.3: Transposition can allow memory coalescing when using non-
commutative reduction.

4.4 Transposing to Achieve Memory Coalescing

We are in trouble if we want each thread in a kernel to read multiple elements
from an array in consecutive order, because this access will not be coalesced.

If there are t threads that all want to read c elements of a 1D input array
of size t × c, we can make the array accesses coalesced by this trick: We will
pretend the 1D input array is a 2D array with the shape [t][c], to transpose the
array, which will get the shape [c][t]. Now the threads will access the global
memory in a coalesced way, as a thread with global id gi will find its elements
at indexes

gi , (gi + t) , (gi + t× 2) , . . . ,
(
gi + t× (c− 1)

)
Figure 4.3 shows an example of how this works. We are using an input array
of size 12, we will use a total of 4 thread (t = 4) and each thread should read 3
elements (c = 3). The “pretend” array of size [4][3] can be seen in Figure 4.3b,
and the result of transposing can be seen in Figure 4.3c. Now the 4 threads can
read one element from the same row in each iteration, so the access is coalesced.

If the size of the input array is not a multiple of the total number of threads
t, we cannot transpose it. To handle this case, we extend the array so it becomes
a multiple of t, which we can then transpose.

4.4.1 Segmented Input

We can also transpose a segmented array, to allow for coalesced access. We use
the same approach as before, and just need a more complex indexing function.

In Figure 4.4 we transpose a [2][3] array to be used by 2 groups of 2 threads
each (t = 4) and each thread should read 2 elements (c = 2). After padding the
array to length t × c = 8, we can treat it as a [4][3] array and transpose it to a
[3][4] array.

When reading the first element, the indexing function must make sure that
thread 0 and 1 in group 0 read from index 0 and 1 respectively; and must make
sure that thread 0 and 1 in group 1 read from index 6 and 7.
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Figure 4.4: Transposition of 2 segments with size 3, when wanting to use 2
groups with 2 threads, and thus a chunking=2.

4.5 Performance of Memory Bound Kernels

The performance of kernels that perform very little computation per element
is bounded by the memory bandwidthcuda-transpose of the GPU device, this
is what we call a memory bound kernel. It is often instructive to measure the
performance of a memory bound kernel as the memory bandwidth it utilizes
as a percentage of the maximum bandwidth. The performance of a good
implementation for reduction with a low-intensity reduction operator, such as
addition, will be bounded by memory.

We can compute the theoretical maximum bandwidth (also called the peak
bandwidth) of a GPU device by using the following formula with its memory
frequency and the memory bus width in bytes:

peak bandwidth in GiB/s = memory freq× bus width× 2
10243 (4.1)

where the ×2 comes from the fact that the bus is running double data rate
(DDR).

However, it is often not possible to reach 100% utilization of the available
bandwidth, even for performing a memory copy. When using a small dataset it
is also not possible to utilize the hardware fully, so measuring bandwidth of a
kernel that only processes an array of 100 elements will not give any meaningful
data.

The GTX 780 Ti has a memory clock rate of 3500 MHz and memory bus
width of 384 bits. This yields a theoretical memory bandwidth of

3500× 106 × 384
8 × 2

10243 = 312.92 GiB/s

for completeness, in gigabytes per second, the bandwidth is 336 GB/s.
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Chapter 5

Prototype

My idea for computing segmented reductions efficiently involved using three
different strategies to effectively cover all cases of number of segments and
segment size:

• When there are so many segments that we can fully utilize the GPU by
computing the reduction for each segment sequentially in a single thread,
my plan was to do so.

• When there are few large segments I planned to use an approach similar
to a one-dimensional reduction, where we use multiple groups to perform
the reduction over a single segment.

• when there are too few segments that using the sequential approach is
not efficient, and the segment sizes are so small that the first approach
will not be efficient, my plan was to use a single group to reduce multiple
segments.

In this chapter we will explore these three strategies, and their performance
when computing a segmented sum. We will use a fixed number of total elements,
and study the performance on different configurations of number of segments
and segment size, ranging from a single segment that contains all the elements,
to the other extreme of all the segments only containing a single element.

Initially I will give some more details on each strategy and their implementa-
tion (section 5.1). Then we will look at how the maximum memory of the GPU
will determine the best possible runtime for a given configuration of number of
segments and segment size (subsection 5.2.1).

We will continue by examining how making each thread of a group read
multiple elements can significantly improve performance (subsection 5.2.2), and
will study the raw performance of each of the three strategies (subsection 5.2.3).

Transposing the input array can be required to enable coalesced memory
accesses in the final computation of segmented reductions, so we will study
the cost of performing a transpose (subsection 5.2.4). We will see that when
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either the width or the height of the input array is low, the normal transpose
kernel is very inefficient; I will briefly introduce a new transpose kernel that
will improve performance in those cases.

After having looked at the these performance measurements, I will present
a simple algorithm to decide which strategy to use for a given configuration of
number of segments and segment size (section 5.3). We will look at the final
performance of computing a commutative and a non-commutative segmented
reduction using all three implementation strategies; we will use this data to get
an idea of how good predictions where made by the decision algorithm, and
discuss ways to allow an autotuning project to influence the decision algorithm.

Limitations

I chose to focus solely on segmented reductions, and not segmented redomaps,
to allow me to getting this part of the equation right. I will also hypothesize
that a good approach for computing segmented reductions will be applicable
to segmented redomaps. We will see if this hold when when studying the
performance of my implementation in Futhark in chapter 6.

Furthermore, I narrowed the scope of this part by only using sum as the
reduction operator. My intuition is that using such a low intensity reduction
operator will allow us to focus on the cost of the algorithmic approach of
computing a segmented reduction, that is, we can see much of the maximum
bandwidth an implementation is capable of utilizing. I will hypothesize that a
good approach for segmented reduction with low intensity reduction operators
will also be applicable when using high intensity reduction operator.

Sum is a commutative reduction operator, but we will use it in the non-
commutative case as well, to be able to compare performance between commu-
tative and non-commutative reductions.

I will not try to manually tune my implementation to give the best runtime,
instead my goal is to develop a general approach that is applicable to any
problem on any GPU.

5.1 Overview & Implementation of Kernels

In this section I will give some more detail to each of the three strategies for
computing a segmented reduction outlined above. I will also try to convey the
an understanding for how each strategy can be implemented as a GPU kernel.

The idea behind investigating all three strategies is that we can choose
between them to optimize performance, for a given problem and a configuration
of number of segments and segment size.

5.1.1 Loop-in-map

The first strategy is using a single thread to sequentially compute the reduction
of a whole segment; as this can be expressed in Futhark as a loop within a map,
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Figure 5.1: The loop-in-map kernel will process each segment sequentially in
one thread.

1 __global__ void loop_in_map (...) {
2 segment_index = group_id * group_size + local_id ;
3 acc = neutral_element ;
4 for (int i = 0; i < segment_size ; i++) {
5 elem = input_array [ segment_index + i* num_segments ];
6 acc = reduction_operator (acc , elem);
7 }
8 output_array [ segment_index ] = acc;
9 }

Listing 5.1: Pseudo-CUDA-code for implementing the loop-in-map kernel

we will call this strategy loop-in-map. This strategy is illustrated in Figure 5.1,
where we can see each of the three segments being processed by their own
thread.

My initial idea was that this strategy should only be used when there are
enough segments that we can fully utilize the hardware by using a single thread
per segment.

Using loop-in-map will require us to transpose the input array to achieve
memory coalescing as described in section 4.4.

Implementation

The loop-in-map approach has a very straightforward implementation, which
can be seen in the pseudo-CUDA-code in Listing 5.1. We must launch at least as
many threads as there are segments. Each thread will go over all the elements
of a segment and apply the reduction operator.

To achieve memory coalescing we must transpose the input array; therefore,
a thread will read its elements starting at the index of the segment and use a
stride equal to the number of segments.

5.1.2 Large

If the segment size is larger than the group size, we can use multiple groups to
reduce one segment. This will allow us to use more active threads, than just
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Figure 5.2: The larger kernel can use multiple groups to reduce a single segment;
this will generate multiple intermediate results that will need to be reduced
further. In this example we use three groups for each of the two segments.

using a single group per segment. When there is only a few large segments, this
will give us much better performance. We will call this strategy large, as it is
used to process large segments.

We do however end up with a number of intermediate results per segment
that will have to be reduced afterwards; this second reduction will be over
orders of magnitude fewer elements, so should be extremely fast.

Figure 5.2 shows an example of using the large kernel to reduce two seg-
ments, using three groups per segment. The segment size is not a multiple of
the group size, so some threads in the last group for each segment is wasted
because there is not any elements for them to read. In Figure 5.2 we will get 3
results per segment that will need to be reduced further to get a single value
per segment.

When the segments are very large, instead of launching thousands of groups
per segment, we can make each thread of a group read multiple elements. This
can improve performance significantly, because multiple memory transactions
can be in flight at once (as described in subsection 4.2.2). This will also have
the added benefit of reducing the number of intermediate results produced
per segment. For a non-commutative reduction, making each thread multiple
elements will require that the input array has been transposed, to achieve
memory coalescing (as described in section 4.4).

If there are so many segments that it would not increase occupancy to use
multiple groups per segment, we can use a single group where each thread
reads multiple elements to reduce an entire segment, thereby also avoiding the
cost of the recursive reduction of intermediate values.

The large kernel cannot be used to reduce more than one segment per group.
When the segment size is much lower than the group size, we will only be able
to use a small fraction of the threads in a group with the larger kernel, so we
cannot expect it to be very efficient.

Implementation

The larger kernel can be implemented very similarly to the second parallel
reduction kernel from subsection 4.3.2.
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1 __global__ void large (...) {
2 segment_index = group_id / num_blocks_per_segment
3 elem_inc = is_commutative ? threads_in_segment : 1
4 stride = is_commutative ? threads_in_segment : <...>
5 elem_idx = <...>
6 offset = <...>
7

8 acc = neutral_element ;
9 for (int i = 0; i < chunking && elem_idx < segment_size ;

10 i++, elem_idx += elem_inc ) {
11 elem = input_array [ offset + i* stride ];
12 acc = reduction_operator (acc , elem);
13 }
14

15 sh_mem [tid] = acc;
16 reudce_in_block (sh_mem , tid);
17 if (tid == 0) output_array [ blockIdx .x] = sh_mem [0];
18 }

Listing 5.2: Pseudo-CUDA-code for implementing the large kernel

Pseudo-CUDA-code for implementing the large kernel is in Listing 5.2.
Compared to subsection 4.3.2 we have added a loop that will read at most
chunking elements, or stop if the element it is about to read is out of bounds;
for example, if the group size is 128 and the segment size is 255, we will
use chunking=2 but we should make sure the last thread only reads a single
element.

Notice there is a difference between using a commutative and non-commutative
reduction. To use a non-commutative reduction with chunking> 1 we must
transpose the input array to get memory coalescing, and therefore the offset
and stride calculation for indexing the input array will be different than for
a commutative reduction. For a commutative reduction, we will use a stride
equal to the total number of threads working on a segment.

It is important to understand that the threads in a non-commutative reduc-
tion will read consecutive elements of the original input array. This means that
the way a groupsize + 1 sized segment will be handled is different: the threads
in a commutative reduction will read one element each, except for the first
thread that will read two elements; whereas for a non-commutative reduction,
the first half of the threads will read two elements each, and then the next thread
will read the last element.

5.1.3 Small

If the segment size is smaller than the group size, we might be able to process
multiple segments inside a single group. This will be more efficient than using
one group of the same size to process one segment, as the percentage of threads
that can would be able to read an element must be low; that is

percent active threads = segment size
group size

≤ 50%
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Figure 5.3: The small kernel can process multiple whole segments within a
single group. In this example each group can process two whole segments, but
there is only one segment to reduce for the last group.

we will call this strategy small, because it handles small segment sizes.

For simplicity, we will only consider processing a whole number of seg-
ments within one group, so we do not need to transfer intermediate results
between groups. We might waste some threads because we cannot fill the group
completely.

Figure 5.3 shows an example of using the small kernel; we can fit 2 whole
segments within a single group, so we need 2 groups to process the three
segments. The last group will have more “wasted” threads because there is only
one segment for it to reduce.

Input data will not need to be transposed, because each thread will only
read one element.

Implementation

The small kernel can be implemented using a segmented scan within the
group/block (see subsection 3.4.1 for details on segmented scan).

The pseudo-CUDA-code in Listing 5.3 illustrates how the small kernel can
be implemented. To handle spare threads that should not read elements of a
segment, we compute a boolean flag isactive . A wasted thread needs to
participate in the segmented scan, so we just use the neutral element as the
element value. To compute the segmented scan we will modify the reduction
operator to use a flag array as we did in subsection 3.4.1.

An important difference between performing a normal segmented scan and
a segmented scan within a group is, that we can create the flag array in the fast
local memory (this is faster than reading the elements from global memory);
Furthermore, we only need to write some of the results from the in-group-
segmented-scan to global memory, compared to all the results for a normal
segmented scan. These differences should make the small kernel much faster
than performing a general segmented scan.

I took the approach of a segmented scan because it was simple. I believe
that it would be possible to create a more efficient solution to the problem of
small segment sizes, but I did not choose to invest my time here.
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1 __global__ void small (...) {
2 isactive = <...>
3

4 if ( isactive ) {
5 segment_index = <...>
6 offset = <...>
7 elem = input_array [ offset ]
8 } else {
9 elem = neutral_element ;

10 }
11

12 sh_mem_elem [tid] = elem;
13

14 flag = tid % segment_size == 0;
15 sh_mem_flag [tid] = flag;
16

17 segscan_in_block (sh_mem , sh_mem_flag , tid)
18

19 if ( isactive && tid < segments_per_group )
20 output_array [ segment_index ] = sh_mem [( tid +1)* segment_size ];
21 }

Listing 5.3: Pseudo-CUDA-code for implementing the small kernel

5.2 Performance Experiments

Now we will look at the performance for the three different approaches. How
much will reading multiple elements per thread improve the performance of
the large kernel? What is the performance of the three kernels on different input
data? And what is the cost of performing a transpose?

The experiments are run on a GTX 780 Ti. Reported runtimes are averages of
running a kernel n consecutive times1, after performing an initial warmup run.

I will use row-major array notation for describing a configuration of number
of segments and segment size: [m][n] will denote an array with m segments that
each have size n.

I will mostly use two sizes for the total number of elements: 220 = 1 048 576
and 226 = 67 108 864. I only use 32-bit floating points as the element type. 220

32-bit floating points is 4 MiB of data, and 226 32-bit floating points is 256 MiB
of data.

Terminology

When a thread reads multiple elements, we will call this chunking, and we
will call the number of elements read per thread the chunking factor. We will
sometimes write that we use chunking=n, to mean that we use a chunking
factor of n.

1This will not launch the kernels concurrently. To do this we must launch the kernels in different
streams.
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(b) Using dataset of 226 32-bit floating points.

Figure 5.4: Time it will take to perform a segmented reduction on different
configurations of number of segments and segment size, when utilizing 100%,
50%, 30%, and 10% of peak bandwidth on a GTX 780 Ti.

5.2.1 Bandwidth as The Limiting Factor

In section 4.5 we discussed how the performance of a kernel that does very little
computation per element, would be bounded by the peak memory bandwidth
of the GPU device. Before we begin looking at experiments for segmented
reductions, we will study what performance to expect given a configuration
of number of segments and segment size. We will ignore any reads and writes
to temporary arrays that would occur in the multi-step approach, as they are
“incidental”. So we are looking at the best case possible performance.

If we are given a single segment with a size of 226 we need to read all
elements of the array, but only need to write one result: in total (226 + 1)
elements read and written to memory. If we are given 226 segments all with a
single element, we still need to read all elements of the array, but also to write
226 results: in total (226 + 226) elements read and written to memory. Therefore,
we can conclude that an optimal solution to computing segmented reductions
that utilizes 100% of peak bandwidth, will be nearly twice as fast for the first
configuration.

Figure 5.4 shows the time it will take to perform a segmented reduction
on different configurations of number of segments and segment size, when
utilizing 100%, 50%, 30%, and 10% of peak bandwidth on a GTX 780 Ti. The
peak bandwidth for the GTX 780 Ti is 312.92 GiB/s, so 50% is 156.46 GiB/s,
30% is 93.88 GiB/s, and 10% is 31.29 GiB/s. Figure 5.4a shows the results when
using a total of 220 32-bit floating points, and Figure 5.4b shows the results when
using a total of 226 32-bit floating points. In both cases the optimal runtime is
almost constant for the first many configurations, but starts increasing rapidly
towards the end. The last configuration where there is only a single element in
each segment, will take twice as long to process as a single segment containing
all elements.
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Figure 5.5: The performance impact of increasing the chunking factor. We use
a constant group size of 128 to process a single large segment. We vary the
chunking factor, and therefore also the number of groups.

5.2.2 The Importance of Chunking

Here I will try to answer the question of how large the benefit of chunking, and
give a method of calculate a reasonable chunking factor to use.

I created an experiment, processing a single large segment of 220 or 226

elements using a constant group size of 128. We will use the chunking factors
1, 2, 22, 23, . . ., and therefore also vary the number of groups used.

We only look at the first step of performing the overall segmented reduction,
so the result will be an array with one intermediate result from each group. This
allows us to focus on the optimal chunking value.

The results from running this experiment can be seen in Figure 5.5 (results
are averaged over 5 consecutive runs). We can see that we can get a great
improvement in performance by using a chunking factor greater than 1, but
how should we determine what chunking factor to use before looking at a figure
like this?

As explained earlier, the maximum number of concurrently executing threads
on the GTX 780 Ti is 30720. By using a group size of 128, we need at least
30720

128 = 240 groups to fully utilize the hardware. Therefore, I added a chunking
factor such that we would use 240 groups (chunking of 35 for the 220 case, and
2185 for the 226 case). In both cases using 240 groups gives the best performance
of all the tested combinations. In Figure 5.5b we can see that launching many
more groups (e.g., 4095), while still using a fairly high chunking factor, achieves
almost the same performance.

Performance drops off significantly after using 64 or less groups for both
cases. This is because we are using a low amount of total threads (� 30720), so
the hardware is not being fully utilized.
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We do see that performance drops a bit when using 256 groups in both
Figure 5.5a and Figure 5.5b. How can that be? For the purpose of simplicity
let us assume that the scheduler can start 240 groups of size 128 at the same
time, and that a group spends chunking time units to finish its execution. This
means that all 240 groups will finish at the same time, and a new batch of
groups can start. In the case of 256 groups, we will have to launch two batches
of groups, with 240 groups in the first, and 16 in the next. This means we
will spend a total of chunking × 2 = 2048 × 2 = 4096 units of time. In the
case of 4096 groups, we will have to launch d 4096

240 e = 18 batches, taking a
total of chunking × 18 = 128 × 18 = 2304 units of time. This is obviously an
oversimplification, but I think it is a reasonable explanation for why using 256
groups gives slightly worse performance.

So why isn’t the performance of using 128 groups as bad? Well, we can
probably attribute that to the fact that higher chunking is better, and that there
is probably some kind of benefit of scheduling fewer groups.

The overall lesson learned here is that using chunking can improve perfor-
mance tremendously, and that we should aim for 100% occupancy under the
whole kernel execution.

