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Abstract

We present L0, a purely functional programing language supporting

nested regular data parallelism and targeting massively parallel SIMD

hardware such as modern graphics processing units (GPUs).

L0 incorporates the following novel features:

• A type system for in-place modification and aliasing of arrays and

array slices that ensures referential transparency, which in turn

supports equational reasoning.

• An assertion language for expressing bounds checks on dynamically

allocated arrays, which can often be checked statically to eliminate

dynamic bounds checks.

• Compiler optimisations for hoisting bounds checks out of inner loops

and performing loop fusion based on structural transformations.

We show that:

• The type system is simpler than existing linear and unique typing

systems such Clean [4], and more expressive than libraries such as

DPH, Repa and Accelerate [12, 24, 13], for efficient array processing.

• Our fusion transformation is capable of fusing loops whose output is

used in multiple places, when possible without duplicating compu-

tation, a feature not found in other implementations of fusion [23].

• The effectiveness of our optimisations is demonstrated on three

real-world benchmark problems from quantitative finance, based

on empirical run-time measurements and manual inspection of the

optimised programs. In particular, hoisting and fusion yield a

sequential speed-up of up to 71% compared to the unoptimised

source code, even without any parallel execution.

The results suggest that the language design, expressiveness and

optimisation techniques of L0 can be realized across a range of SIMD-

architectures, notably existing GPUs and manycore-chips, to simultane-

ously achieve portability and eventually performance competitive with

hand-coding.

The results reported are based on joint work with Cosmin Oancea,

DIKU.
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Chapter 1

Introduction

For practically the entire lifetime of the electronic computer, programmers have

been used to an exponential growth in commonly available computing power.

Until around 2006, this directly manifested itself as improvements to sequential

performance, although physical limits made it uneconomical (or impossible)

for this trend to continue. These days, hardware designers are making their

machines increasingly parallel : rather than speeding up the individual processors,

as happened previously, more processors, or more specialised processors, are

added. Thus, while computing power is still growing, it has become increasingly

necessary to write programs that are parallel in order to take full advantage of

modern advancements in hardware.

One interesting development is the commoditisation of massively parallel

vector processors in the form of graphics cards. While hardware acceleration of

graphics became commonplace in the 90s, it was not until the rise of CUDA

and OpenCL in 2006 that General-Purpose computing on Graphics Processing

Units (GPGPU) began to move into the mainstream. The kind of parallelism

supported by GPGPU is data parallelism, wherein each processor performs the

same task on different pieces of the data. This is also called Single Instruction

Multiple Data (SIMD). Today, there are three main ways to take advantage of

this data parallel processing power:

Low-level interfaces: CUDA and OpenCL implementations are supplied by

the GPU vendors.1 These are very low-level, and provide a C-like pro-

gramming interface. Furthermore, GPU hardware has very complicated

performance characteristics, and it can be hard to achieve optimal, or even

good performance. Nevertheless, the full supported power of the devices is

available at this level, and optimal performance is theoretically achievable,

although in practice, specialist knowledge is required to achieve good

results at this level.

At the most basic level, all other approaches eventually boil down to

talking to a low-level interface.

1Strictly. OpenCL has a broader focus, and seeks to provide an interface to heterogenous
computation in general, but for the purpose of this thesis, we will consider OpenCL and
CUDA to be GPU-oriented.
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CHAPTER 1. INTRODUCTION

Libraries: Some programming libraries aimed at high-peformance computing

have been rewritten to take advantage of GPU acceleration. For example,

Nvidia provides CUBLAS [30], an implementation of the well-known BLAS

array operations API. These libraries are typically written by experts,

and come close to peak potential performance on the target hardware. It

is generally easy to use these libraries from any language offering a good

foreign function interface, and it is thus an efficient way to reach a large

number of potential users. Usage of these libraries requires little in the

way of GPU knowledge, or indeed knowledge about parallel programming

at all.

On the downside, although each discrete function may be well-optimised in

isolation, the library approach does not permit optimisation of composed

operations. For example, if a library exports a function mult to multiply

two matrices, and we use it in two invocations to multiply three matrices,

as in mult(x,mult(y,z)), the library will likely not be as fast as if we

used a specialised ternary multiplication function. Although particularly

clever libraries may use a variant of lazy evaluation to delay computation

and optimise some composed operations [26], the optimisation potential

is still limited as long as the program cannot be inspected directly.

The library approach is very popular in practice, with many high-performance

computing libraries now possessing GPGPU backends.

Data-parallel programming languages: The final way to perform GPGPU

is to integrate GPU support directly into a programming language, with

full compiler support. This permits code generation based on a global

view of the entire computation, at least in theory, and optimise with full

knowledge of the program. There appears to be two main paths within

the programming language approach:

Embedded languages: Somewhat similar to the library approach, this

integrates GPGPU support in an existing language as an Embedded

Domain Specific Language (EDSL) [16]. The distinction between

an EDSL and a library is often fuzzy, with the distinction typically

being about the level of composability offered, and whether the EDSL

follows the same evaluation rules as the host language. Further

blurring the issue, some EDSLs use syntactical extensions – for

example through macros [25] or quasiquotation [27] – while others

take advantage of the host languages existing syntactical facilities.