Calculating Chunking Factor

In the following, when using a group size of 128, I will use this simple equation
for calculating the number of groups to use per segment:

number of groups per segment =
⌈

240
number of segments

⌉
(5.1)

for example, using 2 segments will give us 120 groups per segment, and using
64 segments will give us 4 groups per segment.

We will use this equation for calculating the chunking factor

chunking factor =
⌈

segment size
number of groups per segment× 128

⌉
(5.2)

for example, using a segment size of 500 and 256 threads in total per segment
will give us a chunking factor of 2.

If I use a different group size, we can use the same equations with adjusted
constants.

5.2.3 Raw Performance Comparison

Now we will compare the performance of the three kernels, using different
configurations of number of segments and segment size. We will only look
at the raw performance of the kernels, so we will only look at the first step of
performing the overall segmented reduction, and ignore transpositions; after
looking at the performance of transpose in the next section, we will look at the
big picture for both commutative and non-commutative segmented reductions.
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(b) Using group size 128.

Figure 5.6: Performance on 220 32-bit floating points when using the large, small,
and loop-in-map kernels in different configurations of number of segment and
segment size.
The yellow vertical bar marks the configuration where the number of segments
is equal to the group size (chunking=1). The gray lines mark the runtime if
utilizing the peak bandwidth by that percentage.

Figure 5.6 shows the performance of the three kernels, where the x-axis
corresponds to using different configurations of 220 32-bit floating points. In
Figure 5.6a we have used a group size of 1024, and in Figure 5.6b we have used
a group size of 128.

Figure 5.7 shows the performance of the three kernels, where the x-axis
corresponds to using different configurations of 226 32-bit floating points. In
Figure 5.7a we have used a group size of 1024, and in Figure 5.7b we have used
a group size of 128.

In all figures the yellow vertical bar marks the configuration where the
number of segments is equal to the group size (chunking=1). The gray lines
mark the runtime if utilizing the peak bandwidth by that percentage. Reported
times are averaged over 10 consecutive runs.

We can make the following interesting observations:

• The group size has a large impact on how long the large kernel is viable
to use. Using a group size of 128 allows us to get good performance for a
larger portion of the input space, because we can postpone the problem of
only being able to use a small fraction of the threads in a group.

• The loop-in-map kernel increases in runtime as the number of segments
becomes very high. As we can see from the gray bandwidth-percentage
lines, this is due to the fact that more results have to be written to memory.

• Performance of the small kernel increases significantly as the segment
size becomes smaller. This happens even though there are more results
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(a) Using group size 1024.
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Figure 5.7: Performance on 226 32-bit floating points when using the large, small,
and loop-in-map kernels in different configurations of number of segment and
segment size.
The yellow vertical bar marks the configuration where the number of segments
is equal to the group size (chunking=1). The gray lines mark the runtime if
utilizing the peak bandwidth by that percentage.

to write to global memory, and we are using the same number of threads
and groups.

As we can see from the gray bandwidth-percentage lines, the small kernel
does not even utilize the bandwidth by 30% of its peak; so the small kernel
is bounded by the computations it has to perform, and not by the memory
bandwidth.

Therefore, a reasonable explanation for the performance increase is that
when there are fewer elements in a segment, the segmented scan will
perform fewer reductions between elements (it will only check the flag
arrays).

• The performance small kernel seems really bad when compared to the
good cases for the large and the loop-in-map kernel. However, this is an
unfair comparison. The loop-in-map kernel will need a transpose, so the
results here simply show that it has high throughput, and not necessarily
that is will have better runtime than the small kernel in the end.

For the large kernel, we should also compare to the case where chunk-
ing=1, simply because the small kernel does not use a chunking. We can
see that in all cases, the runtime of the small kernel is within a factor 2 of
the runtime of the large kernel with chunking = 1.

• There is a performance penalty of using a group size of 1024 over a group
size of 128. We can see this in the cases where large uses chunking=1
(i.e., the point on the x-axis marked by the yellow bar), using a group size
of 128 has a significant advantage: for 226 elements using group size of
1024 with chunking=1 takes 5662 µs, and using group size of 128 with
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chunking=1 takes 4791 µs. This can also be seen in the “last” case for the
small kernel, where the segment size is 1.

This phenomenon can be explain by the fact that synchronizing 1024
threads compared to 128 threads have a significant higher cost. Each
thread will have to wait longer for all other threads to reach the synchro-
nization point, causing lower throughput.

• For the large kernel, the performance takes a small hit after we start using
more than a few segments. For the group size 1024 this happens when
using 22 = 4 or more segments, and 128 this happens when using 25 = 32
or more segments. The reason is that this is the point where we go from
using the “optimal” number of groups, to a slightly larger number of
groups. I described this effect in subsection 5.2.2 for the case of group size
128, where we saw the same performance degradation when using 256
groups instead of 240 groups.

For both group sizes 1024 and 128, and for both cases of number of
total elements, we see four entries with worse performance, before the
performance improves again. For these four cases the large kernel will use
the same slightly-more-than-optimal-number-of-groups, and then it will
start to use a number of groups that are equal to the number of segments
(which is then larger than this slightly-more-than-optimal-number-of-
groups).

• When comparing the performance against the gray bandwidth-percentage
lines in Figure 5.6 and Figure 5.7, we can see that the amount of data used
has a big impact on the bandwidth we are able to utilize. In Figure 5.6 we
only utilize more than 50% of the peak bandwidth by the good cases of the
loop-in-map kernel, whereas in Figure 5.7 we are able to utilize more than
50% of the bandwidth for every configuration of number of segments and
segment size, except for the ones where the large kernel uses the “bad”
number of groups.

I also ran this experiment with group sizes 512 and 256, but the only interest-
ing observation I made is that using group size 256 has no performance penalty
over using group size of 128, there is only a difference in when the kernels are
viable to use. Plots for both input sizes with all four group sizes can be found in
appendix B.

Using a group size of 64 would not help extend the number of configurations
that we could use the large kernel on, at least not on the GTX 780 Ti; With the
group size 128, we are using as many concurrent groups as possible on the
GPU, so by using group size of 64 we could only get 50% occupancy! See
subsection 4.2.2 for more details.

5.2.4 Transpose Cost

We need to transpose the input array when using the loop-in-map kernel and
when computing a non-commutative reduction using the large kernel with a
chunking factor greater than one. We do this to get memory coalesced access
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(b) Close up

Figure 5.8: Performance of transposing an array. We use both groups of 1024
threads to transpose a 32× 32 slice of the input array each, and groups of 256
threads to transpose a 16× 16 slice each.

to global memory. Therefore, it is interesting to evaluate how expensive a
transpose is.

Recall from subsection 4.3.3 that when using a total of t threads that should
read (at most) c elements, we will pad the array to have length t× c if needed,
and “pretend” it is a [t][c] array to transpose it to a [c][t] array.

We will only look at arrays that does not need to be padded, as a more
specialized transpose kernel could remove the need for performing this padding
step (i.e., by taking a max_index argument).

In subsection 4.3.3 I mentioned that Futhark uses a tile size of 16 causing
a 2-way bank conflict, and that this would not occur if using a tile size of 32.
Figure 5.8 shows the result of performing a transpose using these two kernels,
over the usual 226 32-bit floating points. Reported times are averaged over 10
consecutive runs.

We can see that using a small size for either dimension in the transpose
yields horrible results. This is because the transpose kernel will always create
groups with shape [tilesize][tilesize], but only threads with indexes that is not
out-of-bounds will perform any work. In the case of transposing a [1][n] array,
only 1

tilesize of the threads in a group will perform any work. This could hint
at why a 16x16 transpose kernel was chosen over a 32x32 kernel, as the 16x16
kernel handles these edge-cases a bit better2. However, in Figure 5.8b we do that
using 16x16 for the tile size causes a bit of loss in performance around [214][212],
which does not occur when using a tile size of 32x32. I have not been able to
explain this. Maybe it is the 2-way bank conflict showing up, although that is
just a shot in the wind.

The bad performance when the width of the input array is low, is very
troublesome. This means that if our chunking factor is low (< tile size), a
transposition will be very costly.

2or it could simply stem from the time when there were only 16 banks on the GPU.
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Figure 5.9: The performance of the new transpose kernel

When computing a non-commutative reduction, we could avoid this prob-
lem for the large kernel by simply not using chunking when the chunking factor
is lower than the tile size. However, this is not an option for the loop-in-map
kernel. Therefore, I wanted to explore how to improve the performance of
transpose in the edge cases.

Improving Performance on Low Size in Either Dimension

I created a new transpose kernel to handle the cases where either dimension
is smaller than the tile size. In the case of a low height of the input array, the
new transpose kernel will read m × tilesize elements of each row instead of
just tilesize, where m =

⌊
tilesize
height

⌋
. The implementation of this kernel is listed in

appendix C.

The new transpose kernel should only be used in the cases where m ≥ 2,
which covers the edge cases from before. The performance improvement from
using the new kernels to handle low width and low height, can be seen in
Figure 5.9. We can see that it is has huge performance improvement compared
to the normal 16x16 kernel for the edge cases, but that it is not as fast as the
good cases for the normal 16x16 kernel.

An important detail for this new transpose is that it does not help in the
case where the height falls with in tilesize

2 < height < tilesize, because we
cannot use m ≥ 2. We know that the percentage of active threads in these
cases must be strictly greater than 50%. In Figure 5.9 we can see that using 50%
active threads, the [23][223] entry, does give worse results but they are within a
reasonable margin from the best performance. An other aspect of this problem is
using a height of tilesize + 1, were we can effectively transpose the first tilesize
rows, but will inefficiently transpose the last row (because again we will use
tilesize× tilesize threads to do so). Only using powers of two for the number
of segments and segment size hides these details, which is why I wanted to
bring attention to them.
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We could improve things a bit by noting that transposing either a [1][n] array
or, a [n][1] array, will not change the layout of the data in the array. We can
simply skip the transpose altogether (if we need two separate arrays, we can
use a memory copy; on the GTX 780 Ti this takes approximately 2000 µs for this
amount of data).

To the best of my knowledge, this approach to transposing an input array
with low width or low height is novel.

5.3 Final Performance

We will now test the performance of the three kernels when computing a com-
mutative and a non-commutative reduction. This means that we will include
the cost of a transpose for the loop-in-map kernel, and when using the large
kernel with chunking greater than one in the non-commutative case. We will
use the 16x16 transpose kernel.

I have developed a simple algorithm to choose which kernel to use for a
configuration of a number of segment and a segment size, which can be seen in
Listing 5.4. The algorithm is based on two tuning parameters: number of threads
for full hardware utilization, and the group size. It will prefer using the loop-in-
map kernel if there are enough segments to fully utilize the hardware, otherwise
it will prefer using the large kernel over the small kernel, if two segments do not
fit within a group. We will also evaluate how good this algorithm is at choosing
the optimal kernel for a configuration of number of segments and segment size.

When there is only one element per segment, the semantics of our reduction
allows us to either use the input array as the output array, or to simply perform
a memory copy. Because a redomap can apply a function to input elements
before the reduction is performed, I have not used this optimization.

If the first reduction produces multiple intermediate results, I have not
included the time it would take to perform the second reduction. I allow myself
this freedom, because the cost is so low. In the worst case we will generate 240
intermediate results, and we can sum those up in < 10 µs.

I have not included the time it would take to allocate and free such interme-
diate arrays, which is in the range of 150 µs to 200 µs on the GTX 780 Ti. I allow
myself this freedom, because a smart memory management system could be
able to optimize this away.

5.3.1 Commutative

Figure 5.10 shows the final performance of computing the commutative seg-
mented sum, on 220 and 226 32-bit floating points. We use the large kernel, the
small kernel, and the loop-in-map kernel with transposition. When the chunk-
ing factor is 1, I assume the cost of a transpose is 0. The circles in Figure 5.10
mark the kernel that would be chosen by the algorithm from Listing 5.4. We can
see that the choice is not always optimal:
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1 segmented_reduction ([ number of segments ][ segment size] input ,
2 [ number of segments ] output ) {
3 if ( number of segments >= number of threads for full

utilization ) {
4 input_t = transpose ( input )
5 loop -in - map_kernel (input_t , output )
6 } else if ( segment size > group size /2) {
7 <...>
8 if (non - commutative && chunking > 1) {
9 input = transpose ( input )

10 }
11

12 if ( number of groups per segment > 1) {
13 tmp = malloc ([ number of segments ][ number of groups per

segment ])
14 large_kernel (input , tmp)
15 segmented_reduction (tmp , output )
16 } else {
17 large_kernel (input , output )
18 }
19 } else {
20 small_kernel (input , output )
21 }
22 }

Listing 5.4: Algorithm to choose which kernel to use for a configuration of
a number of segment and a segment size, based on two tuning parameters:
number of threads for full hardware utilization, and the group size

• Figure 5.10a shows that in the 220 test case, we could get better perfor-
mance by using the loop-in-map+transpose kernel for the [214][26] config-
uration instead of the small kernel, otherwise it is on point.

• Figure 5.10b shows that in the 226 test case, we could get better perfor-
mance by using the large kernel a bit longer, instead of switching to
the loop-in-map+transpose at [215][211] it would be optimal to switch at
[219][27]. The cost of the transpose is simply too high.

We can amend these sub-optimal choices by changing the tuning parameter
for the number of threads for full hardware utilization.

However, in my opinion the two cases are semantically different. Instead
of tuning the number of threads for full hardware utilization as a “hack”, we
could also add a new rule specific to commutative reductions, that would prefer
the large kernel over the loop-in-map kernel if the chunking factor was above
a certain limit. This limit would then be yet another tuning parameter. This
second approach would be able to correct the sub-optimal choices for the 226

test case.

5.3.2 Non-commutative

Figure 5.11 shows the final performance of computing the non-commutative
segmented sum, on 220 and 226 32-bit floating points. We use the large kernel
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Figure 5.10: Commutative performance. The circles mark the kernel that would
be chosen by the algorithm from Listing 5.4.
The yellow vertical bar marks the configuration where the number of segments
is equal to the group size (chunking=1).

with transposition, the small kernel, and the loop-in-map kernel with transposi-
tion. When the chunking factor is 1, I assume the cost of a transpose is 0. The
circles in Figure 5.11 mark the kernel that would be chosen by the algorithm
from Listing 5.4.

We can see there are two case where it doesn’t make the optimal choice:

• Figure 5.11a shows that in the 220 test case, we could get better perfor-
mance by using transpose + loop-in-map, instead of the small kernel, for
the [214][26] configuration

• Figure 5.11b shows that in the 226 test case, we could get better perfor-
mance by using transpose + large, instead of transpose + loop-in-map, for
the [215][211] configuration.

As with the commutative reduction, these sub-optimal choices can be amended
by changing the tuning parameter for the number of threads for full hardware
utilization.

It is worth noting that for the 226 test size, the cost of transposition when
using less than 28 segments is a bit high, because the chunking factor makes the

49



[2 0
][2 20

]

[2 2
][2 18

]

[2 4
][2 16

]

[2 6
][2 14

]

[2 8
][2 12

]

[2 10
][2 10

]

[2 12
][2 8

]

[2 14
][2 6

]

[2 16
][2 4

]

[2 18
][2 2

]

[2 20
][2 0

]

0

20

40

60

80

100

120

140

160

180

200

[number of segments][segment size]

ru
n
ti
m
e
(µ
s)

Large + Transpose
Small
Loop-in-map + Transpose

(a) Using dataset of total 220 32-bit floating points.

[2 0
][2 26

]

[2 2
][2 24

]

[2 4
][2 22

]

[2 6
][2 20

]

[2 8
][2 18

]

[2 10
][2 16

]

[2 12
][2 14

]

[2 14
][2 12

]

[2 16
][2 10

]

[2 18
][2 8

]

[2 20
][2 6

]

[2 22
][2 4

]

[2 24
][2 2

]

[2 26
][2 0

]

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

[number of segments][segment size]

ru
n
ti
m
e
(µ
s)

Large + Transpose
Small
Loop-in-map + Transpose

(b) Using dataset of total 226 32-bit floating points.

Figure 5.11: Non-commutative performance. The circles mark the kernel that
would be chosen by the algorithm from Listing 5.4.
The yellow vertical bar marks the configuration where the number of segments
is equal to the group size (chunking=1).

16x16 transpose kernel hit the bad case shown in the middle of Figure 5.83. If
we used the 32x32 transpose kernel, we could save 1000 µs on the transpose in
the configurations with less than 28 segments.

Chunking for Non-Commutative Reduction

In both Figure 5.11a and Figure 5.11b we can see that when using transpose +
large kernel with chunking=2 (directly left of yellow bar), it is actually slower
than when using chunking=1 (entry in yellow bar). For both test sizes this is also
the case for chunking=4, and with the 226 test size it is also true for chunking=8.

We could add a new rule specific for non-commutative reductions, that
would prefer using the large kernel without chunking, if the chunking factor
we could use was below a certain limit. This limit would then be yet another
tuning parameter.

3I don’t have any data for the cost of transposing an array of shape [30720][2185], so I used the
values for [215][211]
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5.4 Conclusion

In this chapter we have seen how using three different strategies for computing
segmented reductions, allows us to get handle all configurations of number of
segments and segment sizes. The large kernel is effective on large segments;
the loop-in-map kernel is effective when are many segments, as it uses a single
thread to process a segment; and the small kernel can be used in the remaining
cases.

We have seen how reading multiple elements per thread significantly in-
creases performance of the large kernel; as transposition is required for non-
commutative reductions to use this technique, we have seen that commutative
and non-commutative segmented reductions have different performance char-
acteristics.

We have explored the cost of transposition, have seen that the standard
transpose kernel has serious performance problems when handling segments
with width or height smaller than the TILE size, and briefly seen a new transpose
kernel that tries to mitigate this problem.

The simple algorithm to choose a kernel from Listing 5.4, will for any con-
figuration of number of segments and segment size, select a reasonable kernel
for both commutative and non-commutative reductions. We have seen that the
optimal choice for the tuning parameters depends heavily on the problem size
and whether the reduction is commutative or non-commutative:

• For the commutative reductions in Figure 5.10, setting the “optimal num-
ber of threads” to 214 would be optimal for the 220 case, but for the 226

case setting it to 219 would be optimal.

• For the non-commutative reductions in Figure 5.11, setting the “optimal
number of threads” to 214 would be optimal for the 220 case, but for the
226 case setting it to 216 would be optimal.

• We have also seen that adding new rules and tuning parameters specifi-
cally for commutative and non-commutative reduction would allow us to
address different classes of performance problems using their own tuning
parameters, instead of using the optimal number of threads for everything
as a hack.

• Computing a segmented redomap instead of a reduction will also in-
fluence the performance characteristics; for the segmented maximum
segment sum problem (see section 3.3.2) the input array only uses one
component per element, whereas the reduction operates over a 4-tuple.
This changes the relationship between the time a transpose takes and the
cost of performing different kinds of reductions.

• For the simple problem of segmented sum, we saw in subsection 5.2.3 that
using a group size of 128 was beneficial, but it is unlikely that this will be
the case for all problems and all input sizes.

I will not invest time in trying to statically finding the optimal values for
these tuning parameters, but will leave this for future work on an auto-tuning
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project. Therefore, and to keep things simple, I will keep my kernel-picking-
algorithm as it is presented in Listing 5.4, even though it does not always make
the optimal choice.