The limitations for EDSLs are similar to the ones for libraries. For

example, the embedded language must be expressible in the type

system of the host language. It also varies how much support the

host language provides for hooking into the compiler, in order to

perform optimisation. On the other hand, much of the infrastructure

of the host language will be inherited by the EDSL, leading to a

much simpler implementation, compared to writing a full compiler.

Furthermore, due to the integration with the host language, EDSL

usage can be very seamless. On the other hand, it is extremely hard

to access an EDSL from outside of the host language.
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CHAPTER 1. INTRODUCTION

DPH, Repa and Accelerate [12, 24, 13] are examples of data-parallel

EDSLs for Haskell, with Accelerate suppors OpenCL and CUDA

backends.

Independent languages: The final approach is to write an entire com-

piler targeting GPGPU execution. This provides total control, at the

cost of greatly increased implementation complexity. Furthermore,

it can be difficult to integrate components written in a these new

languages into existing code-bases written in mainstream languages.

Nevertheless, the language can be designed from the bottom up for ef-

ficient parallel execution, without compromises due to host language

integration. The NESL [8] language is an early (’96) example of a

programming language designed entirely for data-parallel execution.

Although designed before the proliferation of GPUs, a GPU backend

has recently been developed [5]. Another example of such a language

is Single-Assignment C (SAC) [18].

In a way, we could also consider the OpenCL and CUDA kernel

languages themselves to be in this category, but we only consider

high-level languages to be proper members of this group.

The library approach is effective if a library exists for the specific problem

the programmer is attempting to solve, but will often be neither sufficiently

fast nor expressive for new domains. EDSLs suffer from a similar problem –

in particular, nested parallelism and similar complex control flow is generally

poorly supported. The NESL and SAC languages are more expressive, but their

implementation does not perform many advanced optimisations. Clearly, there

is still great uncertainty about the best way to program these massively parallel

machines.

To investigate possible solutions, we have examined several real-world fi-

nancial kernels originally implemented in languages such as OCaml, C++, and

C, and measuring in the range of hundreds of lines of compact code, with two

main objectives in mind:

1. What is the simplest language that permits a relatively straightforward

translation of the financial programs, while still expressing algorithm

invariants that enable the generation of efficient parallel code?

2. What compiler optimizations would result in efficiency comparable to

code hand-tuned for the specific hardware?

To answer the first question, we will present L0, an independent language

designed for parallel execution. We have chosen to implement L0 as a non-

embedded language in order to have more design freedom, as we do not need to,

e.g., fit L0 into the type system of an existing language. Our language supports

nested parallelism on regular arrays, i.e., arrays where all rows of the array have

the same size. This restriction is due to regular arrays being more amenable to

compiler optimizations, in particular they allow transposition and simplified

size analysis.
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CHAPTER 1. INTRODUCTION

Our language supports nested parallelism because many programs exhibits

several layers of parallelism that cannot be exploited by flat parallelism in the

style of REPA [24]. For example, the examined financial kernels contain several

innermost scan or reduce operations, and at least one semantically sequential

loop per benchmark.

Our language is also functional, because we would rather invest compiler

effort in exploiting high-level program invariants rather than in proving them.

The common example here is parallelism: map-reduce constructs are inherently

parallel, while Fortran-style do loops require sophisticated analysis to decide

parallelism. Furthermore, such analyses [11, 19, 32, 31] have not yet been

integrated in the repertoire of commercial compilers, likely due to “heroic effort”

concerns, albeit their effectiveness was demonstrated on comprehensive suites,

and some of them were developed more than a decade ago.

The answer to the second question seems to be that a common ground needs

to be found between functional and imperative optimizations and, to a lesser

extent, between functional and imperative language constructs. Much in the

same way in which data parallelism seems to be generated by a combination of

map, reduce, and scan operations, the optimization opportunities seem solvable

via a combination of transposition, loop fusion, loop interchange and loop

distribution [2].

It follows that classic index-based loops are necessary in the intermediate

representation, regardless of whether they are provided as a language construct

or are derived from tail-recursive functions via a code transformation.

Loop fusion is one of the most important code transformations, as it has

the potential for substantially optimising both memory hierarchy overhead and,

sometimes asymptotically, space requirements. In imperative languages, fusing

producer-consumer loops requires dependency analysis on arrays applied at

loop-nest level. Such analysis, however, has often been labeled as “heroic effort”

and, if at all, is supported only in its simplest and most conservative form in

industrial compilers. In functional languages however, fusion is naturally and

relatively easily derived from the producer-consumer relation between program

constructs that expose a rich, higher-order algebra of program invariants, such

as the map-reduce list homomorphisms.