5.4.1 The Small Kernel

From the experiments we have investigated, it does not seem like the small
kernel is very useful. However, we have not looked at the full picture: we have
looked at performing the segmented reduction on arrays having more than a
million elements in total. For example, consider an array with 1000 segments
each having 64 elements; on a GPU that can handle 65536 active threads at one
time, it is very likely that using the small kernel where the threads can all run
at once, will be more efficient than using the loop-in-map kernel which can
only use 1000 threads. We have also looked at the idealized performance, and
completely ignored the cost of allocating and freeing a temporary arrays, which
will be required by our transpose kernel, if we are not performing advanced
memory management. On the GTX 780 Ti, I have observed the combined cost
is within the range of 150 µs to 200 µs. Even when using 220 elements, if we
allocate the temporary array and the result array in separate calls, this overhead
would cause the small kernel to be much faster than the loop-in-map kernel.

5.4.2 Ideas for Future Work

After working on this prototype, I have considered the following additional
aspects that could be explored to get even better performance:

• So far we have only looked at using a static group size, and segment sizes
using powers of two. Using odd segment sizes might cause problems
for some of the kernels. In the case of a non-commutative reduction, we
have seen that the large kernel will only use approximate half its threads
for a segment with groupsize + 1 elements. For the small kernel, if we
use a segment size of groupsize + 1, we will at most be able to fit a single
segment within a group, thereby wasting nearly half the threads.

It could be interesting to see what benefits adjusting group size dynami-
cally could give to these scenarios. However, doing this is a complicated
endeavor: we need to have a detailed understand of the GPU device we
are using, to know which group sizes can achieve high occupancy and
which can’t; we need to know the register and local memory usage of
a kernel to determine which group are allowed; and we need to way to
estimate the performance gains by for example increasing the group size
of the small kernel a little, which will then lead to fewer groups being
launched.

An other example is using a high group size, such as 1024, which will be
very inefficient for small segment sizes, such as 256. Dynamically adjust
the group size could also help in this case.
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• When using the large kernel, and it is reasonable to use multiple groups
per segment, it might be beneficial to start by increasing chunking instead;
the data on chunking in subsection 5.2.2 showed that even a chunking
factor of 4 can increase performance significantly. When faced with a large
segment, we could start by increasing the chunking factor until it reaches
a limit, and only then start using multiple groups per segment. This limit
would be yet an other tuning parameter.

For example, reducing a single segment with 1024 elements is just as fast
when using a group size of 128 and a chunking factor of 4, as using four
groups of the same size: but by only using one group we don’t need to
use a temporary array or perform the recursive reduction.
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Chapter 6

Implementation

In this chapter I will give the overview of how I implemented code generation
for segmented redomaps and segmented reductions in the Futhark compiler.
My implementation is heavily based on the prototype, described in the last
chapter. I will not go into details with the code I added, but will try to give an
intuition about how we arrive at the resulting Futhark code that is generated by
my implementation.

The Futhark compiler is freely available at GitHub. I am describing the com-
piler as its state was at commit id dd2d6651fd9ae9de6fcfe408ed02d54e4976b07e.

My code generation for segmented redomaps is invoked by the function
regularSegmentedRedomap , which is defined in the file src/Futhark/Pass/
ExtractKernels/Segmented.hs. To enable my code generation for segmented
redomaps we need to turn the global flag newSegmentedRedomap in the file
src/Futhark/Pass/ExtractKernels.hs.

6.1 The Futhark Compiler

I will introduce a few details on the Futhark compiler, that needs to be estab-
lished to understand how we can generate code for segmented redomaps.

First we will look at how redomaps are constructed by the fusion of maps
and reductions; then we will look at the kernel extractor that turns an abstract
syntax tree (AST) using second order array combinators (SOACs), such as maps
and reductions, into an AST with kernels that can be run on the GPU.

The kernel extractor is only used in the pipeline for generating OpenCL code.
There are other pipelines, such as the one for generating sequential C code – see
[11] for more details.

The Futhark Compiler uses several other passes in these pipelines, but we
will not go into details with these. For a more complete description, see [20].
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1 fun foo (xs: [n]i32 , a: i32 , bs: [n]i32) : ([n]i32 , i32 , i32) =
2 let ys = map (\x -> x+a) xs
3 let sum_ys = reduceComm (+) 0 ys
4 let zs = map (\(y, b) -> y*b) (zip ys bs)
5 let prod_zs = reduceComm (*) 1 zs
6 let xs ’ = map (\x -> x*2) xs
7 in (xs ’, sum_ys , prod_zs )
8

9 fun segfoo (xss: [m][n]i32 , a: i32 , bs: [n]i32) :
10 ([m][n]i32 , [m]i32 , [m]i32) =
11 unzip (map (\ xs -> foo(xs , a, bs)) xss)

Listing 6.1: Futhark’s fusion can turn the expressions in the function foo into a
single redomap.

6.1.1 Fusing Maps and Reductions

Here I will give an idea about how redomaps are constructed by fusing maps
and reductions. If you want more details for how fusion for redomap works in
Futhark see [18], and for details on fusion in Futhark in general see [20].

Listing 6.1 shows a contrived Futhark program. The expressions in the
function foo will be fused into a single redomap. Recall from subsection 3.3.4
that a redomap has both a reduction function and a folding function. The
folding function will be

\(acc_sum, acc_prod, x, b) -> let y = x + a

let z = y * b

let new_acc_sum = acc_sum + y

let new_acc_prod = acc_prod * z

let x’ = x * 2

in (x’, new_acc_sum, new_acc_prod)

and the reduction function will be

\(acc_sum, acc_prod, y, z) -> let new_acc_sum = acc_sum + y

let new_acc_prod = acc_prod * z

in (new_acc_sum, new_acc_prod)

with the neutral element (0,1).

The function segfoo will compute the segmented version of foo , so after
fusion we will have redomap within a map – a segmented redomap.

Note that the bs array is only being mapped over by the inner map, so the
value of b only depends on which iteration we are in of the inner map. We will
say that the variable b is invariant in the outer map.

We will say that the computation of xs’ is the map-part of the redomap. We
will say that the computation of ys and zs is the transform-part of the redomap,
as these are only used for the reduction. The map-part and the transform-part
can overlap, although they don’t in this example.

55



q̄(n) ::= q1, . . . , qn (notation)
q̄ ::= q1, . . . , qn for some n (notation)

x ::= id (variable name)
z ::= id | Const (variable name or scalar value)
k ::= Const | [k1, . . . , kn] (scalar or array value)
f ::= id (function name)
p ::= x : τ (typed variable)

t ::= i8 | i16 | i32 | i64 | (basic type)
bool | f32 | f64

τ ::= t | [z1, . . . , zn]t (size-dep n-dim array type)

l,⊕ ::= (\( p̄ ) : ( τ̄ ) -> e) (anonymous function)

e ::= x (variable)
| k (scalar or array value)
| (z̄(n)) (n-tuple exp)
| x[z1, ..., zn] (array indexing)
| � z (unop)
| z1 ⊗ z2 (binop)
| f ( z̄ ) (function-call)
| if z then e1 else e2 (if)
| let ( p̄ ) = e1 in e2 (let-binding)
| x[z1,...,zn] = z (in-place update)
| loop ((p̄(n)) = (z̄(n))) = (sequential do-loop)

for z′ < z′′ do e
| iota z (the array [0,. . . , z − 1])
| reshape (z̄(n)) x (change shape of x to (z̄(n)))
| replicate (z̄(n)) x (replicate the value x so outer-dim becomes (z̄(n)))
| scratch t (z̄(n)) (allocate memory for array with shape (z̄(n)) and type t)

Figure 6.1: Basic Expressions in Futhark, that are always allowed.

6.1.2 Kernel Extraction

The kernel extractor will take an AST using SOACs, and turn it into an AST only
using the basic expressions that can be seen in Figure 6.1 and kernel launches.
The kernel extractor looks for known patterns that can be turned into effective
kernels. An example is turning map f xs into a kernel where each thread
applies the function f to an element of the array xs .

Because Futhark is a functional language, the semantics of a kernel produc-
ing a result, is not to write an element to global memory as we have seen in
the CUDA examples so far; Instead, kernels can return values using different
return-constructs, such as one value per group, or one value per thread — we
will cover these as we use them. When generating the final OpenCL code, these
kernel return statements will indeed be turned into global memory writes, but
it is not the semantics of the program at this point.

Kernels can use special expressions, an overview is given in Figure 6.2 and
more details are given here:

SplitSpace o w i c is used when multiple threads should read multiple
elements from an array, to calculate the number of elements thread i
should read. The chunking factor c is the maximum number of elements
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w ::= id | Const (width)
i ::= id (thread specific index)
o ::= Strided z | Contiguous (ordering)

e ::= SplitSpace o w i c
( number of elements thread i should read,

at most c — total elements is w.

)
| Combine i w t x

( local memory array of type t and outer size w,
with arr[i] = x if i < w

)
| GroupReduce w ⊕ (z̄(n)) (x̄(n)) (group-wide cooperative reduce)
| GroupScan w ⊕ (z̄(n)) (x̄(n)) (group-wide cooperative scan)
| thread_id (the index of this thread, within its group)
| group_id (the index of the group this thread belong to)

Figure 6.2: Special Futhark expressions that can only be used inside kernels.

each thread should read, out of the total number of elements w. The
ordering o will either be Strided or Contiguous, and is used to handle how
to distribute the last elements when the total number of elements w is not
evenly divided by the chunking factor c.

Combine i w t x will create a local memory array to hold w values of type t.
All threads in a group must participate because synchronization barriers
are used. If thread i has an index that is lower than w, the value x from
the thread will be put at index i of the new local memory array.

GroupReduce w ⊕ (z̄(n)) (x̄(n)) performs a cooperative reduce within a group
over the arrays (x̄(n)), with the reduction operator ⊕, and neutral element
(z̄(n)). The arrays (x̄(n)) must have been brought into local memory by
Combine. All threads in a group must participate because synchronization
barriers are used.

GroupScan w ⊕ (z̄(n)) (x̄(n)) performs a cooperative scan within a group
over the arrays (x̄(n)), with the scan operator ⊕, and neutral element
(z̄(n)). The arrays (x̄(n)) must have been brought into local memory by
Combine. All threads in a group must participate because synchronization
barriers are used.

For the purpose of this thesis, we will not go into details with the kernel
extractor. An important detail is that by default kernel extract will only use my
function to handle segmented reductions by default.

There is a feature in the compiler currently under development called
versioned-code, that at runtime can choose between multiple kernels performing
the same computation. This feature is disabled by default. When enabled, for
segmented reductions and segmented redomaps, the compiler will generate
both a loop-in-map kernel and a segmented reduction kernel using either my
function (if this has been enabled) or by using the segmented scan approach.

The function to generating code for segmented reductions and segmented
redomaps should be able to handle an arbitrary number of outer maps, and
be able to handle invariant variables in the folding function. Currently the
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kernel extractor will not use our function to generate code, if any variables in
the reduction operator of the redomap are invariant in any of the maps.

After the kernel extraction pass, a kernel babysitter pass is run. The kernel
babysitter can detect that we are using chunking to read a contiguous range of
elements of an array, and it will insert a transpose before the kernel, and apply a
transformation to the indexing to match the new transposed structure. This will
ensure memory coalesced access. This means that when our function generates
code, we do not manually have to insert a transpose statement.

6.2 Implementation of Kernels

We will now study how I implemented the large and small kernels from the
prototype (chapter 5). I will not implement the loop-in-map kernel, as this is
covered by the versioned-code feature I introduced in the last section. Versioned-
code is not enabled in the Futhark compiler by default, but we will superficially
see the effect it has, when evaluating benchmarks in chapter 7.

The function I created gets a redomap as one of its input, but it is always
possible to distinguish between a redomap and a reduce, by looking at the
return type of the folding function. If there are as many values returned from
the folding function as there are neutral elements, then we are in fact dealing
with a reduction; if there are more, we are dealing with a redomap.

6.2.1 Large

Recall from subsection 5.1.2 that we can use large kernel to let multiple groups
process a single segment, and that we can use chunking to let each thread
process multiple elements.

map (\ xs -> let ys = map f xs
let zs = map g xs
let red = reduce ⊕ ne zs
in (red , ys)

) xss

I will give an overview of the Futhark code that is generated by my implemen-
tation to run the larger kernel. To keep things simple, we will consider the
segmented redomap resulting from the code above.

Algorithm 6.1 shows pseudo-code as it would be generated by my imple-
mentation. We start by initializing variables, such as calculating the number
of groups to use per segment, and the chunking factor to use. We also allocate
global memory to store the results of the map-part (i.e., the results of applying
f ).

Then comes the kernel, that all threads will run:

• In “Part 1” of the kernel in Algorithm 6.1 we calculate the segment index
(what segment are we working on), and this thread’s index out of all
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Algorithm 6.1 Large Kernel

Input: Input array inarr : [num_seg][seg_size] tin

Functions: f : tin → tmapout g : tin → tred ⊕ : tred → tred → tred

1: num_groups_per_seg←
⌈ opt_num_groups

num_seg

⌉
2: chunking←

⌈ seg_size
num_groups_per_seg×group_size

⌉
3: threads_for_seg← group_size × num_groups_per_seg
4: num_groups← num_seg × num_groups_per_seg
5: if commutative then
6: stride← threads_for_seg
7: ordering← Strided threads_for_seg
8: else
9: stride← 1

10: ordering← Continguous
11: end if
12: total_elems← num_seg × seg_size
13: mapout← Scratch (tmapout) (total_elems) . allocate global memory

14: function LARGEKERNEL:
15: . Part 1: Calculate indexes, offset to read from, and number of elements to read
16: seg_index← group_id / num_groups_per_seg
17: tid_within_seg← thread_id + group_size × (group_id % num_groups_per_seg)
18: if commutative then
19: offset← seg_index × seg_size + tid_within_seg
20: else
21: offset← seg_index × seg_size + tid_within_seg × chunking
22: end if
23: num_to_read← SplitSpace (ordering) (seg_size) (tid_within_seg) (chunking)

24: . Part 2: Create a "view" for the slice this thread should process (not materialized)
25: input_slice← inarr[offset : num_to_read * stride]
26: mapout_slice←mapout[offset : num_to_read * stride]

27: . Part 3: Apply the folding function
28: acc← neutral_element
29: for i < num_to_read do
30: x← input_slice[i]
31: y← f(x)
32: z← g(x)
33: mapout_slice[i]← y . inplace update of global memory
34: acc← acc ⊕ z
35: end for

36: . Part 4: Bring values into local memory, and perform coorperative reduce in group
37: elemarr← Combine (thread_id) (group_size) (tred) (acc)
38: redresult← GroupReduce (group_size) (⊕) (neutral_element) (elemarr)

39: . Part 5: Return results
40: return (only thread_id = 0) redresult
41: return mapout_slice (at indexes) [offset : num_to_read * stride]
42: end function

43: redres, mapres← <<<num_groups, group_size>>> LARGEKERNEL

Output: redres : [num_groups] tred , mapres : [total_elems] tmapout , num_groups_per_seg



the threads working on this segment. We use those values to calculate
the offset for the first element this thread should read; this calculation
depends on the whether the reduction is commutative. Lastly we use
SplitSpace to compute the number of elements this thread should read.

• In “Part 2” of the kernel in Algorithm 6.1 we create an array slice of the
input array, and for the output array that will hold the result of the map-
part. Creating these array slices does not mean we store those elements
in thread-local memory, it is simply a way to be able to index the global
array easily in a loop: When accessing element i of the array, from a slice
of [offset : count * stride], we need to get element offset+ i× stride.

• In “Part 3” of the kernel in Algorithm 6.1 we run the folding function
over all elements of the input slice. We perform an in-place update of the
mapout_slice in each iteration (and thus write to global memory). For
simplicity, I expressed this as an imperative for loop here, but in Futhark
we can express these lines as a do loop (as described in subsection 3.2.3).

• In “Part 4” of the kernel in Algorithm 6.1 we bring the reduction results
from all threads into local memory, and perform the cooperative group-
wide reduction.

• In “Part 5” of the kernel in Algorithm 6.1 we use the special Futhark
constructs to return results from the kernel. Thread 0 of each group
will return the result of the reduction, and all threads will return their
mapout_slice .

In the last line of Algorithm 6.1 we launch the kernel, which will give us two
arrays as the result. Assigning mapres might seem a bit odd at first; however,
as we are still dealing with a functional program, it makes sense to assign the
result to a new variable. It is the responsibility of another pass to see that we
do in fact not need to copy the elements from mapout (the global array we
allocated before the kernel) to mapres , but that we can simply use the same
memory for the two arrays. Currently, this optimization is not performed,
so each thread will copy all its elements from mapout_slice to the correct
position in mapres 1.

Launching Too Many Groups

There is a serious limitation on the suitable values to use for the tuning param-
eters for group size ( group_size ) and for optimal number of groups of this
size ( opt_num_groups ). When processing a single segment, regardless of the
segment size, we will launch opt_num_groups groups to process it. If using a
small segment size, this is clearly not optimal, as we will launch many more
groups than is needed. These “extra” groups will not read any input elements,
but they will still perform the group-wide reduction, thus taking up precious
processing time.

The risk of this happening is only present when using a chunking factor of
1. In this case we can limit the number of groups launched to the number of

1unless gcc, which compiles the OpenCL code, performs an optimization
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groups it will take to read all input elements. We can do this by inserting the
following snippet between line 2 and 3 in Algorithm 6.1

if chunking = 1 then
num_groups_per_seg←min

(
num_groups_per_seg ,

⌈ seg_size
group_size

⌉ )
end if

Optimizing One Group Per Segment

When only using one group per segment, the calculations for seg_index and
tid_within_seg from “Part 1” of Algorithm 6.1 could be simplified: we could
replace them by the following code,

seg_index← group_id
tid_within_seg← thread_id + group_size

this removes one division, one multiplication, and one modulo operation, which
would otherwise be performed by each thread.

My implementation will check if we are only launching one group per seg-
ment, and then use a specialized kernel exploiting this optimization. When
using a high chunking factor, this optimization will not improve performance
much, because most of the time is spend in the folding function loop. However,
when each thread only processes one element, removing these three expres-
sions should reduce the percentage of expressions executed by each thread
significantly.

I have not measured how much this improves performance.

Optimizing Chunking=1 For Non-commutative Reductions

As explained above, the kernel babysitter pass will insert a transpose when
it detects that we are accessing a contiguous slice of a global memory array.
This is a static decision made before running the program, so even when using
chunking=1, the transpose will still happen.

To overcome this we could create a special kernel, that is used when the
chunking factor is 1: This kernel should only read a single element from the
global input array, without creating a slice. In this way we will not perform the
transpose.

I have currently not implemented this optimization.

6.2.2 Small

Recall from subsection 5.1.3 that the small kernel will be used to process mul-
tiple segments within one group. Each thread will read a single element from
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the input array, apply the folding function, and then perform a cooperative
segmented scan within the group. We will only assign whole segments to a
group, so if a whole number of segments does not completely fill the group,
some of the threads will have no work to do. We will call these threads wasted.

The wasted threads must participate in all Combine and GroupScan ex-
pressions, because of the synchronization barriers. We will calculate a variable
to indicate if a thread is active or wasted. If the thread is not active, we will use
the neutral element as the value to the Combine expression, as this will be a
safe value to use in the GroupScan .

map (\ xs -> let ys = map f xs
let zs = map g xs
let red = reduce ⊕ ne zs
in (red , ys)

) xss

I will give an overview of the Futhark code that is generated by my implemen-
tation to run the small kernel. We will use the same underlying segmented
redomap as we did when examining the large kernel: the segmented redomap
resulting from the code above.

I will use⊕flag to denote the reduction operator after it has been transformed
to work as a segmented scan operator also taking in a flag value for each element,
as described in subsection 3.4.1.

Algorithm 6.2 shows pseudo-code as it would be generated by my imple-
mentation. We start by initializing variables, such as calculating the number
of whole segments that can fit within one group, and how many threads of a
group will be active. We must take special care for the last group, because the
number of segments it should process might be different from the other groups:
for example, if we can process 3 segments per group, and there are 10 segments,
we need 4 groups – but the last group will only process a single segment.

When returning values, only the active threads will return a value for the
map-part, and the last thread in a segment will return the reduction value for
its segment. There is no kernel-return-constructs in Futhark that maps directly
to this, so instead we will use a kernel-return-construct that lets us write a value
from each thread to a specific location in already allocated global memory. For
all threads that should not return a value, we will use an invalid offset (-1),
which causes the write to never happen. However, due to the functional nature
of Futhark, we have to provide both a value and an offset for all threads.

Then comes the kernel, that all threads will run:

• In “Part 0” of the kernel in Algorithm 6.2, we calculate the number of
active threads for this group, and calculate if this thread should be active
or not.

• If the thread is active, we will perform the following steps:

– In “Part 1” of the kernel in Algorithm 6.2, we calculate the segment
index (what segment are we working on), and this thread’s index out
of all the threads working on this segment. We use those values to
calculate the offset for the element this thread should read.
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Algorithm 6.2 Small Kernel

Input: Input array inarr : [num_seg][seg_size] tin

Functions: f : tin → tmapout g : tin → tred ⊕flag : (bool, tred)→ (bool, tred)→ (bool, tred)

1: num_seg_per_group←
⌊ group_size

seg_size

⌋
2: active_threads_per_group← num_seg_per_group × seg_size
3: if num_segments % num_seg_per_group = 0 then
4: seg_in_last_group← num_seg_per_group
5: else
6: seg_in_last_group← num_segments % num_seg_per_group
7: end if
8: active_threads_in_last_group← seg_in_last_group × seg_size
9: num_groups←

⌈ num_seg
num_seg__per_group

⌉
10: total_elems← num_seg × seg_size
11: redout← Scratch (tred) (num_seg) . allocate global memory
12: mapout← Scratch (tmapout) (total_elems) . allocate global memory

13: function SMALLKERNEL:
14: . Part 0: Calculate number of active threads in this group
15: if group_id = num_groups −1 then
16: active_threads_this_group← active_threads_in_last_group
17: else
18: active_threads_this_group← active_threads_per_group
19: end if
20: isactive← thread_id < active_threads_this_group

21: if isactive then
22: . Part 1: Calculate indexes, and offset to read element from
23: seg_index← (

⌊
thread_id
seg_size

⌋
) + (group_id × num_seg_per_group)

24: tid_within_seg← thread_id % seg_size
25: offset← seg_index × seg_size + tid_within_seg

26: . Part 2: Apply the folding function
27: acc← neutral_element
28: x← inarr[offset]
29: y← f(x)
30: z← g(x)
31: acc← acc ⊕ z
32: mapres← y
33: mapoffset← offset
34: else
35: acc← neutral_element
36: mapres← dummy_value
37: mapoffset← -1
38: end if

39: . Part 3: Bring values into local memory, and perform coorperative segmented scan in group
40: elemarr← Combine (thread_id) (group_size) (tred) (acc)
41: isfirst_in_seg← (thread_id % seg_size) = 0
42: flagarr← Combine (thread_id) (group_size) (bool) (isfirst_in_seg)
43: scanresult← GroupScan (group_size) (⊕flag) (false, neutral_element) (flagarr, elemarr)

44: . Part 4: Calculate which threads writes reduction result
45: islast_in_seg← (thread_id % seg_size) = (seg_size −1)
46: if isactive and islast_in_seg then
47: redres← scanresult[thread_id]
48: redoffset← seg_index
49: else
50: redres← neutral_element
51: redoffset← -1
52: end if

53: . Part 5: Return results
54: write redres (to) redout (at index) redoffset
55: write mapres (to) mapout (at index) mapoffset
56: end function

57: redres, mapoutres← <<<num_groups, group_size>>> SMALLKERNEL

Output: redres : [num_groups] tred , mapoutres : [total_elems] tmapout



– In “Part 2” of the kernel in Algorithm 6.2, we run the folding function
on the input element. Then we assign the result of the map-part to
the mapres variable that will be used in the end of the kernel to
write to memory. We set the mapoffset offset-variable for writing
the map-part result to the same offset as we read the input element
from.

• If the thread is not active, we provide a value for the accumulator acc that
will be used for the cooperative scan, which all threads must participate in.
We also provide a dummy value for the map-part result mapres , and set
the offset mapoffset to negative one, so the dummy value is not written
to memory in the end of the kernel.

• In “Part 3” of the kernel in Algorithm 6.2, we bring the reduction results
from all threads into local memory. We calculate the flag value for each
thread, and bring those into local memory. Then we can perform the
cooperative group-wide scan, using the modified reduction operator.

• In “Part 4” of the kernel in Algorithm 6.2, we assign the reduction values
that should be written at the end of the kernel. For the last thread in
each segment, we will set the reduction result variable redres to the
correct value from the GroupScan result array. We will also set the offset
redoffset to the segment index.

For all other threads we provide a dummy value for the reduction result
variable (the neutral element), and set the offset to negative one, so the
dummy value is not written to memory in the end of the kernel.

• In “Part 5” of the kernel in Algorithm 6.2, we return the results, by writing
the reduction result variable to memory if the reduction offset is within
bounds, and by writing the map-part result variable to memory if the map
offset if within bounds.

In the last lines of Algorithm 6.2, we simply launch the kernel. Note that we
are getting two result arrays from the computation. As in the case for map-part
result from the large kernel, we already have a variable for the global memory
that has been updated by the kernel, but we still assign the result of the kernel to
two new variables. However, as we are using the write kernel-return-construct,
we do not perform a copy between the two arrays, but simply alias them.

6.2.3 Handling Tuple-of-Arrays

We have not covered how to handle the cases where either the input, the map-
part, or the reduction operates on tuples; as we saw in the example from
Listing 6.1.

Recall from subsection 3.2.2 that we transform arrays-of-tuples into tuples-
of-arrays. Therefore, to handle a tuple, instead of reading one element from
one input array, we would simply read multiple elements from multiple input
arrays. The same goes for writing the elements for the map-part. When the
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a index b index c index segment index

0 0 0 0
0 0 1 1
0 1 0 2
0 1 1 3
0 2 0 4
0 2 1 5

1 0 0 6
1 0 1 7
1 1 0 8
1 1 1 9
1 2 0 10
1 2 1 11

Table 6.1: Resulting indexes when using three outer maps, of size a = 2, b =
3, b = 2

reduction operates uses tuples, we will need to bring an array into local memory
for each tuple-component.

If using tuples that contain many components, we might run into problems
because each thread in a kernel uses too many registers, or because each thread
needs to use a lot of local memory for all the components of the reduction.

6.2.4 Handling Invariant Variables

We have not covered how to handle variables that invariant in the outer maps,
as b was in the example from Listing 6.1. The kernel extractor will pass the
sizes of the outer maps to our function; it will also give us a list of variables that
are invariant in some maps, what array we can get their value from, and which
map to use for the index to this array.

map -- over array of size ’a’
map -- over array of size ’b’

map -- over array of size ’c’
redomap

Thus, we can handle invariant variables if we can compute the index of
each of the outer maps, by using the segment index. As an example, consider a
redomap that has three outer maps, as in the example above. If the sizes of the
outer maps are a = 2, b = 3, c = 2, we should calculate indexes for each maps
as shown in Table 6.1.
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Algorithm 6.3 How we compute the final result of a segmented redomap, using
the large kernel and small kernel

Input: Input array inarr : [num_seg][seg_size] tin

Tuning Parameters: opt_num_groups , group_size

1: total_elems← num_seg × seg_size

2: . Compute first step of redoamp
3: if seg_size >

group_size
2 then

4: redres, mapres, new_seg_size← LARGEREDOMAP(inarr)
5: else
6: redres, mapres,← SMALLREDOMAP(inarr)
7: new_seg_size← 1
8: end if

9: . Recursively reduce the intermediate results, until one result per segment
10: while new_seg_size > 1 do
11: tmp_inarr← redres
12: if new_seg_size >

group_size
2 then

13: redres , new_seg_size← LARGEREDUCEONLY(tmp_inarr)
14: else
15: redres← SMALLREDUCEONLY(tmp_inarr)
16: new_seg_size← 1
17: end if
18: end while

Output: redres : [num_seg] tred , mapres : [total_elems] tmapout

We can compute these indexes using the following equations, using the
segment index si:

c index = si mod c

b index = si

c
mod b

a index = si

c× b
mod a

we can generalize this formula to any number of outer maps.

6.2.5 Combining Kernels to Compute Final Result

As in the prototype, we will use multiple steps to compute the final result of a
segmented redomap; if the kernel in the first step computes multiple reduction
results for a segment, we will need to reduce those recursively. However, we
cannot use the same kernel in both steps: For a redomap, the first kernel should
compute both the map-part and the transform-part of the redomap, but we
should not do this when recursively reducing the intermediate results.

Algorithm 6.3 shows pseudo-code for how we compute the final result
of a segmented redomap, using the large kernel and small kernel. As in the
prototype (section 5.3) we will prefer using the large kernel, and will only use
the small kernel when we can fit at least two segments within one group. When
using the small kernel, we will always compute the final result of the reduction
part, so the variable new_seg_size will always be set to 1.
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The while loop of Algorithm 6.3 can be implemented in Futhark using a
do-while-loop. I did not document it in chapter 3, but it is like a do-loop: instead
of having a predefined number of iterations, it continues until an expression is
no longer true.

The result for the map-part returned by either the large or the small kernel
will be a flat array, so we need to reshape it to become the correct shape (the
shape of all the outer maps, and the segment size).

For simplicity, I use the same approach for both redomaps and reductions,
although we could reuse the kernels when dealing with a reduction.

More Tuning Parameters

In the conclusion of the prototype chapter (section 5.4) we discussed how new
tuning parameters could be used to optimize the performance of segmented
reductions. You might be wondering why I did not implement these; but this is
solely because we do not have any infrastructure to support autotuning yet.

As we discussed in the prototype chapter, the optimal values for all the
tuning parameters will depend on the GPU device we use, the problem we
are solving, and the problem size. So an autotuning solution is really the way
forward for setting this tuning parameters.

Only Two Steps

In the current implementation, I made a significant simplification to Algo-
rithm 6.3. The LARGEREDUCEONLY will always use a single group to process
a segment. This ensures that we will always be able to complete the whole
reduction using only two steps2.

When the tuning parameter for optimal number of groups (of the specific
group size) is fairly low, this is not a big problem. For example, for the GTX 780
Ti, if we use the 240 groups that will ensure full utilization, using a single group
will be beneficial over using two groups and an extra step.

However, if using an enormous amount of groups as the optimal number
of groups, this approach will clearly have its downsides. When dealing with
a non-commutative reduction, this approach will require a transpose when
the chunking factor used is greater than one; this can be more expensive than
applying a two-step non-chunked reduction.

I envision that this problem can be better handled in the future, when we
are more careful about choosing the chunking factor and the number of groups
to use per segment.

2this also means that in the generated code, we will not see a do-while-loop, but instead an if
expression
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1 fun segsum (xss : [m][n]f32): [m]f32 =
2 map (\ xs -> reduceComm (+) 0.0 f32 xs) xss
3

4 fun main (xsss : [l][m][n]f32): [l][m]f32 =
5 map segsum xsss

Listing 6.2: A reduction over the inner array of a 3D array can be handled by
my implementation.

1 fun add_if_smaller ( const : i32) (acc : i32) (x : i32) : i32 =
2 if x < const
3 then acc + x
4 else acc
5

6 fun main (xss : [m][n]i32 , consts : [m]i32): [m]i32 =
7 map (\c xs -> reduce ( add_if_smaller c) 0 xs) consts xss

Listing 6.3: Invariant variables used in the reduction function of a redomap
could be handled by my implementation, but the kernel extractor will
conservatervely not use it.

6.3 Cases that Can and Cannot be Handled by My
Implementation

In this section I will give an overview of which cases of segmented reduction
can and cannot be handled by my implementation.

6.3.1 Cases That Can be Handled

My implementation can handle reductions over the inner array of all multidi-
mensional arrays, no matter how many dimensions it has. For example, my
implementation can handle the reduction over the inner array of a 3D array,
shown in Listing 6.2.

A variable that is only defined in some of the maps in the reduction of a
multidimensional array must be handled with care, as explained in subsec-
tion 6.2.4. If the invariant variable is used in the folding function of a redomap,
my implementation will handle this properly; Listing 6.1 from the beginning of
this chapter is an example of this.

6.3.2 Cases That Cannot be handled

If an invariant variable is used in the reduction function of a redomap, my
implementation will not be used. My implementation would be capable of
handling these, but currently the kernel extractor is conservative, and will
not use my code generation function; I believe this is caused by the standard
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1 fun main (xss : [m][n]i32 , ys : [l]i32): ([m]i32 , [m][n][l]i32) =
2 unzip (map( \( xs : [n]i32) : (i32 , [n][l]i32) ->
3 let zs = map (\x -> map (\y -> x+y) ys) xs
4 in ( reduce (+) 0 xs , zs)
5 ) xss)

Listing 6.4: A folding function in a redoamp that returns an array can currently
not be handled by my implementation. In this example, map (\y -> x+y) ys
will have to be computed for each element x

1 -- The reduction operator works on lists
2 fun vec_add (xs : [k]i32) (ys : [k]i32) : [k]i32 =
3 map (\x y -> x + y) xs ys
4

5 fun main (xsss : [l][m][n]i32): [l][n]i32 =
6 let zeros = replicate n 0 in
7 map (\( xss : [m][n]i32) : [n]i32 -> reduce vec_add zeros xss)

xsss

Listing 6.5: An example of a segmented reduction where the operand to the
reduction operator are lists. Futhark will not use my implementation to generate
code for such segmented reductions.

implementation having difficulty dealing with this case. An example of an
invariant variable being used in the reduction function of a redomap, can be
seen in Listing 6.3, where we compute the sum of all elements in an array xs
that are larger than some constant c for pairs of constants and arrays.

My implementation cannot handle a folding function of a redomap that
returns a list. This is only due to the fact that in the segmented scan for the
small kernel, we must provide a dummy element of the correct type. Cur-
rently I have only implemented providing dummy values for primitive types. I
have not encountered any problems on real programs due to this; however, I
have a contrived example where this becomes an issue, shown in Listing 6.4.
The function in Listing 6.4 will produce a folding function that will compute
map (\y -> x+y) ys for the input element x , and therein lies the problem.

I will not claim that my implementation can handle reduction operators that
takes a list as its input. For all such examples I have tried to create, none of them
have caused my code generation to be used. One of the examples I have created
is shown in Listing 6.5, where we add the inner arrays of a 2D array together,
for all the 2D arrays contained in a 3D array.

6.4 Transpose

I implemented the new transpose kernel to handle input arrays with low width
or low height in Futhark, that was mentioned earlier in subsection 5.2.4. This
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greatly increased performance when using a low chunking factor. More details
for the general idea behind this kernel can be found in appendix C.

To handle an input array that have width= 1 or height= 1, I perform a
memory copy. Currently it is not possible to alias the memory, so we will not
get a transpose cost of 0 as I assumed in the prototype, but a memory copy is
still significantly faster than performing a transpose.

6.4.1 Padding

When using transpose for chunking, if the number of elements in the array
is not a multiple of the number of threads, we will need to pad the array to
transpose it as described in section 4.4. This makes the total cost of a transpose
even bigger, as we first need to perform a memory copy of the entire array,
and then perform the transpose. For simplicity, this padding-memory-copy is
always performed, even when it is not needed.

The transpose kernel in Futhark has a parameter for max valid index (in
both input and output), that could be used to avoid making this padded array,
by only transposing the number of elements we actually need. However, if we
avoid making the padded array, but the type information says that the array
has the shape [chunking][threads], then we need to propagate the fact that not
all elements are addressable. Therefore, this feature is not used currently, but in
the future the cost of a transpose could be reduced by enabling this.

6.5 Simple Performance Experiments

Now we will look at some simple performance experiments for my implementa-
tion. First off we will look at the performance of computing a commutative and
a non-commutative segmented sum, and then we will look at the segmented
maximum segment sum problem.

I will use the Futhark’s default number of groups and group size, that is 128
groups with size 256. It is possible to specify these as arguments to OpenCL
programs, by using --group-size and --num-groups ; I will not try to find
the optimal values for these, as discussed earlier.

As in the prototype, we will look at using a fixed total number of elements,
and varying the number of segments and the segment size. I will keep using 220

and 226 as the total number of elements. The choice for using 226 has historic
reasons: When I started working on this thesis, Futhark could only read data
from files in a textual format. This meant that for testing all powers of two
as the number of segments for 226 elements, we would need to generate 27
data files; each would take nearly 1 GiB of disk space, and reading all this data
would be very slow. I created a binary input format for Futhark, and made the
C runtime system able to read it to solve this problem, but stuck with the 226

total elements.
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1 fun main (xs: [n]f32): f32 =
2 reduceComm (+) 0.0 f32 xs

Listing 6.6: Computing a commutative segmented sum

1 fun main (xs: [n]f32): f32 =
2 reduce (-) 0.0 f32 xs

Listing 6.7: Computing a non-commutative “segmented sum”. We use
substraction to get the same operator intensity, as the Futhark compiler knows
that addition is commutative.

6.5.1 Segmented Sum

In this section we will study the performance my implementation achieves for
commutative and non-commutative reductions, by computing a segmented
sum. The Futhark source program for the commutative segmented sum is
shown in Listing 6.6.

As sum is commutative, and the Futhark compiler knows this, computing
a non-commutative sum is not possible; therefore, we use subtraction for the
reduction operator, even though this will not be any sensible computation,
this means the two reduction operators have the same computational com-
plexity. The implementation of the non-commutative reduction can be seen in
Listing 6.7.

As the last piece of the puzzle, we will use the manual implementation for
the loop-in-map strategy from Listing 5.1. Manually implementing it in the
source language allows us to evaluate the performance of this strategy.

Commutative

Figure 6.3 shows the performance of computing the commutative segmented
sum, using 220 and 226 32-bit floating points, on the GTX 780 Ti. The horizontal
reduce line marks the performance of a one-dimensional reduction, segmented
scan shows the performance when not using my implementation, loop-in-map is

1 fun main (xss: [m][n]f32) : [m]f32 =
2 map (\ xs ->
3 loop (sum = 0.0 f32) = for i < n do
4 sum + xs[i]
5 in sum
6 ) xss

Listing 6.8: Computing a segmented sum by the loop-in-map strategy manually.
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(b) Using dataset of total 226 32-bit floating points.