Finally, an indirect consequence of having to deal with sequential dependent

loops is that L0 provides support for in-place updates of array elements. The

observable semantics still respect referential transparency, i.e., a deep copy of

the original array but with the corresponding element replaced, intersected

with the imperative one, i.e., referential transparency cannot be guaranteed, a

compile-time error is signaled. This approach enables the intuitive cost model

that the user likely assumes, while preserving the functional semantics.

Throughout this thesis, we will often refer to a vaguely defined“programmer”,

as well as ascribe various motives and expectations to this nebulous being. While

L0 is intended as an intermediate language, and in the end is intended as a target

language by compilers for higher-level languages, it has a well-defined human-

readable (and writable) syntax, and can be programmed directly. Indeed, all

extant L0 programs have been written by hand. Thus, when “the programmer”

is referenced, we can refer to either an actual human, or a compiler generating
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CHAPTER 1. INTRODUCTION

L0 code. For our purposes, these will have identical motives, although a human

programmer may complain somewhat more vocally about the lack of syntactical

niceties in the language.

1.1 Contributions

We present a purely functional data-parallel programming language, L0, with

support for nested parallelism. The language supports a method for safely

performing in-place updates of array data through a type system concept called

uniqueness types. Through the translation of real-world financial programs to

L0, we demonstrate the practical usefulness of this language feature.

We describe the design and implementation of several optimisations, notably

hoisting bounds checks out of inner loops, and loop fusion based on a structural

transformation. The fusion transformation is capable of fusing loops whose

output is used in multiple places, when possible without duplicating computation.

Optimising bounds checks is an example of a general principle of removing

checks statically when possible, and dynamically when necessary.

The benefits of our optimisations are demonstrated on three real-world

financial benchmarks. It is shown that the compiler is able to hoist bounds

checks and other assertions outside of loops.

The effectiveness of fusion is demonstrated via compiler instrumentation

and quantitative and qualitative measurements on the three benchmarks, in the

form of inspecting the changes in program dataflow. This shows that always

refusing to duplicate computation is too conservative on parallel hardware, and

discuss potential directions for further improvement.

The implementation of the L0 compiler consists of roughly ten thousand

lines of Haskell (ignoring comments and blank lines), and it is hosted and

publicly browsable at https://github.com/HIPERFIT/L0Language.

Parts of this thesis, in particular the core of the fusion algorithm in Chapter 7,

has been previously published as

Henriksen, Troels and Cosmin Eugen Oancea. “A T2 Graph-

reduction Approach to Fusion”. In: Proceedings of the 2Nd ACM

SIGPLAN Workshop on Functional High-performance Computing.

FHPC ’13. Boston, Massachusetts, USA: ACM, 2013, pp. 47–58.

isbn: 978-1-4503-2381-9. doi: http://dx.doi.org/10.1145/

2502323.2502328. url: http://doi.acm.org/10.1145/2502323.

2502328

1.2 Report outline

The remainder of the report is structured as follows. Chapters 2 and 3 will

introduce the programmer-visible part of L0 and serves as a language reference.

Chapter 4 presents a slight modification of the external language, that makes

it more amenable to transformation and optimisation. Chapter 5 discusses

simple classical optimisations in the context of L0, while Chapter 6 discusses

slightly more advanced classical optimisations. Chapter 7 covers loop fusion, an
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CHAPTER 1. INTRODUCTION

important structural optimisation, while Chapters 8 and 9 cover transformations

that enable other optimisations (although particularly fusion).

1.3 Notation

In various places, I will use an overline to indicate a comma-separated sequence

of terms. For example, when describing a function call, rather than writing:

f(e1, . . . , en)

I may instead write:

f(es)

I may also use this in conjunction with expliclt arguments, as in:

f(estart, es, eend)

Which is a shortcut for

f(estart, e1, . . . , en, eend)
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Language Design
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Chapter 2

The L0 language

The L0 programming language is a purely functional, call-by-value, mostly

first-order language that permits bulk operations on arrays using second-order

array combinators (SOACs).

The primary idea behind L0 is to design a language that has enough expres-

sive power to conveniently express complex programs, yet is also amenable to

aggressive optimisation and parallelisation. Unfortunately, as the expressive

power of a language grows, the difficulty of optimisation often rises likewise.

For example, we support nested parallelism, despite the complexities of ef-

ficiently mapping to the flat parallelism supported by hardware, as a great

many programs depend on this feature. On the other hand, we do not support

non-regular arrays, as they complicate size analysis a great deal. The fact that

L0 is purely functional is intended to give an optimising compiler more leeway

in rearranging the code and performing high-level optimisations. It is also the

plan to eventually design a rigorous cost model for L0, although this work has

not yet been completed.

This chapter serves as a reference and basic introduction to the L0 language,

while Chapters 3 and 4 describes more subtle design issues. Sections 2.1 and 2.2

will present L0 through informal walkthrough of the major language concepts,

whilst a complete reference of language constructs is given in Section 2.3.