Figure 6.3: Performance for commutative segmented sum. The horizontal reduce
line marks the performance of a one-dimensional reduction, segmented scan
shows the performance when not using my implementation, loop-in-map is the
performance for the loop-in-map strategy, and thesis shows the performance of
using my implementation to generate code.
The yellow vertical bar marks the configuration where the number of segments
is equal to the group size for the larger kernel (chunking=1).

the performance for the loop-in-map strategy, and thesis shows the performance
of using my implementation to generate code.

Figure 6.3a shows that for the 220 case, my implementation outperforms
the standard segmented scan implementation. We can also see that for all
configurations of number of segments and segment size, my implementation is
better or very close to the performance of the 1D reduction. The small kernel
(used to right of the yellow bar) is so fast compared to the loop-in-map strategy,
that we would not benefit from using the loop-in-map strategy for this case.

Figure 6.3b shows that for the 226 case, my implementation outperforms
the standard segmented scan implementation. We can also see that until the
chunking factor drops to 4 (at 210 elements per segment, two steps to the left
of the yellow bar), we have performance comparable to a 1D reduction. In this
case, we could gain a great runtime improvement by using the loop-in-map
kernel, instead of just relying on the small kernel. The transpose required by the
loop-in-map will have a slightly higher cost when there are less than 16 elements
per segment, even though the new transpose kernel has greatly improved the
performance we would otherwise have had; when there is only one element per
segment, we can use a memory copy which is why it has a lower runtime.
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Figure 6.4: Performance for non-commutative segmented sum. The horizontal
reduce line marks the performance of a one-dimensional reduction, segmented
scan shows the performance when not using my implementation, loop-in-map is
the performance for the loop-in-map strategy, and thesis shows the performance
when using my implementation to generate code.
The yellow vertical bar marks the configuration where the number of segments
is equal to the group size for the larger kernel (chunking=1).

Compared with the performance from the commutative reduction in the
prototype, it can initially seem like there is extra overhead when using Futhark,
but in the prototype I did not include the time for allocating and freeing the
array for the intermediate values.

Non-commutative

Figure 6.4 shows the performance of computing the non-commutative seg-
mented sum, using 220 and 226 32-bit floating points, on the GTX 780 Ti. The
horizontal reduce line marks the performance of a one-dimensional reduction,
segmented scan shows the performance when not using my implementation,
loop-in-map is the performance for the loop-in-map strategy, and thesis shows
the performance when using my implementation to generate code.

In both cases we can see that my implementation always outperforms the
standard segmented scan implementation. We can also see that the chunking
factor does not have as large an impact for the performance of the large kernel
as it did in the commutative case.

Figure 6.4a shows that for the 220 case, my implementation always has
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comparable performance with the 1D non-commutative reduction. As in the
commutative case, the small kernel outperforms the loop-in-map strategy. How-
ever, there are a few configurations where using the loop-in-map strategy would
yield better performance, specifically when there are more than 210 segments
and we still cannot use the small kernel.

Figure 6.4b shows that for the 226 case, my implementation has a comparable
performance with the 1D non-commutative reduction, although there are some
deviations when the chunking factor drops (both because of the added cost of
transpose, and the diminishing returns when using a lower chunking factor). In
this case, we could gain a larger runtime improvement from using the loop-in-
map kernel, starting from 212 segments.

The fact that the large kernel is able to get bit better performance than the
one dimensional reduction, is not very significant. Recall from the discussion
on what chunking factor to use in the prototype chapter (subsection 5.2.2), that
the number of groups used can impact the runtime of significantly. And sure
enough, if we use –group-size 1024 –num-groups 1024 we are able to get
a runtime of 7626 µs for the 226 case. This is not to say that this is the optimal
launch configuration, just that it is perfectly possible to get better performance
with the one-dimensional reduction as well.

An interesting observation is that the performance for the large kernel with
chunking=1 in the commutative cases, is much better than the performance for
the large kernel in any of the configurations for the non-commutative cases. By
using the optimization of not using chunking at all in the non-commutative
cases described in section 6.2.1, we can avoid the cost of transposition altogether,
and might be able to improve performance of non-commutative reductions
significantly.

6.5.2 Maximum Segment Sum

In section 3.3.2 we saw how we could use solve the maximum segment sum
(MSS) problem using a non-commutative reduction with the mss function
shown in Listing 6.9; the map and reduce will be fused into a redomap. We can
compute a segmented MSS, by simply wrapping this content of mss in a map,
as I have done in the segmss function.

I created a special version of the compiler that would use my implementation
to generate code for segmented redomaps, without enabling versioned-code.
This allows us to study the performance of my implementation for all configu-
rations.

Figure 6.5 shows the performance of computing the segmented MSS, using
220 and 226 32-bit integers, on the GTX 780 Ti. The horizontal redomap line marks
the performance of the one-dimensional MSS; loop-in-map is the performance
for the loop-in-map strategy, which is the default for segmented redomaps; and
thesis shows the performance when using my implementation to generate code.

The loop-in-map code generated by the Futhark compiler will only need
to write a single element to global memory for each segment. However, my
implementation needs to write all four reduction results to memory. This can
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1 fun max(x: i32) (y: i32): i32 =
2 if x > y then x else y
3

4 -- (best , left , right , total )
5 fun redOp ((bx , lx , rx , tx): (i32 ,i32 ,i32 ,i32))
6 ((by , ly , ry , ty): (i32 ,i32 ,i32 ,i32)): (i32 ,i32 ,i32 ,i32) =
7 ( max bx (max by (rx + ly))
8 , max lx (tx+ly)
9 , max ry (rx+ty)

10 , tsx + tsy)
11

12 fun mapOp (x: i32): (i32 ,i32 ,i32 ,i32) =
13 (max x 0, max x 0, max x 0, x)
14

15 fun mss(xs: [] i32): i32 =
16 let (x, _, _, _) = reduce redOp (0 ,0 ,0 ,0) (map mapOp xs)
17 in x
18

19 fun segmss (xss: [m][n]i32): [m]i32 =
20 map (\ xs -> let (x, _, _, _) = reduce redOp (0 ,0 ,0 ,0) (map mapOp

xs) in x) xss

Listing 6.9: Computing maximum segment sum, in both a one-dimensional and
a segment version. The reduce and map will be fused into a redomap.

explain the seemingly strange behavior of the small kernel in Figure 6.5a: for
the first four configurations to the right of the yellow bar, there are not too many
segments, and therefore not that many results in total. However, in the [220][20]
configurations, the small kernel will need to perform 4×total elements writes to
global memory, compared to the 1× total elements needed by the loop-in-map
kernel.

I have not included the runtime when using versioned-code explicitly. In
both cases the segmented scan approach will be used until there are 29 segments,
then versioned-code will use the loop-in-map approach for the rest of the
configurations. This is a great improvement from always using the loop-in-map
approach, but the performance of the segmented scan does not come near the
one achieved by my implementation: For the 220 case the segmented scan takes
approximately 3000 µs, and for the 226 case the segmented scan approach takes
approximately 44 000 µs.

Figure 6.5b shows that for the 226 case, using a low chunking factor for
the large kernel has a much more severe impact on performance, when the
reduction operator is more complex, and uses a 4-tuple as the operand. We
need to perform at least four times as many computations in the group-wide
reduction compared to the segmented sum, so when only processing a single
element per thread, the total time per element is significantly increased. We
can also see that the small kernel has a much higher cost now that we are using
the more complex reduction operator, showing that the in-group segmented
scan performed by the small kernel has a significant overhead as the number of
elements used in the reduction operand grows.

The big picture is the same as for the non-commutative segmented reduction:
once there are “enough” segments, using the loop-in-map kernel can give much

75



[2 0
][2 20

]

[2 2
][2 18

]

[2 4
][2 16

]

[2 6
][2 14

]

[2 8
][2 12

]

[2 10
][2 10

]

[2 12
][2 8

]

[2 14
][2 6

]

[2 16
][2 4

]

[2 18
][2 2

]

[2 20
][2 0

]

0

500

1000

1500

2000

2500

[number of segments][segment size]

ru
n
ti
m
e
(µ
s)

redomap
loop-in-map
thesis

(a) Using dataset of total 220 32-bit floating points.

[2 0
][2 26

]

[2 2
][2 24

]

[2 4
][2 22

]

[2 6
][2 20

]

[2 8
][2 18

]

[2 10
][2 16

]

[2 12
][2 14

]

[2 14
][2 12

]

[2 16
][2 10

]

[2 18
][2 8

]

[2 20
][2 6

]

[2 22
][2 4

]

[2 24
][2 2

]

[2 26
][2 0

]

0

5000

10000

15000

20000

25000

30000

35000

[number of segments][segment size]

ru
n
ti
m
e
(µ
s)

redomap
loop-in-map
thesis

(b) Using dataset of total 226 32-bit floating points.

Figure 6.5: Performance for the non-commutative segmented MSS. The hor-
izontal redomap line marks the performance of a one-dimensional reduction,
loop-in-map is the performance for the default loop-in-map strategy, and thesis
shows the performance when using my implementation to generate code.
The yellow vertical bar marks the configuration where the number of segments
is equal to the group size for the larger kernel (chunking=1).

better runtime. Like before, Figure 6.5 shows that the small kernel is only a
good choice in the 220 case.

By also including using the loop-in-map kernel, we can see that my im-
plementation would able to match the performance of the one-dimensional
redomap for all configurations of number of segments and segment size.

6.6 Conclusion

We have seen the general idea for how I generate code for segmented reduc-
tions and segmented redomaps. we have discussed several optimizations that
enable better performance, and suggested other optimizations that could be
implemented.

6.6.1 Performance

We have seen that for a simple segmented sum, my implementation outperforms
the segmented scan implementation used by the Futhark compiler, both when
using a commutative and non-commutative reduction.
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We have also seen that when we can use the large kernel with a good
chunking factor (in our cases, ≥ 16) we have comparable performance with a
one-dimensional reduction. By also using the loop-in-map strategy, we will
be able to improve the performance drastically when there are many small
segments: for non-commutative reductions we would be able to match the
performance of the one-dimensional reduction, for all configurations of number
of segments and segment size.

Surprisingly, the small kernel is much faster than the large kernel for the non-
commutative reduction of 220 elements; this could suggest that removing the
need for padding arrays before transposing them could improve performance
for non-commutative reductions significantly.

For computing the segmented MSS with a redomap, we have seen that
enabling loop-in-map with my implementation, would greatly outperform
Futhark with the versioned-code feature enabled. We have seen that my imple-
mentation can match the performance of a non-commutative one-dimensional
redomap when the segments are large; however, when there are many segmens,
and we need to return multiple values per segment, my current implementation
cannot match the performance of the one-dimensional reduction; this could
suggest that enabling an optimization to avoid writing any final reduction result
that will not be used, can improve the performance significantly.

6.6.2 Dynamically Adjusting Group Size

Dynamically changing the group size, could seem to give a bigger payoff in
the Futhark implementation than I initially had expected from the prototype.
Specifically, by using a larger group size, we could use the small kernel for more
configurations for non-commutative reductions, where the small kernel had
the best runtime for the 220 case. For commutative reductions, using a smaller
group size would allow us to use the large kernel with a good chunking factor
for more configurations.
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Chapter 7

Benchmarks

To evaluate the performance of Futhark, benchmarks have been ported to
Futhark from Rodinia [7], Accelerate [25], Parboil [29], and FinPar [1]. These
benchmarks are available at https://github.com/HIPERFIT/futhark-benchmarks1

I will use these benchmarks to evaluate the performance improvements from
using my implementation for segmented reductions and segmented redomaps.
As explained earlier, currently in the Futhark compiler, a segmented reduction
will be implemented using a segmented scan, and a segmented redomap will
be implemented using the loop-in-map strategy. However, if versioned-code is
enabled, code will be generated for both implementing a segmented redomap
as a segmented scan and using the loop-in-map strategy, and a runtime decision
is made to determine which one to use. Disclaimer: versioned-code is still a
work-in-progress, which is why it is not enabled by default in the compiler.

I will compare using the standard Futhark compiler, which I will call vanilla,
with the Futhark compiler with my implementation for segmented reductions
enabled, which I will call thesis. I will compare using the Futhark compiler with
“versioned code” enabled, which I will call vanilla+vc, with the Futhark compiler
with both “versioned code” and my implementation for segmented reductions
and segmented redomaps enabled, which I will call thesis+vc.

When versioned-code is not enabled, I will only look at the benchmarks that
uses segmented reductions. When versioned-code is enabled, I will look at the
benchmarks that uses either a segmented reduction or a segmented redomap.

First we will look at the speedups we can achieve, and then we will look at
the performance of each interesting benchmark in more detail.

For testing the performance I will use the NVIDIA GTX 780 Ti as we have
seen throughout the rest of this thesis, but also a NVIDIA GTX Titan Black, a
NVIDIA Tesla K40c, and an AMD FireGL 8100.

1version I used is from commit id c5ae760d60749f08968be32c339e49dde3e94b1b
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Figure 7.1: Speedups achieved by using my implementation for segmented
reductions over vanilla Futhark, on four different GPUs. Only benchmarks
that use a segmented reduction are used, and only the largest dataset for each
benchmark.

7.1 Speedups

The speedup we will see by using my implementation for segmented reductions
and segmented redomaps will depend on the amount of work in a benchmark
that is performed by these. If the benchmark only runs a small segmented
reduction once, no matter how fast we compute this segmented reduction, we
will not see a speedup in the benchmark.

7.1.1 Without Versioned Code

Figure 7.1 shows the speedups achieved by using my implementation for seg-
mented reductions over vanilla Futhark, on four different GPUs. Only bench-
marks that use a segmented reduction are used, and only the largest dataset
for each benchmark. The used benchmarks are: TPACF from Parboil, K-means
from Rodinia, Backprop from Rodinia, and OptionPricing from FinPar2.

Figure 7.1 shows that we get a speedup on both K-means and Backprop, but

2the N-body benchmark from Accelerate does also include segmented redomaps, but I was not
able to compile it when I ran my benchmarks.
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Figure 7.2: Speedups achieved by using versioned code and my implemen-
tation for segmented reduction and segmented redomaps over Futhark with
versioned code, on four different GPUs. Only benchmarks that use a segmented
reduction or a segmented redomap are used, and only the largest dataset for
each benchmark.

that TPACF and OptionPricing is largely unaffected3.

We will examine the performance of both K-means more in section 7.3 and
Backprop more in section 7.2. TPACF gets a speedup by a harmonic-mean of
1.08× for its smallest dataset, which can be seen in appendix D. I have not
looked at either TPACF or OptionPricing in more detail, but their runtime is
reported in appendix D.

7.1.2 With Versioned Code

Figure 7.2 shows the speedups achieved by using versioned code and my im-
plementation for segmented reduction and segmented redomaps over Futhark
with versioned code, on four different GPUs. Only benchmarks that use a
segmented reduction or a segmented redomap are used, and only the largest
dataset for each benchmark. We use the same four benchmarks as before, but
use additional benchmarks, because we now also handle segmented redomaps.
The new benchmarks are Crystal from Accelerate, and MRI-Q from Parboil.

3There is a slowdown for OptionPricing on the W8100, but this GPU does sometime behave a bit
strange, and there is a large variance in the measured runtimes, so I will not put any emphasis on
this.
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In Figure 7.2 we can see that the improvements for K-means and Backprop
are not as significant as in Figure 7.1, we will look at why this is in section 7.3 and
section 7.2. We can also see in Figure 7.2 that the new additions are unaffected by
using my implementation for segmented reductions and segmented redomaps4.

I did not study either Crystal or MRI-Q in further detail, but noted that for
Crystal we see a speedup by a harmonic-mean of 1.61× on one of its datasets
(dataset #0), which can be seen in appendix D.

7.2 Backprop

Figure 7.3 shows the runtimes for the Backprop benchmark from Rodinia on
two datasets, using all four versions of the Futhark compiler, on the four GPUs
used for benchmarking.

In Figure 7.3 we can see the reason for the lower speedup when using ver-
sioned code than without: the performance is worse when using versioned
code, and the absolute improvement made by using my implementation is
smaller than without using versioned code. This could be caused by the run-
time decision made by the versioned code system for which kernel to use not
being optimal; it could also be caused by something unrelated to segmented
reductions.

7.2.1 Breakdown of Runtime

I have tried to quantify how much time is spent computing segmented reduc-
tions in the code generated when not using versioned code. Futhark can output
a debug summary for how much time have been spent in each kernel5. I have
used this to compute the time spent in segmented reductions when using the
standard Futhark compiler and when using my implementation for segmented
reductions (vanilla and thesis in the figures).

For the standard Futhark compiler I have only counted the time spent
in scan kernels: this is a generous lower bound on the time taken by the
segmented scan implementation, as it does not include the time it takes to
produce the flag array, or the time it takes to read out the elements once the
scan is done. The reason I did not include these is that it is very hard to
distinguish between which map kernels are responsible for these computations.
The breakdown can be seen in section D.1

I have only looked at the medium dataset on the GTX 780 Ti. For the vanilla
version the scans for the segmented scan implementation takes up 4539 µs out
of the total runtime of 22 240 µs (20.41%). For my implementation, we are using
the large kernel with multiple groups per segment, and one group per segment
to reduce this recursively. This takes up 363 µs of the total runtime of 16 170 µs
(2.24%).

4There is a slowdown for MRI-Q on the W8100, but this GPU does sometime behave a bit strange,
and there is a large variance in the measured runtimes, so I will not put any emphasis on this.

5the runtime is increased a bit because some extra synchronization between the host and device
is needed.
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Figure 7.3: Runtimes for the Backprop benchmark from Rodinia. vanilla is the
Futhark compiler without modifications, thesis is the Futhark compiler with my
implementation for segmented reductions. The +vc versions uses versioned
code to, at runtime, select between using an implementation using the loop-in-
map strategy, or the implementation for a segmented reduction.



I am very pleased with these results, as my implementation has successfully
made the segmented reduction part of the benchmark much less significant. My
intuition is, that it will not be worthwhile trying to improve the performance of
the segmented reduction part of the benchmark significantly more than what
my implementation has achieved.

I have not looked at all the kernels executed in detail, so it is possible that
using my implementation has increased the runtime for other parts of the
computation.

7.3 K-means

Figure 7.4 shows the runtimes for the Backprop benchmark from Rodinia on
three datasets, using all four versions of the Futhark compiler, on the four
GPUs used for benchmarking. The kdd_cup dataset was used for the speedup
calculations in Figure 7.2 and Figure 7.1.

In Figure 7.4 we can see the reason for the lower speedup when using
versioned code than without: using versioned code will improve the runtime.
However, using my implementation for segmented reductions will bring the
runtime down to the same level, both with and without versioned code enabled.

7.3.1 Breakdown of Runtime

As for Backprop, I have tried to quantify how much time is spent computing
segmented reductions in the code generated when not using versioned code.
As before I looked at how much time was spent in segmented reductions when
using the standard Futhark compiler and when using my implementation for
segmented reductions (vanilla and thesis in the figures). For the standard Futhark
compiler, I used the same generous lower bound of only counting the time spent
in scans. The breakdown can be seen in section D.2.

I have only looked at the kdd_cup dataset on the GTX 780 Ti. For the vanilla
version the scans for the segmented scan implementation takes up 108 762 µs
out of the total runtime of 513 246 µs (21.19%). For my implementation, we are
using the large kernel with multiple groups per segment, and one group per
segment to reduce this recursively. This takes up 5687 µs of the total runtime of
400 487 µs (1.1%).

I am very pleased with these results, as my implementation has successfully
made the segmented reduction part of the benchmark much less significant. My
intuition is, that it will not be worthwhile trying to improve the performance of
the segmented reduction part of the benchmark significantly more than what
my implementation has achieved.

I have not looked at all the kernels executed in detail, so it is possible that
using my implementation has increased the runtime for other parts of the
computation. For example, I have been able to see there is a difference in the
time spent on transpositions (but to the favor of my implementation).
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Figure 7.4: Runtimes for the K-means benchmark from Rodinia. vanilla is the
Futhark compiler without modifications, thesis is the Futhark compiler with my
implementation for segmented reductions. The +vc versions uses versioned
code to, at runtime, select between using an implementation using the loop-in-
map strategy, or the implementation for a segmented reduction.



7.4 How to Run These Benchmarks

Instructions for how to compile Futhark in these four versions, and how to
run the benchmarks with each version, can be found at https://github.com/
RasmusWL/thesis-benchmarks
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Chapter 8

Related Work

In this chapter we will look at existing work on computing segmented reduc-
tions efficiently on GPUs.

In a very broad sense a segmented reduction is a special case of a histogram
computation, where an input array of key-value pairs are processed, to reduce
all the values with the same key. This is illustrated in the code below.

// ’input_key ’ and ’input_val ’ are arrays of size ’n’
// ’res ’ is a dictionary -like datastructure
for i in 0..n:

acc = res[ input_key [i] ]
res[ input_key [i] ] = OP(acc , input_values [i])

Some implementations of segmented reductions uses a definition very similar
to the histogram computation, with the restriction that a segment is defined as
a consecutive range of matching keys. This means there are no restrictions on
the size of a segment.

We will call an array where the segment sizes can differ an irregular segmented
array, or simply say that is has irregular segments. An irregular segmented array
can be implemented by using a one-dimensional array to hold the elements, and
segment descriptors to describe the structure of the irregular segments. Segment
descriptors are usually implemented by either using an array of keys (as above),
or by storing the length of each segment in an array. There are minor variations,
such as using a flag array instead of keys, or using offsets for the start of a
segment instead of the length of a segment.

An irregular segmented reduction that uses lengths or offsets as its segment
descriptors will have to handle the case of a segment having length zero. As
this can present some difficulty, some implementations does not allow empty
segments.

Problem Difficulty

The problem of computing a segmented reduction for irregular segments is
strictly easier than computing a segmented reduction with a histogram: We can
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make use of the fact that all elements that needs to be reduced are consecutive
in the input array.

In the same sense, computing a segmented reduction for regular segments is
strictly easier than for irregular segments: We do not have to worry about how
to divide the work evenly, as all segments contain the same number of elements.
As we have seen, this also allows us to use different approaches depending on
the number of segments and segment size.

Reduction Operator

All of the approaches we will study requires that the reduction operator must
be associative; a few approaches allows non-commutative reduction opera-
tors, but most require that it is commutative. As we have seen handling non-
commutative reduction operators provides a challenge, and it is by no means
clear that the solution I have shown in this thesis is optimal. Most approaches
require that the neutral element is supplied, and we will look at the downsides
of not requiring this.

Compared to Futhark

I have tried to compare the related approaches we will study, to what is possible
in Futhark.

First of all I have compared the expressiveness to Futhark’s redomap con-
struct. This comes down to two things: (1) if a function can be applied to the
input elements before applying the reduction, but without a separate array
traversal; and (2) if it is possible to generate output elements in the same pass
over the input elements as is used for the reduction. Most libraries support the
first property, but I have not found any that documents supporting the second
property.

It is also instructive to see if multiple reductions can be computed in the
same pass over the data or if two separate passes is required. An example
could be computing both the minimum and maximum element of an array. A
way to support computing multiple reduction in the same pass, is to support
using a tuple-of-arrays (structure-of-arrays): This will allow a kernel to access
each component efficiently with a memory coalesced access pattern. If only
array-of-tuples (array-of-structures) is supported, we are not able to do this.

8.1 NESL – A Baseline Approach

The work on the data parallel programming language NESL, showed how a
segmented reduction, capable of handling irregular segment, could be imple-
mented by using a segmented scan, and an instruction to get the last element
from each segment. The only requirement is that the reduction operator is
associative. This is the approach we explored in subsection 3.4.2.
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NESL also shows that a segmented scan can be implemented efficiently by
using scans and a flag array [5].

I will consider this way of implementing a segmented reduction as a baseline
approach, as it supports irregular segments, and will always fully exploit the
available parallelism. This could give it a reasonably fast implementation that
will work for any case.

8.2 Accelerate

Accelerate [6] is an array processing language embedded in Haskell. It supports
collective array computations such as maps, folds and scans on regular mul-
tidimensional arrays. Accelerate has multiple backends to generate code for
different targets.

Accelerate supports both segmented reductions on regular arrays with fold,
and segmented reductions on irregular segmented arrays with foldSeg. For
the irregular case, the length of each segment is used as the segment descriptor.
There is a version of fold with the invariant that the arrays are not empty, called
fold1. Accelerate also supports scans, so it is possible to implement segmented
reductions using segmented scans.

There are currently two versions of Accelerate that are of interest: the
old version published on hackage (version 0.15.1.0) and the new version that
is still unpublished and currently under development (version 1.0.0.0) The old
version uses a backend for generating CUDA coda that is now deprecated
(accelerate-cuda). The new version generates PTX assembly code for NVIDIA
GPUs using LLVM (accelerate-llvm-ptx)1.

It has always been possible to define your own reduction operator, but there
has been a significant change between the two version: in the old version the
reduction operators had to be both associative and commutative, whereas in
the new version it is only required to be associative [25].

To invoke a reduction with the operator f over an n-dimensional regular
array xs , we use fold f se xs , where se is the starting element for the fold,
and does not need to be the neutral element of the reduction operator. I believe
this is to support a similar semantics to what Haskell programmers are used to
from foldl and foldr . fold1 does not take a starting element.

Listing 8.1 shows a definition of sum for computing the sum of a 1D array,
and segsum for computing the sum of the inner dimension of a 2D array, for
all types a that Accelerate recognizes as numbers. The Acc type constructor
means that the array resides in GPU memory.

Accelerate supports mapping a function to all elements before applying the
reduction, in a single pass over the data. Accelerate also applies array-of-tuples
to tuple-of-arrays transformation automatically.

1it is also possible to use NVIDIA’s close source libNVVM to generate code, that have more
optimizations; the installed version of LLVM must match the one used by the installed CUDA
version
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1 import Data. Array . Accelerate as A
2

3 sum :: A.Num a => Acc ( Array DIM1 a) -> Acc ( Scalar a)
4 sum xs = A.fold (+) 0 xs
5

6 segsum :: A.Num a => Acc ( Array DIM2 a) -> Acc ( Array DIM1 a)
7 segsum xs = A.fold (+) 0 xs

Listing 8.1: Functions for computing sum and segmented sum using Accelerate.

8.2.1 Missing a Neutral Element

Not requiring the starting element se to be the neutral element for the reduc-
tion, or leaving it out in the case of fold1 , complicates things for Accelerate:

• For a commutative reduction, where each thread should read multiple
elements, a thread will not be able to initialize the accumulator, so extra
logic must be added to load the first element.

• For any reduction, if some threads didn’t read an element from the input
array, a separate function for group reduction that is capable of handling
this must be used. Extra logic must also be added to check if some thread
didn’t read an element.

This illustrates that the semantics of reductions in Futhark helps generate good
code for the GPU, because it is required to supply the neutral element. Recog-
nizing when the reduction operator has a neutral element (when it is a member
of the Monoid class), has been marked as an area of for future work by the
Accelerate developers, but is currently not being performed.

8.2.2 Strategy for One-dimensional Reductions

Accelerate handles reduction of 1D arrays using the common approach of
multiple steps, where many groups reduce part of the array to produce a
number of intermediate values, until there is only one value left.

In the old version, which required a both commutative and associative
reduction operator, Accelerate would let each thread read multiple elements
with a stride to ensure memory coalescing. We have seen this can increase
performance tremendously.

In the new version, which only requires an associative reduction operator,
Accelerate does not use the approach we do in Futhark of transpose the input
array to allow each thread to read multiple elements with a strided access.
Instead, to keep the benefits of processing multiple elements per thread, a
slice of the array is assigned to each group, which then executes a number of
iterations with the following steps:

1. In iteration i, thread tid reads element i×groupsize+ tid if within bounds.
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2. A cooperative reduction is performed within the group. If some thread
didn’t read an element, a special group-wide reduction is used that can
handle this.

3. The results the group-wide reduction in this step is combined with the
accumulator in thread 0, or if this is the first iteration the result is simply
assigned to the accumulator in thread 0.

4. If there are still more elements to process in the slice assigned to this group,
goto step 1.

5. If there is only one group participating in the reduction, this means we
will compute the final result now, so if a starting value was supplied (i.e.,
fold1 was not used), the starting value is combined with the accumulator.

6. Thread 0 of each group writes its result to global memory.

Currently Accelerate does not recognize when a reduction operator is com-
mutative, and therefore only uses the approach outlined above. It has been
marked as an area for future work by the Accelerate developers.

8.2.3 Strategy for Multidimensional Reductions

When Accelerate has to compute a reduction over an array with more than one
dimension, it uses the very simple approach of using one group per segment. As
we have seen in the prototype (section 5.2) this will not lead to good performance
when there are many small segments, or when there a few very large segments.
Using one group per segment is also the approach used by Accelerate to handle
irregular segments, which can lead to a great imbalance in the workload per
group.

8.2.4 Conclusion

As Accelerates uses one group per segment, the implementation presented in
this thesis should outperform Accelerate when there is only large segments,
and when the segment size is smaller than the number of threads in a group.
For commutative reductions, Accelerate uses the same algorithm as for non-
commutative reductions, so the implementation presented in this thesis should
outperform Accelerate in all configurations of number of segments and segment
size.

The approach taken by Accelerate to perform the whole reduction of a
segment in one group, could be an improvement over one specific case from
my implementation: When dealing with a non-commutative reduction, with
a segment size that is slightly larger than the group size, this will result in a
small chunking factor (e.g., 2 or 4); Currently my implementation has the choice
between two options: (1) performing a transpose, with a higher than usual cost,
and gain a small benefit from chunking; or (2) to use the large kernel without
chunking, producing a few results per segment that will have to be reduced in
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a second step, thereby also incurring the cost of allocating and freeing the array
to hold the intermediate results.

Using the approach from Accelerate would improve on the second option,
by allowing us to process a whole segment within one group; the performance
should the same (or a bit better) than launching multiple groups of the large
kernel without chunking. We also get the benefit of removing the cost of
allocating and freeing the array for the intermediate results.

8.3 Thrust

Thrust [22] is a C++ library defining common parallel bulk operators such as
scan, reduce, and sort. Thrust also supports applying a function to all elements
of an array, called a “transform” in Thrust terminology. Thrust has multiple
backends, with the CUDA backend being used by default.

Thrust supports both 1D reductions by the function reduce , and irregular
segmented reductions by the function reduce_by_key ; not surprisingly, the
segment descriptor is an array of keys. Thrust allows you to define your own
reduction operator, and requires that it is both commutative and associative.
Thrust does not require a neutral element, and only allows for a starting element
when computing a 1D reduction. I have not been able to find any documentation
for how Thrust implements segmented reductions.

Thrust supports scans, so it is possible to use a segmented scan for perform-
ing a segmented reduction with a non-commutative and associative reduction
operator.

Thrust has support for “fancy iterators”, which can be used to supply the
keys to a segmented reduction without allocating any memory. This should
cause a significant speedup for a segmented reduction when using regular
segments, because the memory bandwidth will only be used for the elements of
the input array.

Thrust supports applying a function to all elements of the input array be-
fore computing the reduction, which will only require one pass (using the
transform_iterator ). Thrust has support for working with an array-of-tuples
as a tuple of arrays, by using the zip_iterator .

An example for how to compute a segmented sum over a regular 2D array
can be found here.

8.4 CUB

CUB [27] is a C++ library defining common bulk operators much inspired by
Thrust. CUB is developed by NVIDIA, and unlike Thrust only targets CUDA,
which allows for more tailored customization and optimizations for NVIDIA
GPUs.

CUB has support for computing irregular segmented reductions, used either
keys or offsets for the segment descriptors. CUB requires that the reduction
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operator must be both commutative and associative. An initial value must be
supplied, but it is not documented if it should be the neutral element or not.

CUB also supports a very efficient scan implementation, that only requires
2n global memory operations for an input array of size n [26]. This should serve
as a very good implementation for the baseline approach of using a segmented
scan to compute the segmented reduction.

Like Thrust, CUB supports applying a transformation to the input data
before computing a reduction. I have not been able to find any support for
tuple-of-arrays, this could hurt performance if using the baseline approach of
segmented reduction as segmented scan, because we need at least two input
arrays: the element array and the flag array.

8.5 Modern GPU

Modern GPU [4] is a CUDA programming library for C++ developed by
NVIDIA. One of its main purposes is to serve as a place to learn about high
performance CUDA programming by example, as the library has extensive
documentation for its algorithms. Many of the algorithms described in Modern
GPU are the ones used by CUB; however, due to nature of Modern GPU as a
learning platform, its implementation has been kept rather simple.

Modern GPU has an implementation for performing irregular segmented
reduce that is well documented. Reduction operators must be both associative
and commutative, and it is required to supply the neutral element. It is not
possible to apply a function to the input elements before running the reduc-
tion; considering the nature of the project as a learning platform, this seems
reasonable.

Modern GPU has an interface for either using keys or offsets as the segment
descriptor. If empty segments can occur in the input, this must be indicated to
the library by setting a boolean flag; then the empty segment descriptors will be
filtered out in an initial stage, to make the segmented reduction kernel simpler.

It is possible to prepossess the segment descriptors to perform “segment
discovery” as a separate stage. It is claimed to increase throughput when using
the offsets as segment descriptors by 10-20%, and give a much larger benefit
when using keys as the segment descriptors.

Modern GPU shows that its implementation is much faster than the reduce_by_key
from Thrust, but it is not stated which version of Thrust was used for this com-
parison.

8.5.1 Implementation

Modern GPU has the most advanced strategy for handling irregular segments
that I have seen described. It assigns an equally sized slice of the input array to
each group, where each thread will process multiple consecutive elements.
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Thread : input vals Partials carry -out
carry -in

0: 0 1* 3* 1* 4 1 3 1 4* 0
1: 2 4 1* 0 3 7 3* 4
2: 0 2 1 5 1 9 3
3: 1 3* 4 1 2 4 7* 12

Figure 8.1: Example of how Modern GPU makes a group process a slice of the
irregular segmented input array. We use 4 threads with a chunking factor of 5.
A star (*) marks the end of a segment.

Each thread will load multiple values into local (on-chip) memory using
a strided access (to ensure memory coalescing). A thread can then read the
consecutive elements it needs from local memory. This use of an in-group
on-the-fly transpose of the input data, instead of invoking a separate transpose
kernel as we do in Futhark, eliminates 2× inputsize global memory accesses;
however, it limits the chunking factor as all elements processed by a group must
fit in local memory.

Each thread will execute the following steps to process its elements, using a
number of iterations equal to the chunking factor.

1. Initialize the accumulator to the neutral element.

2. Thread tid will in iteration i read element tid×chunking + i, and calculate
the new value for the accumulator by applying the reduction operator.

3. If this was the last element of a segment, the current accumulator will be
stored in a list of partial results for this thread, and we will goto step (1).
If this was not the last element of a segment, simply goto step (2).

4. Once all iterations has been completed, the current accumulator will be
stored as the carry-out value for this thread. A flag value will be set to
true if any segments ended in the elements for this thread, and to false
otherwise.

An example of the result after executing these steps can be seen in Figure 8.1:
There we see how a group of 4 threads, with a chunking factor of 5, processes
the following slice of the irregular segmented input array (where 〈means the
segment starts at an earlier index, and 〉means the segment ends at a later index)[

〈0, 1] , [3] , [1] , [4, 2, 4, 1] , [0, 3, 0, 2, 1, 5, 1, 1, 3] , [4, 1, 2〉
]

Thread 1 will need to get the carry-out from thread 0 to compute the final
result for its first segment, and will need to pass its final accumulator value to
thread 3 – because the segment does not end in the values thread 2 “owns”.
To accomplish this we use an exclusive segmented scan of the carry-out values,
which will produce the carry-in values show in Figure 8.1. Each thread will
have to apply the carry-in values to the first partial result (if that exists). If the
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last thread didn’t have any segment ending within its elements, it will need to
update its accumulator with the carry-in value.

We have now calculated the result for each segment in this slice of the input
array, except for the first and last segment of this slice. All the (updated) partial
results are written to global memory, as well as the accumulator from the last
thread.

We need to combine the result from the carry-out value of a group with the
first segment in the next group. The documentation says this is handled by a
“(...) special streaming kernel [that] scans carry-out values and redistributes
them into the destination reductions”.

If there are no segments ending within the slice processed by a group, the
on-the-fly transpose will not be applied, and instead of the elaborate segmented
reduction described above, a normal group wide reduction will be used (which
exploits the commutative property of the reduction operator). It is stated that
this optimization increases performance with about 20% when processing large
segments. If this optimization was not applied, a non-commutative operator
could be used.

The approach taken by Modern GPU will utilize the available parallelism
for all types of irregular segments, due to its load balanced approach. The
algorithm should be more effective for all cases than the baseline approach of
using a global segmented scan.

8.5.2 Conclusion

For commutative reductions with very large segment sizes, the implementation
from Modern GPU will use a special kernel making it much more effective. It is
unclear to me if there restriction on the maximum chunking factor in this case.
If there is not, we can expect the implementation presented in this thesis and the
implementation from Modern GPU to have similar performance characteristics.
If there is a limitation on the chunking factor for Modern GPU, we can expect
the implementation presented in this thesis to have better performance in the
case of very large segments.

For reductions with low segment size, I would expect the Modern GPU
implementation would beat the small kernel, because of the use of chunking.
However, it is unclear to me if the performance of the transpose and loop-in-map
kernel will be better than what Modern GPU can achieve.

The core of the Modern GPU algorithm could be applied to compute non-
commutative segmented reductions. The case for the small kernel and the
loop-in-map kernel is the same as above. For the large non-commutative kernel,
is it the same unclear problem as for the loop-in-map kernel: is separate kernels
for transpose and reduction better than fusing them together (at the cost of
limiting the chunking factor)?

The approach of in-group on-the-fly transpose could be applied to all the
kernels presented in this thesis:

• The small kernel could be improved, to be able to load multiple elements
per thread, and thereby having several memory transfers in flight at one
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time; as we have seen in subsection 5.2.2 even a chunking factor of 4 will
improve performance tremendously.

• The loop-in-map kernel could apply the in-group on-the-fly transpose
trick when the chunking factor is so low that all elements of a segment
will fit into local memory. Compared to performing the transpose in a
separate step, this should improve performance a lot.

• When dealing with a non-commutative reduction, the large kernel could
adopt the transpose on-the-fly approach to avoid the cost of the separate
transpose step completely. As explained above, it is unclear if this would
give better performance.