2.1 First-order L0

The syntax of L0, as seen on Figure 1 and Figure 2, is heavily inspired by

Haskell and Standard ML. An identifier starts with a letter, followed by any

number of letters, digits and underscores. Numeric, string and character literals

use the same notation as Haskell (which is very similar to C), including all

escape characters. Comments are indicated with // and span to end of line.

An L0 program consists of a sequence of function definitions, of the following

form.

fun return-type name (params... ) = body

A function must declare both its return type and the types of all its pa-

rameters. All functions (except for inline anonymous functions; see below) are

8



CHAPTER 2. THE L0 LANGUAGE

t ::= int (Integers)
| real (Floats)
| bool (Booleans)
| char (Characters)
| {t1, ..., tn} (Tuples)
| [t] (Arrays)
| *[t] (Unique arrays)

k ::= n (Integer)
| x (Decimal number)
| b (Boolean)
| c (Character)
| {v1, . . . , vn} (Tuple)
| [v1, . . . , vn] (Array)

p ::= id (Name pattern)
| {p1, ..., pn} (Tuple pattern)

Figure 1: L0 syntax
..................................................................................

defined globally. L0 does not use type inference. Symbolic constants are not

supported, although 0-ary functions can be defined. As a concrete example,

here is the recursive definition of the factorial function in L0.

fun int fact(int n) =

if n = 0 then 1

else n * fact(n-1)

Indentation has no syntactical significance in L0, but recommended for read-

ability.

The syntax for tuple types is a comma-separated list of types or values

enclosed in braces, so {int, real} is a pair of an integer and a floating-point

number. Both single-element and empty tuples are permitted. Array types are

written as the element type surrounded by brackets, meaning that [int] is a one-

dimensional array of integers, and [[[{int, real}]]] is a three-dimensional

array of tuples of integers and floats. An immediate array is written as a

sequence of elements enclosed by brackets.

[1, 2, 3] // Array of type [int].

[[1], [2], [3]] // Array of type [[int]].

All arrays must be regular (often termed full) - for example, all rows of a

two-dimensional array must have the same number of elements.

[[1, 2], [3]] // Compile-time error.

[iota(1), iota(2)] // A run-time error if reached.

The restriction to regular arrays simplifies size analysis and optimisation.

Arrays are indexed using the common row-major notation, e.g., a[i1, i2,

i3...]. An indexing is said to be full if the number of given indexes is equal

to the dimensionality of the array.

9



CHAPTER 2. THE L0 LANGUAGE

e ::= k (Constant)
| v (Variable)
| {e1,...,en} (Tuple expression)
| [e1,...,en] (Array expression)
| e1 � e2 (Binary operator)
| -e (Prefix minus)
| not e (Logical negation)
| if e1 then e2 else e3 (Branching)
| v[e1, ..., en] (Indexing)
| v(e1, ..., en) (Function call)
| let p = e1 in e2 (Pattern binding)
| zip(e1, ..., en) (Zipping)
| unzip(e) (Unzipping)
| iota(e) (Range)
| replicate(en, ev) (Replication)
| size(e) (Array length)
| reshape((e1,...,en), e) (Array reshape)
| transpose(e) (Transposition)
| split(e1, e2) (Split e2 at index e1)
| concat(e1, e2) (Concatenation)
| let v1 = v2 with (In-place update)

[e1,...,en] <- ev
in eb

| loop (p = e1) = (Loop)
for v < e2 do e3

in e4
fun ::= fun t v(t1 v1,...tn vn) = e

prog ::= ε
| fun prog

Figure 2: L0 syntax, continued
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A let-expression can be used to refer to the result of a subexpression:

let z = x + y in ...

Recall that L0 is eagerly evaluated, so the right-hand side of the let is evaluated

exactly once, at the time it is first encountered.

Two-way if-then-else is the only branching construct in L0. Pattern

matching is supported in a limited way for taking apart tuples, but this can

only be done in let-bindings, and not directly in a function argument list.

Specifically, the following function definition is not valid.

fun int sumpair({int, int} {x, y}) = x + y // WRONG!

Instead, we must use a let-binding explicitly, as follows.

fun int sumpair({int, int} t) =

let {x,y} = t in x + y

10



CHAPTER 2. THE L0 LANGUAGE

Pattern-matching in a binding is the only way to access the components of a

tuple.

Function calls are written as the function name followed by the arguments

enclosed in parentheses. All function calls must be fully saturated - currying is

only permitted in SOACs (see Section 2.2).

2.1.1 Sequential loops

L0 has a built-in syntax for expressing certain tail-recursive functions. Consider

the following tail-recursive formulation of a function for computing the Fibonacci

numbers.

fun int fib(int n) = fibhelper(1,1,n)

fun int fibhelper(int x, int y, int n) =

if n = 1 then x else fibhelper(y, x+y, n-1)

We can rewrite this using the loop construct.

fun int fib(int n) =

loop ({x, y} = {1,1}) = for i < n do

{y, x+y}

in x

The semantics of this is precisely as in the tail-recursive function formulation.

In general, a loop

loop (pat = initial ) = for i < bound do loopbody

in body

has the following semantics:

1. Bind pat to the initial values given in initial.

2. While i < bound, evaluate loopbody, rebinding pat to be the value returned

by the body. At the end of each iteration, increment i by one.

3. Evaluate body with pat bound to its final value.

Semantically, a loop expression is completely equivalent to a call to its corre-

sponding tail-recursive function. For example, denoting by t the type of x, the

loop in Figure 3 has the semantics of a call to the tail-recursive function on the

right-hand side.

The purpose of loop is partly to render some sequential computations

slightly more convenient, but primarily to express certain very specific forms of

recursive functions, specifically those with a fixed iteration count. This property

can eventually be used for analysis and optimisation, although the current L0

compiler does not yet exploit this.

11
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loop (x = a) =

for i < n do

g(x)

in body

⇒

fun t f(int i, int n, t x) =

if i >= n then x

else f(i+1, n, g(x))

let x = f(i, n, a)

in body

Figure 3: Equivalence between loops and recursive functions
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.1.2 In-place updates

In an array-oriented programming language, a common task is to modify some

elements of an array. In a pure language, we cannot permit free mutation, but

we can permit the creation of a duplicate array, where some elements have been

changed. General modification of array elements is done using the let-with

construct. In its most general form, it looks as follows.

let dest = src with [indexes ] <- value

in body

This evaluates body with dest bound to the value of src, except that the

element(s) at the position given by indexes take on the new value value.1 The

given indexes need not be complete, but in that case, value must be an array of

the proper size. As an example, here’s how we could replace the third row of

an n× 3 array.

let b = a with [2] <- [1,2,3] in b

Whenever dest = src, we can write

let dest [indexes ] = value in body

as a shortcut. Note that this has no special semantic meaning, but is simply a

case of normal name shadowing.

For example, the loop given below implements the “imperative” version of

matrix multiplication of two N ×N matrices.

fun *[[int]] matmultImp(int N, [[int]] a, [[int]] b) =

let res = replicate(N, iota(N)) in

loop (res) = for i < N do

loop (res) = for j < N do

let partsum =

let res = 0 in

loop (res) = for k < N do

let res = res + a[i,k] * b[k,j]

in res

in res

in let res[i,j] = partsum in res

in res

in res

1Yes, this is the third binding construct in the language, ignoring function abstraction!
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CHAPTER 2. THE L0 LANGUAGE

l ::= fn t (t1 v1, ..., tn vn) => e (Anonymous function)
| id (e1, ..., en) (Curried function)
| op � (e1, ..., en) (Curried operator)

e ::= map(l, e)
| filter(l, e)
| reduce(l, x, e)
| scan(l, x, e)
| redomap(lr, lm, x, e)

Figure 4: Second-order array combinators
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

With the naive implementation based on copying the source array, executing

the let-with expression would require memory proportional to the entire source

array, rather than proportional to the slice we are changing. This is not ideal.

Therefore, the let-with construct has some unusual restrictions to permit

in-place modification of the src array, as described in Chapter 3. Simply put,

we track that src is never used again. The consequence is that we can guarantee

that the execution of a let-with expression does not involve any copying of

the source array in order to create the newly bound array, and therefore the

time required for the update is proportional to the section of the array we

are updating, not the entire array. We can think of this as similar to array

modification in an imperative language.

2.2 SOACs

The language presented in the previous section is in some sense “sufficient”, in

that it is Turing-complete, and can express imperative-style loops in a natural

way with do-loops. However, L0 is not intended to be used in such a way -

bulk operations on arrays should be expressed via the four second-order array

combinators (SOACs) shown in Figure 4, as the optimisations covered in later

chapters are expressed as transformations on these.

The semantics of the soacs is identical to the similarly-named higher-order

functions found in many functional languages, but we reproduce it here for

completeness. The types given are not L0 types, but a Haskell-inspired notation,

since the soacs cannot be typed in L0 itself.

map(f,a) :: (α→ β)→ [α]→ [β]

≡ {f(a[0]), ..., f(a[n])}

filter :: (α→ bool)→ [α]→ [α]

filter(f,a) ≡ {a[i] | f(a[i]) = True }

reduce :: (α→ α→ α)→ α→ [α]→ α

reduce(f,x,a) ≡ f(...(f(f(x,a[0]), a[1])...), a[n])

13
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scan :: (α→ α→ α)→ α→ [α]→ [α]

scan(f,x,a) ≡ {f(x,a[0]), f(f(x,a[0]),a[1]),...}

scan is an inclusive prefix scan, and returns an array of the same outer size

as the original array. The functions given to reduce and scan must be binary

associative operators, and the value given as the initial value of the accumulator

must be the neutral element for the function. These properties are not checked

by the L0 compiler, and are the responsibility of the programmer.

redomap is a special case – it is not intended for use by the programmer,

but used internally for fusing reduce and map. Its semantics is as follows.

redomap :: (α→ α→ α)→ (α→ β → α)