For arrays that are so small that all elements of a segment will fit into
local memory, the in-group on-the-fly transpose trick should bring an
improvement in performance compared to both using the large kernel
without chunking, and performing the transpose in a separate step.

8.6 PENCIL & PPCG

PENCIL [2] is a “a Platform-Neutral Compute Intermediate Language for Ac-
celerator Programming”, which is meant to serve as the target language for
compilers of domain specific languages.

PENCIL is a subset of GNU C99 at its core, but has additional language con-
structs to convey detailed information about the code; for example, invariants
can be conveyed by using __pencil_assume , the fact that loop iterations has
no dependence can be conveyed by using #pragma pencil independent , and
“summary” functions can be used to let the compiler know what parts of input
arrays a library functions is going to be used (without having the source code
for the library function).

The authors of PENCIL modified the Polyhedral Parallel Code Generation
(PPCG) compiler [30], to be able to compile PENCIL code to efficient OpenCL
and CUDA code.

In more recent work, conveying information about reductions was added
to the PENCIL language and the PPCG compiler [28]. The implementation
allows for custom reduction operators, but they must be both commutative and
associative. The user is required to supply the neutral element. Segmented
reduction is shown in one of the examples of [28], but it is not described in if
any special optimizations are applied to those.

The modified version of PPCG can perform fusion between multiple re-
ductions over the array elements (even if the reductions occur in two different
loops). Applying a function to an input element before performing the reduction
is allowed. It is not described if producing an output element for each input
element in the same pass is supported.

An example for how to compute a segmented sum over a regular array using
PENCIL can be seen in Listing 8.2.
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1 void zero( float *val){
2 *val = 0.0;
3 }
4

5 float addition ( float v1 , float v2){
6 return v1 + v2;
7 }
8

9 void segmented_sum (int M, int N, float data[M][N], float sum[M]){
10 for (int j = 0; j < M; j++) {
11 __pencil_reduction_var_init (& sum[j], zero);
12 for (int i = 0; i < N; i++) {
13 __pencil_reduction (& sum[j], data[i][j], addition );
14 }
15 }
16 }

Listing 8.2: Function for computing the segmented sum of regular array using
the PENCIL language.

8.7 Performance Evaluation

In this section we will look at a performance evaluation of some of the related
approaches described above.

8.7.1 Optimization Techniques

There are some optimization techniques that are most likely used in highly
optimized libraries such as Thrust and CUB, but is current not used in Futhark.
The most important of such optimizations for reductions are:

• When loading elements from a global array, it is possible to load multiple
elements in one go; for example, instead of loading a single float , we
can load four elements by using the float4 vector type. This can give a
significant increase in performance, even for a simple copy kernel [23].

OpenCL supports this feature, but it would require a good deal of extra
logic to handle properly: for example, if a segment has an uneven length,
we cannot just blindly use float4 .

• CUDA supports a shuffle instruction, that allows threads in the same warp
to exchange data without using local (on-chip) memory. This has been
shown to be faster than using local memory [9]. It also has the added
benefit of reducing the amount of local memory required for the kernel,
which can be a limiting factor.

This feature is currently not supported by OpenCL.

• CUDA supports instructions for atomically updating a global memory
location with a set of predefined operations, for example we can atomically
add a value to a global memory location with atomicAdd . For standard
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reduction operators such as sum, product, min, or max, this can help
increase performance [24].

Support for specific instructions is dependent on the types of the operand
and the compute capability of the GPU: for example, atomicMin is not
supported for floating point numbers, and atomAdd requires compute
capability of 6.x or higher to support 64-bit floating point numbers.

Some of the atomic update operations are supported by OpenCL, but for
example floating points are not supported.

When comparing performance with highly optimized libraries, we should
expect that they will be able to get a better performance if they use an equivalent
algorithmic approach.

8.7.2 Segmented Sum

In this section I will compare the performance of my implementation in Futhark
for segmented reduction, with the performance of Modern GPU and Thrust. We
will compute the segmented sum of 220 and 226 total elements, using different
configurations of number of segments and segment size.

Modern GPU

I have implemented a small benchmark using the Modern GPU library. The
library is currently in version 2, but I am using the last version 1 release (commit
id 1c1cc9e23463bf4e82bad29a3ab34a4ddac99e3d) because it had a benchmark
for (irregular) segmented sum available, and version 2 did not. The newer
version might be able to get better performance, but I will use this older version
as a baseline.

I modified this benchmark to suit my needs for regular segments, and
included it in my GitHub repository along with my tools to run the bench-
mark from chapter 7. I compiled it using CUDA V7.5.17 with the options
-gencode arch=compute_35,code=sm_35 , as required by the Modern GPU.

I am using the preprocessed variant of the segmented reductions imple-
mented by Modern GPU; I did see a substantial improvement in performance
by doing so (up to 2× speedup when all segments only had a single element).

The reported results are averaged over 10 runs, not including an initial the
warmup run.

Thrust

As mentioned earlier Thrust has an example available for computing regular
segmented reductions, using fancy iterators. I adopted this to compute a regular
segmented reduction. I also compiled this using CUDA V7.5.17 with the options
-gencode arch=compute_35,code=sm_35 . The version of thrust used is v1.8.2.

The reported results are averaged over 10 runs, not including an initial the
warmup run.
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(a) Using dataset of total 220 32-bit floating points.
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(b) Using dataset of total 226 32-bit floating points.

Figure 8.2: Performance comparison for other implementations of segmented
reductions.
As in earlier figures, the horizontal redomap line marks the performance of
a one-dimensional reduction in Futhark, loop-in-map is the performance for
the loop-in-map strategy, and thesis shows the performance when using my
implementation in Futhark to generate code.
The yellow vertical bar marks the configuration where the number of segments
is equal to the group size for the larger kernel (chunking=1).
The performance test was run on a GTX 780 ti.

8.7.3 Results

The results of running this performance test on the GTX 780 Ti can be seen in
Figure 8.2. I have shown both the performance achieved by my implementation
of segmented reductions, and the performance that the loop-in-map imple-
mentation gives; in the long run, my implementation should incorporate this
strategy as well.

In Figure 8.2a we can see that for the 220 case, both Modern GPU and Thrust
are only a bit slower than my implementation when there are less than 28

segments. At this point, the runtime of Thrust jumps up, and stays flat for the
rest of the configurations; I do not have any idea why this happens. We can see
that the performance of Modern GPU stays fairly flat for the remainder of the
configurations, so its load balancing scheme is working good in this case.

In Figure 8.2b we can see that for the 226 case, the performance of Mod-
ern GPU and Thrust are fairly similar when there are fewer than 215 segments,
but they are nowhere near the runtime of ≈1500 µs that the one dimensional
reduction and my implementation can achieve. As the number of segments
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increases, the performance of the Modern GPU implementation suffers more
and more; I do not have a good idea about why this happens. We can see that the
runtime of the Thrust implementation is fairly constant over all configurations
of number of segments and segment sizes. My small kernel has a runtime that
is only slightly better than the Thrust implementation, but as we can use the
loop-in-map for these configurations, we will still have a significantly better
final runtime.

8.7.4 Conclusion

We have seen that the Thrust and Modern GPU implementations for segmented
reductions have a fairly competitive runtime, over all configurations of number
of segments and segment size, when there are 220 elements. I would assume
that this would also be the case when there are fewer elements.

However, when dealing with 226 elements, there is no question that my
implementation has a much better performance. When we can use the large
kernel with a good chunking factor (≥ 8) we achieve a speedup of approximately
8×. As the number of segments increases, we will change to the loop-in-map
kernel; we don’t have as superior performance, but still achieve a speedup of at
least 2×, except for the cases where our transpose cost is higher.
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Chapter 9

Conclusions and Future Work

In this thesis we have explored how to generate efficient code for segmented
reductions and segmented redomaps for GPUs. The initial starting point for the
Futhark compiler was that segmented reductions would be computed using a
segmented scan, and that segmented redomaps would be computed by letting
a single thread compute the redomap for a whole segment sequentially.

Throughout this thesis we have reached the following conclusions:

• The experiments on the prototype implementation for a segmented sum,
showed us how using three different strategies for computing segmented
reductions are applicable to different configurations of number of seg-
ments and segment size. The large kernel is effective on large segments;
the loop-in-map kernel is effective when are many segments, as it uses a
single thread to process a segment; and the small kernel can be used in the
remaining cases, and is an important part of the puzzle although it did
not perform best in the experiments we investigated.

We have seen how reading multiple elements per thread significantly
increases performance of the large kernel; as transposition is required
for non-commutative reductions to use this technique, commutative and
non-commutative segmented reductions have different performance char-
acteristics.

We have devised a simple algorithm to decide which kernel to use for
a given configuration of number of segments and segment size. We
based this decision on the simple tuning parameters of groups size and
how many threads are needed to fully utilize the hardware. We have
seen that this algorithm does not always make the optimal choice, and
argued that the optimal choice is heavily based on whether the reduction
is commutative or non-commutative; the complexity of the reduction
operator used; the configuration of number of segments and segment size;
and the GPU device being used. We have discussed additional tuning
parameters that could allow an autotuning project to optimize the decision
algorithm, for a specific instance of a segmented reduction.

Finally, we saw how the bandwidth of the GPU device is a limiting factor
for how fast a segmented reduction can be computed; there is a large
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difference between the best possible runtime when using one segment
with n elements, and n segments with one element.

• My implementation in the Futhark compiler, for code generation for seg-
mented reductions, achieves better performance, compared to the seg-
mented scan used by the unmodified Futhark compiler, for the problems
we have studied. We have seen that when we can use the large kernel
with a good chunking factor (i.e., ≥ 16), we have comparable runtime
with a one-dimensional reduction; By also using the loop-in-map strategy,
we will be able to improve the performance drastically when there are
many small segments: for non-commutative reductions we would be
able to match the performance of the one-dimensional reduction, for all
configurations of number of segments and segment size.

For segmented redomaps, we have studied the maximum segment sum
problem, which uses a non-trivial reduction operator. We have seen that
enabling loop-in-map with my implementation, would greatly outper-
form the implementation in Futhark with versioned-code enabled. We
have seen that my implementation can match the performance of a non-
commutative one-dimensional redomap when the segments are large;
however, when there are many segments, and we need to return multiple
values per segment, it becomes impossible to match the performance of
the one-dimensional reduction.

• We have seen that my implementation can improve the performance
of ported benchmarks from the Rodinia and Parboil benchmark suites.
However, for some benchmarks that use segmented reductions or seg-
mented redomaps, the amount of work performed by the segmented
reductions/redomaps is so insignificant that my implementation leads to
no performance improvement.

From evaluation on four different GPUs, we have seen a large improve-
ment in runtime by using my implementation on the K-means and Back-
prop benchmarks from Rodinia. Compared to the unmodified Futhark
compiler, my implementation achieved speedups by a harmonic-mean
factor of 1.39× for Backprop, reducing the percentage of runtime spent in
segmented reductions from at least 20.41% to 2.24%; and we achieved a
speedup by a harmonic-mean factor of 1.36× for K-means, reducing the
percentage of runtime spent in segmented reductions from at least 21.19%
to 1.1%.

• Finally, we have seen that not many other GPU libraries or compilers have
developed an implementation for segmented reductions of regular arrays,
that is as efficient as the one presented in my thesis.

GPU libraries such as Thrust, CUB, and Modern GPU, supports irregular
segmented reductions, but seems to have no special support for regular
segmented reductions; this means that they are solving a more general
problem, and cannot exploit the regularity of multidimensional arrays.
Furthermore, these GPU libraries only support commutative reduction
operators; if we need to compute a non-commutative reduction, we need
to use a segmented scan, which we have seen is not as efficient.
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Accelerate, an array processing language embedded in Haskell, has an
implementation for computing a segmented reduction over regular mul-
tidimensional arrays. However, it always uses a single group to process
a segment, so this implementation will only be efficient when there are
enough segments, and the segments are large enough, to fully utilize the
hardware. Accelerate supports both commutative and non-commutative
reduction operators, but uses the exact same code to execute both types;
as we have seen in both the prototype and the evaluation of my implemen-
tation, treating commutative and non-commutative reductions separately,
can lead to huge performance improvements.

We have seen a simple performance evaluation using segmented sum,
comparing my implementation with Thrust and Modern GPU. We have
seen that when using 220 total elements, there was not a large difference
in performance, but when using 226 elements, my implementation was
much faster for all configurations of number of segments and segment
size; specifically when there were only few very large segments, my imple-
mentation outshine the other and achieved a speedup of approximately
8×.

9.1 Future work

To further improve the code generation of segmented reductions and segmented
redomaps, we could explore the following subjects in more detail:

• In this thesis we have only used powers of two for the number of segments
and the segment size. I have a clear conviction that the approaches and
the lessons learned will be applicable to using any number of segments
and any segment size, but it would make sense to verify this.

Likewise, we have mostly looked at the performance for 32-bit floating
points. I don’t see any reason why the work in this thesis should be
invalidated by using a different datatype, but it would make sense to
verify this.

• We could try to adopt the notion of an in-group on-the-fly transpose as
used by Modern GPU. As discussed in subsection 8.5.2, this technique
could be applied to all three kernels:

– For the large and loop-in-map kernel, this approach would eliminate
the separate transpose kernel, and therefore 2 × inputsize global
memory accesses; however, this approach would limit the maximum
chunking factor as all elements processed by a group must fit in local
memory.

– For the small kernel, we could use this approach to enable it to use
chunking. As we have seen throughout this thesis, using chunking
can improve performance significantly.

• We could explore other ways to implement the small kernel, that does not
rely on an in-group segmented scan. My intuition is that by using a flag
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array as the segmented scan does, we can make a flag-based segmented
reduce within a group; this will allow us to skip the second step of a
segmented scan where the intermediate results are redistributed, and
reduce the number of reads and writes to local memory.

It might also be possible to avoid using the flag array completely, and rely
on index calculations to figure out if the value from two threads should
be combined or not. It is unclear to me which of these approaches would
be better.

• We could use separate group-wide reduction kernels for commutative
and non-commutative reductions. The fully optimized commutative re-
duction kernel from NVIDIA, mentioned in subsection 4.3.2, did get sig-
nificantly lower runtime in my preliminary performance experiment (see
appendix A).

• We could try to create an alternate version of the loop-in-map kernel,
that uses multiple threads to compute multiple intermediate results per
segment. As all the intermediate results reside within the same group,
we can simply apply the same technique as in the small kernel to reduce
these to a single result per segment; thereby we eliminate the need for
allocating a temporary array, and the global memory accesses to read and
write from it.

Using this technique would enable us to use the loop-in-map kernel on a
wider range of configurations of number of segments and segment sizes.
My intuition is that this would be most effective for non-commutative
reductions when a transpose would be required anyway.

• We could implement a non-chunking version of the large kernel in Futhark,
to allow completely avoiding the cost of a transpose for non-commutative
reductions. It is unclear to me in which cases this would be the right thing
to do, so this will need to be explored in depth.

• We could work on the part the Futhark compiler responsible for per-
forming transpositions and padding arrays. Currently when an array is
transposed because we will use chunking, we will always perform a mem-
ory copy and then perform the transpose. As mentioned in section 6.4 it
should be possible to avoid the cost of performing padding, even if the
array size is not a multiple of the number of threads that will be used.

• We could work on an autotuning project to automatically tune the decision
algorithm to a specific problem, on a specific GPU. We could also try
to investigate a wider range of segmented reductions and segmented
redomaps, to allow us to come up with better heuristics.

I would imagine my idea of adjusting the group size dynamically from
subsection 5.4.2 could also fall under such an autotuning project.

• When using the large kernel, and it is reasonable to use multiple groups
per segment, it might be beneficial to start by increasing chunking instead;
the data on chunking in subsection 5.2.2 showed that even a chunking
factor of 4 can increase performance significantly. When faced with a large
segment, we could start by increasing the chunking factor until it reaches
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a limit, and only then start using multiple groups per segment. This limit
would be yet an other tuning parameter; we could try different heuristics
what works best in general, or let an autotuning project control the value.
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Appendix A

Performance of CUDA
reductions

The data in this very crude table comes from a GeForce GTX 780 Ti, and is aver-
aged over 100 runs. “nvidia comm” is an implementation for the most efficient
version from [15], that only works for a commutative reduction operator.

All reductions compute the sum of the input array, which are 32-bit floating
points (result is verified to be correct, within a margin of error).

There is an upper limit of the size of the grid in the x- and y-dimension of
216−1 = 65535. For these simple kernels that only use blocks in the x-dimension,
this limits us launching at most 216 − 1 blocks.

I only used powers of two for the number of elements, so the largest test
case for 225 elements was also able to be run using a block size of 1024.

Device : GeForce GTX 780 Ti
n=1024 , blockSize =1024 , num_blocks =1

Routine Microseconds
version 1 8.28
version 2 4.75

nvidia comm 4.46

n=1024 , blockSize =512 , num_blocks =2
Routine Microseconds

version 1 6.26
version 2 4.40

nvidia comm 4.36

n=1024 , blockSize =256 , num_blocks =4
Routine Microseconds

version 1 5.22
version 2 4.41

nvidia comm 4.45

n=1024 , blockSize =128 , num_blocks =8
Routine Microseconds

version 1 4.79
version 2 4.42

nvidia comm 4.40
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n=1048576 , blockSize =1024 , num_blocks =1024
Routine Microseconds

version 1 221.78
version 2 86.25

nvidia comm 72.56

n=1048576 , blockSize =512 , num_blocks =2048
Routine Microseconds

version 1 165.66
version 2 79.44

nvidia comm 57.94

n=1048576 , blockSize =256 , num_blocks =4096
Routine Microseconds

version 1 128.76
version 2 79.76

nvidia comm 49.48

n=1048576 , blockSize =128 , num_blocks =8192
Routine Microseconds

version 1 93.32
version 2 82.11

nvidia comm 41.65

n =33554432 , blockSize =1024 , num_blocks =32768
Routine Microseconds

version 1 6021.89
version 2 2350.90

nvidia comm 1926.94
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Appendix B

Prototype Raw Performance
for all Group Sizes
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Figure B.1: Using groupsize 1024 on 220 32-bit floating points.
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Figure B.2: Using groupsize 512 on 220 32-bit floating points.
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Figure B.3: Using groupsize 256 on 220 32-bit floating points.
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Figure B.4: Using groupsize 128 on 220 32-bit floating points.
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Figure B.5: Using groupsize 1024 on 226 32-bit floating points.
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Figure B.6: Using groupsize 512 on 226 32-bit floating points.
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Figure B.7: Using groupsize 256 on 226 32-bit floating points.
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Figure B.8: Using groupsize 128 on 226 32-bit floating points.
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Appendix C

New Transpose Kernel

I created a new transpose kernel to handle the cases where either dimension
is smaller than the tile size. In the case of a low height of the input array, the
new transpose kernel will read m× tilesize elements of each row instead of just
tilesize, where m =

⌊
tilesize
height

⌋
.

The new transpose kernel should only be used in the cases where m ≥
2, which covers the edge cases from the “normal” transpose kernel (the one
discussed in subsection 4.3.3)

An important detail for this new transpose is that it does not help in the case
where the height falls with in tilesize

2 < height < tilesize, because we cannot
use m ≥ 2. We know that the percentage of active threads in these cases must
be strictly greater than 50%.