→ α→ [β]→ α

redomap(�,g,x,v) ≡ foldl(g, x, v)

Note that the runtime semantics is a left-fold, not a normal L0 reduce. In

particular, g need not be associative. We use a Haskell-like syntax to explain

the rationale behind redomap:

(reduce � e) ◦ (map f) can be formally transformed, via the list homomorphism

(lh) promotion lemma [6], to an equivalent form:

(reduce � e) ◦ (map f) ≡ reduce � e ◦ map (reduce � e ◦ map f) ◦ splitp
where the original list is distributed to p parallel processors, each of which

execute the original map-reduce computation sequentially and, at the end,

reduce in parallel the per-processor result using the operator �. Hence, the

inner map-reduce can be rewritten as a left-fold:

(reduce � e) ◦ (map f) ≡ reduce � e ◦ map (foldl g e) ◦ splitp
Where g is a function generated from the composition of f and �. It follows

that in order to generate parallel code for

(reduce � e) ◦ (map f) it is sufficient to record either � and f , or � and g.

We choose the latter, i.e., redomap(�, g, e), because it allows a richer composi-

tional algebra for fusion. In particular, it allows us to fuse reduce ◦ map ◦ fil-

ter into a redomap without duplicating computation, as described in Chapter 7.

2.3 Language reference

The builtin types in L0 are int, real, bool and char, as well as their combi-

nation in tuples and arrays.

The following list describes every syntactical language construct in the

language.

constant

Evaluates to itself.

var

Evaluates to its value in the environment.

x arithop y

Evaluate the binary operator on its operands, which must both be of
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either type int or real. The following operators are supported: +, *, -,

/, %, =, <, <=, pow.

x bitop y

Evaluate the binary operator on its operands, which must both be of type

int. The following operators are supported: ^, &, |, >>, <<, i.e., bitwise

xor, and, or, and arithmetic shift right and left.

x && y

Logical conjunction; both operands must be of type bool. Not short-

circuiting, as this complicates program transformation. If short-circuiting

behaviour is desired, the programmer can use if explicitly.

x || y

Logical disjunction; both operands must be of type bool. As with &&, not

short-circuiting.

not x

Logical negation of x, which must be of type bool.

-x

Numerical negation of x, which must be of type real or int.

a[i]

Return the element at the given position in the array. The index may be

a comma-separated list of indexes.

zip(a1, . . . , an)

Zips together the elements of the outer dimensions of arrays a1, . . . , an.

Static or runtime check is required to check that the sizes of the outermost

dimension of arrays a1, . . . , an are the same. If this invariant does not

hold, program execution stops with an error.

unzip(a)

If the type of a is [{t1, . . . , tn}], the result is a tuple of n arrays, i.e.,

{[t1], . . . , [tn]}, otherwise it is a type error.

iota(n)

An array of the integers from 0 to n.

replicate(n, a)

An array consisting of n copies of a.

size(k, a)

The size of dimension k of array a. k must be a static integral constant.

split(n, a)

Partitions the given array into two disjoint arrays a [0 . . . n], a [n+1 . . . ],

returned as a tuple.

concat(a, b)

Concatenate the rows/elements of one array with another. The shape of

the two arrays must be identical in all but the first dimension.
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copy(x)

Return a deep copy of the argument. Semantically, this is just the identity

function, but it has special semantics related to uniqueness types as

described in Chapter 3.

reshape((dim1, ..., dimn), a)

Reshape the elements of the given array into the specified shape. The

number of elements in a must be equal to dim1 × . . .× dimn.

transpose(a)

Return the transpose of a.

transpose(k,n,a)

Return the generalised transpose of a. If b=transpose(k,n,a), then

a[i1, . . . , ik, ik+1, . . . , ik+n, . . . , iq] = b[i1, . . . , ik+1, . . . , ik+n, ik, . . . , iq].

We will call this an operation an (k, n)-transposition. Note that trans-

pose(0,1,a) is the common two-dimensional transpose.

Be aware that k and n must be static integer literals, and k + n must be

non-negative and smaller than the rank of a, or it is considered a type

error.

let pat = e in body

While evaluating body, bind the names mentioned in pat to the components

in the corresponding positions of the value of e. We will refer to the

expression e as the “right-hand side” (or RHS).

let dest = src with [index] <- v in body

Evaluate body with dest bound to the value of src, except that the

element(s) at the position given by the index take on the value of v. The

given index need not be complete, but in that case, the value of v must

be an array of the proper size.

if c then a else b

If c evaluates to True, evaluate a, else evaluate b.

loop (pat = initial) = for i < bound do loopbody in body

1. Bind pat to the initial values given in initial.

2. While i < bound, evaluate loopbody, rebinding pat to be the value

returned by the body.

3. Evaluate body with pat bound to its final value.

map(f, a)

Apply f to every element of a and return the resulting array.

reduce(f, x, a)

Left-reduction with f across the elements of a, with x as the neutral

element for f. f must be associative, as the evaluation order is not

otherwise specified.
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scan(f, x, a)

Inclusive prefix-scan.

filter(f, a)

Remove all those elements of a that do not satisfy the predicate f.