My implementation for the Futhark compiler can be seen at GitHub.

C.1 Example

If we use a TILE_DIM of 4, and have a [2][8] array

[ [ 0, 1, 2, 3, 4, 5, 6, 7]
, [ 8, 9, 10, 11, 12, 13, 14, 15]
]

normally we would use 2 tiles to transpose this (one for the first four element of
both rows, and one for the last four of both rows). If we consider the number of
elements the current would process per tile ( height * TILE_DIM ), we should
only launch the "low height" kernel if it has room for all the elements that 2
normal tiles would process.

This means that a [3][16] array will not benefit from the "low height" kernel
when using TILE_DIM of 4, and we should launch the normal transpose kernel.

It might be possible to create an other kernel that can handles the cases
where TILE_DIM > height > TILE_DIM/2 , but this kernel does not.
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C.2 Implementation

The new kernel for handling a low height of the input array can be seen below

// Will consume ‘mulx * TILE ‘ elements of each row of the input
array , thereby

// making up for the lack of height in the input array
template <int TILE >
__global__ void transpose_new_lowheight ( const float * A, float * B,

int heightA , int widthA , int mulx) {

__shared__ float tile[TILE ][ TILE +1];

int x = blockIdx .x * TILE * mulx + threadIdx .x + ( threadIdx .y %
mulx)*TILE;

int y = blockIdx .y * TILE + ( threadIdx .y / mulx);

int ind = y * widthA + x;
if( x < widthA && y < heightA ) {

tile[ threadIdx .y][ threadIdx .x] = A[ind ];
}
__syncthreads ();

x = blockIdx .y * TILE + ( threadIdx .x / mulx);
y = blockIdx .x * TILE * mulx + threadIdx .y + ( threadIdx .x %

mulx)*TILE;

ind = y * heightA + x;
if( x < heightA && y < widthA ) {

B[ind] = tile[ threadIdx .x][ threadIdx .y];
}

}

How we should launch it is illustrated below

if ( height <= TILE_DIM /2 && width > TILE_DIM ) {
int mulx = TILE_DIM / height ;
int newwidth = ( width +mulx -1)/mulx;

dim3 dimGrid (( newwidth +TILE_DIM -1)/TILE_DIM , ( height +TILE_DIM
-1)/TILE_DIM , 1);

dim3 dimBlock (TILE_DIM , TILE_DIM , 1);

transpose_new_lowheight <TILE_DIM > <<<dimGrid , dimBlock >>>(
d_idata , d_odata , height , width , mulx);

}

The new kernel for handling a low width of the input array can be seen
below

template <int TILE >
__global__ void transpose_new_lowwidth ( const float * A, float * B,

int heightA , int widthA , int muly) {

__shared__ float tile[TILE ][ TILE +1];

int x = blockIdx .x * TILE + ( threadIdx .x / muly);
int y = blockIdx .y * TILE * muly + threadIdx .y + ( threadIdx .x %

muly)*TILE;

int ind = y * widthA + x;

121



if( x < widthA && y < heightA ) {
tile[ threadIdx .y][ threadIdx .x] = A[ind ];

}
__syncthreads ();

x = blockIdx .y * TILE * muly + threadIdx .x + ( threadIdx .y %
muly)*TILE;

y = blockIdx .x * TILE + ( threadIdx .y / muly);

ind = y * heightA + x;
if( x < heightA && y < widthA ) {

B[ind] = tile[ threadIdx .x][ threadIdx .y];
}

}

The general approach to choose between the three transpose algorithms, is
shown below

if ( height == 1 || width == 1) {
copy or do nothing

} if ( height <= TILE_DIM /2 && width > TILE_DIM ) {
transpose_lowheight

} else if ( width <= TILE_DIM /2 && height > TILE_DIM ) {
transpose_lowwidth

else {
transpose_current

}
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Appendix D

Runtimes for All Benchmarks

In this appendix I will show runtimes for all the benchmarks mentioned in
chapter 7. However, we will start with the data for the detailed breakdown of
the Backprop and K-means benchmarks, so it does not get lost within all the
figures in the following pages.

D.1 Backprop Detailed Breakdown

Only uses commutative reductions. This break down is for when using the
medium dataset.

D.1.1 Vanilla

Kernel map_kernel_6217 executed 1 times , with average runtime : 231 us and
total runtime : 231 us

Kernel fut_kernel_map_transpose_f32 executed 1 times , with average runtime : 1017 us and
total runtime : 1017 us

Kernel map_kernel_6290 executed 1 times , with average runtime : 1054 us and
total runtime : 1054 us

Kernel scan1_kernel_6391 executed 1 times , with average runtime : 4507 us and
total runtime : 4507 us <<<

Kernel map_kernel_6721 executed 1 times , with average runtime : 1540 us and
total runtime : 1540 us

Kernel fut_kernel_map_transpose_lowwidth_f32 executed 0 times , with average runtime : 0us and
total runtime : 0us

Kernel chunked_reduce_kernel_6630 executed 1 times , with average runtime : 211 us and
total runtime : 211 us

Kernel map_kernel_6190 executed 1 times , with average runtime : 8942 us and
total runtime : 8942 us

Kernel fut_kernel_map_transpose_lowheight_f32 executed 0 times , with average runtime : 0us and
total runtime : 0us

Kernel map_kernel_6701 executed 1 times , with average runtime : 865 us and
total runtime : 865 us

Kernel map_kernel_6774 executed 1 times , with average runtime : 22 us and
total runtime : 22 us

Kernel map_kernel_6738 executed 1 times , with average runtime : 976 us and
total runtime : 976 us

Kernel map_kernel_6232 executed 1 times , with average runtime : 38 us and
total runtime : 38 us

Kernel map_kernel_6304 executed 1 times , with average runtime : 26 us and
total runtime : 26 us

Kernel scan2_kernel_6441 executed 1 times , with average runtime : 32 us and
total runtime : 32 us <<<

Kernel reduce_kernel_6595 executed 1 times , with average runtime : 19 us and
total runtime : 19 us

Kernel map_kernel_6494 executed 1 times , with average runtime : 24 us and
total runtime : 24 us

Kernel map_kernel_6792 executed 1 times , with average runtime : 40 us and
total runtime : 40 us

Kernel map_kernel_6262 executed 1 times , with average runtime : 770 us and
total runtime : 770 us
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Kernel chunked_reduce_kernel_6569 executed 1 times , with average runtime : 23 us and
total runtime : 23 us

Kernel chunked_reduce_kernel_6517 executed 1 times , with average runtime : 24 us and
total runtime : 24 us

Kernel reduce_kernel_6684 executed 1 times , with average runtime : 20 us and
total runtime : 20 us

Kernel reduce_kernel_6543 executed 1 times , with average runtime : 19 us and
total runtime : 19 us

Kernel map_kernel_6333 executed 1 times , with average runtime : 564 us and
total runtime : 564 us

Kernel map_kernel_6480 executed 1 times , with average runtime : 1276 us and
total runtime : 1276 us

Ran 23 kernels with cumulative runtime : 22240 us

Total time spent on computing segmented reductions: 32 + 4507 = 4539,
which is 20.41% of the total runtime.

D.1.2 Thesis (with segmented reduction)

Kernel map_kernel_6217 executed 1 times , with average runtime :
203 us and total runtime : 203 us

Kernel fut_kernel_map_transpose_f32 executed 1 times , with average runtime :
995 us and total runtime : 995 us

Kernel segmented_redomap__one_group_one_segment_kernel_6467 executed 0 times , with average runtime :
0us and total runtime : 0us <<<

Kernel chunked_reduce_kernel_6838 executed 1 times , with average runtime :
204 us and total runtime : 204 us

Kernel map_kernel_6290 executed 1 times , with average runtime :
1020 us and total runtime : 1020 us

Kernel fut_kernel_map_transpose_lowwidth_f32 executed 0 times , with average runtime :
0us and total runtime : 0us

Kernel map_kernel_6909 executed 1 times , with average runtime :
886 us and total runtime : 886 us

Kernel map_kernel_6946 executed 1 times , with average runtime :
994 us and total runtime : 994 us

Kernel map_kernel_6190 executed 1 times , with average runtime :
8946 us and total runtime : 8946 us

Kernel map_kernel_6929 executed 1 times , with average runtime :
1530 us and total runtime : 1530 us

Kernel fut_kernel_map_transpose_lowheight_f32 executed 0 times , with average runtime :
0us and total runtime : 0us

Kernel segmented_redomap__one_group_one_segment_kernel_6359 executed 0 times , with average runtime :
0us and total runtime : 0us <<<

Kernel map_kernel_6232 executed 1 times , with average runtime :
38 us and total runtime : 38 us

Kernel map_kernel_6304 executed 1 times , with average runtime :
27 us and total runtime : 27 us

Kernel reduce_kernel_6751 executed 1 times , with average runtime :
20 us and total runtime : 20 us

Kernel reduce_kernel_6892 executed 1 times , with average runtime :
23 us and total runtime : 23 us

Kernel chunked_reduce_kernel_6777 executed 1 times , with average runtime :
24 us and total runtime : 24 us

Kernel chunked_reduce_kernel_6725 executed 1 times , with average runtime :
26 us and total runtime : 26 us

Kernel segmented_redomap__one_group_many_segment_kernel_6650 executed 0 times , with average runtime :
0us and total runtime : 0us <<<

Kernel map_kernel_6982 executed 1 times , with average runtime :
22 us and total runtime : 22 us

Kernel map_kernel_7000 executed 1 times , with average runtime :
41 us and total runtime : 41 us

Kernel map_kernel_6262 executed 1 times , with average runtime :
789 us and total runtime : 789 us

Kernel segmented_redomap__one_group_many_segment_kernel_6497 executed 1 times , with average runtime :
25 us and total runtime : 25 us <<<

Kernel segmented_redomap__many_groups_one_segment_kernel_6417 executed 1 times , with average runtime :
338 us and total runtime : 338 us <<<

Kernel reduce_kernel_6803 executed 1 times , with average runtime :
19 us and total runtime : 19 us

Ran 20 kernels with cumulative runtime : 16170 us

Using the large kernel with multiple groups per segment, and one group
per segment to reduce this recursively.

Total time spent on computing segmented reductions: 25 + 338 = 363 which
is 2.24% of the total runtime.

124



D.2 K-Means Detailed Breakdown

Only uses commutative reductions. This break down is for when using the
kdd_cup dataset.

D.2.1 Vanilla

Kernel map_kernel_2370 executed 1 times , with average runtime : 211 us and
total runtime : 211 us

Kernel reduce_kernel_2904 executed 37 times , with average runtime : 15 us and
total runtime : 560 us

Kernel fut_kernel_map_transpose_f32 executed 38 times , with average runtime : 303 us and
total runtime : 11547 us

Kernel scan2_kernel_2795 executed 37 times , with average runtime : 20 us and
total runtime : 753 us <<<

Kernel fut_kernel_map_transpose_i32 executed 74 times , with average runtime : 40 us and
total runtime : 3006 us

Kernel kernel_copy_3313 executed 1 times , with average runtime : 818 us and
total runtime : 818 us

Kernel fut_kernel_map_transpose_lowwidth_f32 executed 0 times , with average runtime : 0us and
total runtime : 0us

Kernel chunked_map_kernel_2415 executed 37 times , with average runtime : 7372 us and
total runtime : 272796 us

Kernel fut_kernel_map_transpose_lowheight_f32 executed 0 times , with average runtime : 0us and
total runtime : 0us

Kernel kernel_copy_3319 executed 1 times , with average runtime : 209 us and
total runtime : 209 us

Kernel kernel_copy_3386 executed 37 times , with average runtime : 14 us and
total runtime : 550 us

Kernel scan1_kernel_2500 executed 37 times , with average runtime : 58 us and
total runtime : 2160 us <<<

Kernel map_kernel_2603 executed 37 times , with average runtime : 14 us and
total runtime : 525 us

Kernel map_kernel_2851 executed 37 times , with average runtime : 15 us and
total runtime : 589 us

Kernel map_kernel_2675 executed 1 times , with average runtime : 254 us and
total runtime : 254 us

Kernel kernel_copy_3316 executed 1 times , with average runtime : 243 us and
total runtime : 243 us

Kernel fut_kernel_map_transpose_lowheight_i32 executed 37 times , with average runtime : 36 us and
total runtime : 1348 us

Kernel map_kernel_2834 executed 37 times , with average runtime : 287 us and
total runtime : 10644 us

Kernel chunked_map_kernel_2642 executed 37 times , with average runtime : 2558 us and
total runtime : 94665 us

Kernel map_kernel_2589 executed 37 times , with average runtime : 27 us and
total runtime : 1031 us

Kernel kernel_copy_3383 executed 37 times , with average runtime : 85 us and
total runtime : 3160 us

Kernel chunked_reduce_kernel_2873 executed 37 times , with average runtime : 57 us and
total runtime : 2131 us

Kernel map_kernel_2442 executed 1 times , with average runtime : 197 us and
total runtime : 197 us

Kernel scan1_kernel_2745 executed 37 times , with average runtime : 2843 us and
total runtime : 105214 us <<<

Kernel scan2_kernel_2550 executed 37 times , with average runtime : 17 us and
total runtime : 635 us <<<

Kernel fut_kernel_map_transpose_lowwidth_i32 executed 0 times , with average runtime : 0us and
total runtime : 0us

Ran 673 kernels with cumulative runtime : 513246 us

Total time spent on computing segmented reductions: 753 + 2160 + 105214 +
635 = 108762 microseconds, which is 21.19% of the total runtime.

D.2.2 Thesis (with segmented reduction)

Kernel map_kernel_2370 executed 1 times , with average runtime :
366 us and total runtime : 366 us

Kernel segmented_redomap__many_groups_one_segment_kernel_2968 executed 0 times , with average runtime :
0us and total runtime : 0us

Kernel fut_kernel_map_transpose_f32 executed 1 times , with average runtime :
1183 us and total runtime : 1183 us

Kernel segmented_redomap__one_group_many_segment_kernel_2606 executed 37 times , with average runtime :
17 us and total runtime : 649 us <<<

Kernel kernel_copy_3712 executed 1 times , with average runtime :
283 us and total runtime : 283 us

Kernel kernel_copy_3785 executed 37 times , with average runtime :
86 us and total runtime : 3208 us

Kernel fut_kernel_map_transpose_i32 executed 74 times , with average runtime :
40 us and total runtime : 3029 us
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Kernel fut_kernel_map_transpose_lowwidth_f32 executed 0 times , with average runtime :
0us and total runtime : 0us

Kernel segmented_redomap__many_groups_one_segment_kernel_2526 executed 37 times , with average runtime :
26 us and total runtime : 993 us <<<

Kernel kernel_copy_3788 executed 37 times , with average runtime :
15 us and total runtime : 565 us

Kernel segmented_redomap__one_group_many_segment_kernel_3207 executed 0 times , with average runtime :
0us and total runtime : 0us <<<

Kernel segmented_redomap__one_group_one_segment_kernel_2909 executed 37 times , with average runtime :
109 us and total runtime : 4045 us <<<

Kernel chunked_map_kernel_2415 executed 37 times , with average runtime :
7753 us and total runtime : 286869 us

Kernel segmented_redomap__one_group_many_segment_kernel_3049 executed 0 times , with average runtime :
0us and total runtime : 0us <<<

Kernel fut_kernel_map_transpose_lowheight_f32 executed 0 times , with average runtime :
0us and total runtime : 0us

Kernel kernel_copy_3715 executed 1 times , with average runtime :
203 us and total runtime : 203 us

Kernel chunked_map_kernel_2850 executed 37 times , with average runtime :
2575 us and total runtime : 95298 us

Kernel segmented_redomap__one_group_one_segment_kernel_2576 executed 0 times , with average runtime :
0us and total runtime : 0us <<<

Kernel chunked_reduce_kernel_3282 executed 37 times , with average runtime :
61 us and total runtime : 2288 us

Kernel segmented_redomap__one_group_one_segment_kernel_3019 executed 0 times , with average runtime :
0us and total runtime : 0us <<<

Kernel segmented_redomap__one_group_one_segment_kernel_2468 executed 0 times , with average runtime :
0us and total runtime : 0us <<<

Kernel fut_kernel_map_transpose_lowheight_i32 executed 0 times , with average runtime :
0us and total runtime : 0us

Kernel segmented_redomap__one_group_many_segment_kernel_2759 executed 0 times , with average runtime :
0us and total runtime : 0us <<<

Kernel reduce_kernel_3313 executed 37 times , with average runtime :
16 us and total runtime : 627 us

Kernel kernel_copy_3709 executed 1 times , with average runtime :
881 us and total runtime : 881 us

Kernel fut_kernel_map_transpose_lowwidth_i32 executed 0 times , with average runtime :
0us and total runtime : 0us

Ran 412 kernels with cumulative runtime : 400487 us

Usaing the large kernel with multiple groups per segment, one group per
segment, and the small kernel.

Total time spent on computing segmented reductions: 993 + 4045 + 649 =
5687 microseconds, which is 1.1% of the total runtime.

D.3 Speedups
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Figure D.1: Speedups achieved by using my implementation for segmented reductions over vanilla Futhark, on four different GPUs.
All benchmarks that cotained either a segmented reduction or a segmented redomap is shown.
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Figure D.2: Speedups achieved by using versioned code and my implementation for segmented reduction and segmented redomaps over
Futhark with versioned code, on four different GPUs.
All benchmarks that cotained either a segmented reduction or a segmented redomap is shown.
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Figure D.3: Runtimes for the Backprop benchmark from Rodinia. vanilla is the
Futhark compiler without modifications, thesis is the Futhark compiler with my
implementation for segmented reductions. The +vc versions uses versioned
code to, at runtime, select between using an implementation using the loop-in-
map strategy, or the implementation for a segmented reduction.
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Figure D.4: Runtimes for the K-means benchmark from Rodinia. vanilla is the
Futhark compiler without modifications, thesis is the Futhark compiler with my
implementation for segmented reductions. The +vc versions uses versioned
code to, at runtime, select between using an implementation using the loop-in-
map strategy, or the implementation for a segmented reduction.
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Figure D.5: Runtimes for the TPACF benchmark from Parboil. vanilla is the
Futhark compiler without modifications, thesis is the Futhark compiler with my
implementation for segmented reductions. The +vc versions uses versioned
code to, at runtime, select between using an implementation using the loop-in-
map strategy, or the implementation for a segmented reduction.
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Figure D.6: Runtimes for the OptionPricing benchmark from FinPar. vanilla
is the Futhark compiler without modifications, thesis is the Futhark compiler
with my implementation for segmented reductions. The +vc versions uses
versioned code to, at runtime, select between using an implementation using
the loop-in-map strategy, or the implementation for a segmented reduction.
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Figure D.7: Runtimes for the MRI-Q benchmark from Parboil. vanilla is the
Futhark compiler without modifications, thesis is the Futhark compiler with my
implementation for segmented reductions. The +vc versions uses versioned
code to, at runtime, select between using an implementation using the loop-in-
map strategy, or the implementation for a segmented reduction.
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Figure D.8: Runtimes for the Crystal benchmark from Accelerate. vanilla is the
Futhark compiler without modifications, thesis is the Futhark compiler with my
implementation for segmented reductions. The +vc versions uses versioned
code to, at runtime, select between using an implementation using the loop-in-
map strategy, or the implementation for a segmented reduction.
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