2.3.1 Tuple shimming

In a SOAC, if the given function expects n arguments of types t1, . . . , tn, but

the SOAC will call the function with a single argument of type {t1, . . . , tn}

(that is, a tuple), the L0 compiler will automatically generate an anonymous

unwrapping function. This allows the following expression to type-check (and

run):

map(op +, zip(as, bs))

Without the tuple shimming, the above would cause an error, as op + is a

function that takes two arguments, but is passed a two-element tuple by map.

2.3.2 Arrays of tuples

For reasons that will be explained in Chapter 7, arrays of tuples are in a

sense merely syntactic sugar for tuples of arrays. The type [{int, real}] is

transformed to {[int], [real]} during the compilation process, and all code

interacting with arrays of tuples is likewise transformed. In most cases, this

is fully transparent to the programmer, but there are edge cases where the

transformation is not trivially an isomorphism.

Consider the type [{[int], [real]}], which is transformed into {[[int]],

[[real]]}. These two types are not isomorphic, as the latter has more stringent

demands as to the fullness of arrays. For example,

[

{[1], [1.0]},

{[2,3], [2.0]}

]

is a value of the former, but the first element of the corresponding transformed

tuple

{

[[1], [2, 3]],

[[1.0], [2.0]]

}

is not a full array. Hence, when determining whether a program generates full

arrays, we must hence look at the transformed values - in a sense, the fullness

requirement “transcends” the tuples.

Section 4.1 contains more information on the transformation of arrays of

tuples.
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Chapter 3

Uniqueness Types

While L0 is through and through a pure functional language, it may occasionally

prove useful to express certain algorithms in an imperative style. Consider a

function for computing the n first Fibonacci numbers:

fun [int] fib(int n) =

// Create "empty" array.

let arr = iota(n) in

// Fill array with Fibonacci numbers.

loop (arr) = for i < n-2 do

let arr[i+2] = arr[i] + arr[i+1]

in arr

in arr

If the array arr is copied for each iteration of the loop, we are going to put

enormous pressure on memory, and spend a lot of time moving around data,

even though it is clear in this case that the “old” value of arr will never be used

again. Precisely, what should be an algorithm with complexity O(n) becomes

O(n2), due to copying the size n array (an O(n) operation) for each of the n

iterations of the loop.

To prevent this, we will want to update the array in-place, that is, with

a static guarantee that the operation will not require any additional memory

allocation, such as copying the array. With an in-place modification, a let-with

can modify the array in time proportional to the slice being updated (O(1) in

the case of the Fibonacci function), rather than time proportional to the size

of the final array, as would the case if we perform a copy. In order to perform

the update without violating referential transparency, we need to know that no

other references to the array exists, or at least that such references will not be

used on any execution path following the in-place update.

In L0, this is done through a type system feature called uniqueness types,

similar to, although simpler, than the uniqueness types of Clean [3, 4]. Alongside

a (relatively) simple aliasing analysis in the type checker, this is sufficient to

determine at compile time whether an in-place modification is safe, and signal a

compile time error if let-with is used in way where safety cannot be guaranteed.

This means that let-with must always be efficient, and its use is not permitted

otherwise.
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The simplest way to introduce uniqueness types is through examples. To

that end, let us consider the following function definition.

fun *[int] modify(*[int] a, int i, int x) =

let b = a with [i] <- a[i] + x in

b

The function call modify(a,i,x) returns a, but where the element at index

i has been increased by x. Note the asterisks: in the parameter declaration

*[int] a, this means that the function modify has been given “ownership” of

the array a, meaning that any caller of modify will never reference array a

after the call again. In particular, modify can change the element at index i

without first copying the array, i.e. modify is free to do an in-place modification.

Furthermore, the return value of modify is also unique - this means that the

result of the call to modify does not share elements with any other visible

variables.

Let us consider a call to modify, which might look as follows.

let b = modify(a, i, x) in

...

Under which circumstances is this call valid? Two things must hold:

1. The type of a must be *[int], of course.

2. Neither a or any variable that aliases a may be used on any execution

path following the call to modify.

In general, when a value is passed as a unique-typed argument in a function

call, we consider that value to be consumed, and neither it nor any of its aliases

can be used again. Otherwise, we would break the contract that gives the

function liberty to manipulate the argument however it wants. Note that it is

the type in the argument declaration that must be unique - it is permissible to

pass a unique-typed variable as a non-unique argument (that is, a unique type

is a subtype of the corresponding nonunique type).

A variable v aliases a if they may share some elements, i.e. overlap in

memory. As the most trivial case, after evaluating the binding let b = a,

the variable b will alias a. As another example, if we extract a row from a

two-dimensional array, the row will alias its source:

let b = a[0] in

... // b is aliased to a (assuming a is not one-dimensional)

Section 3.1 will cover sharing and sharing analysis in greater detail.

Let us consider the definition of a function returning a unique array:

fun *[int] f([int] a) = e

Note that the argument, a, is non-unique, and hence we cannot modify

it. There is another restriction as well: a must not be aliased to our return

value, as the uniqueness contract requires us to ensure that there are no other
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let b = a with [i] <- 2 in

f(b,a) // Error: a used after being source in a let-with

Figure 5: Violation of Uniqueness Rule 1

fun *[int] broken([[int]] a, int i) =

a[i] // Return value aliased with ’a’.

Figure 6: Violation of Uniqueness Rule 2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

references to the unique return value. This requirement would be violated

if we permitted the return value in a unique-returning function to alias its

(non-unique) parameters.

To summarise: values are consumed by being the source in a let-with, or

by being passed as a unique parameter in a function call. We can crystallise

valid usage in the form of three principal rules:

Uniqueness Rule 1 When a value is passed in the place of a unique parameter

in a function call, or used as the source in a let-with expression, neither

that value, nor any value that aliases it, may be used on any execution

path following the function call. A violation of this rule is illustrated on

Figure 5.

Uniqueness Rule 2 If a function definition is declared to return a unique

value, the return value (that is, the result of the body of the function)

must not share memory with any non-unique arguments to the function.

As a consequence, at the time of execution, the result of a call to the

function is the only reference to that value. A violation of this rule is

illustrated on Figure 6.

Uniqueness Rule 3 If a function call yields a unique return value, the caller

has exclusive access to that value. At the point the call returns, the return

value may not share memory with any variable used in any execution

path following the function call. This rule is particularly subtle, but can

be considered a rephrasing of Uniqueness Rule 2 from the “calling side”.

Finally, it is worth emphasising that everything in this chapter is used as

part of a static analysis. All violations of the uniqueness rules will be discovered

at compile time (in fact, during type-checking), thus leaving the code generator

and runtime system at liberty to exploit them for low-level optimisation.

3.1 Sharing analysis

Whenever the memory regions for two values overlap, we say that they are

aliased, or that sharing is present. As an example, if you have a two-dimensional

array a and extract its first row as the one-dimensional array b, we say that a
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and b are aliased. While the L0 compiler may do a deep copy if it wishes1, it is

not required, and this operation thus holds the potential for sharing memory.

Sharing analysis is necessarily conservative, and merely imposes an upper bound

on the amount of sharing happening at runtime. The sharing analysis in L0

has been carefully designed to make the bound as tight as possible, but still

easily computable.

In L0, the only values that can have any sharing are arrays - everything else

is considered “primitive”. Tuples are special, in that they are not considered

to have any identity beyond their elements. Therefore, when we store sharing

information for a tuple-typed expression, we do it for each of its element types,

rather than the tuple value as a whole.

To be precise, sharing information for an expression e, written aliases(e),

can take one of two forms:

1. l, where l is a subset of the variables in scope at e. This means that e may

share data with some of the variables in l. This is the sharing information

when the type of e is not a tuple.

2. 〈l1, . . . , ln〉, which requires that the type of e is a tuple {t1, . . . , tn}, and

denotes that the sharing of the ith component is li. This is the shape of

the sharing information when the type of e is a tuple.

We need a way to combine sharing information. The typical case is com-

puting sharing information for the expression if c then e1 else e2, where

the sharing of the resulting value is the “combination” of the sharing in both

e1 and e2. We make this combination precise by the associative, commutative

operation s1 ⊕ s2, which is defined by the following equation.

l1 ⊕ l2 = l1 ∪ l2
〈l1, . . . , ln〉 ⊕ 〈ln+1, . . . , l2n〉 = 〈l1 ⊕ ln+1, . . . , ln ⊕ l2n〉

Now we can define

aliases(if c then e1 else e2) = aliases(e1)⊕ aliases(e2).

We will often treat sharing information as a set and write things such as

∀v ∈ aliases(e).p(v) – in these cases, the set elements are all variables contained

anywhere in the sharing information.

Aliasing is transitive – if v ∈ aliases(e) and v′ ∈ aliases(e), then v ∈
aliases(v′). Aliasing is mostly intuitive - during type-checking, the symbol table

contains not only the type of each variable, but also which other variables it

may alias. Hence, we can define an aliasing rule for variables:

aliases(v) = {v} ∪ {Any variable in scope that aliases v}

1At some point, a proper cost model for L0 will be developed, and it is very likely that
we require such indexing to be O(1).
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The aliasing rules for other expressions are mostly intuitive, but a few

interesting cases are presented here:

aliases(e) = ∅ (Whenever e has a basic type2)

aliases(a[i]) = aliases(a)

aliases(copy(e)) = ∅
aliases(if c then e1 else e2) = aliases(e1)⊕ aliases(e2)

aliases(transpose(e)) = aliases(()e)

Note that transpose introduces aliasing - this is to permit an implementa-

tion where the transposed array is never actually manifested in memory, but

is merely an index space transformation of the underlying array resolved at

compile-time. The operations reshape, split, etc. have a similar rule.

The rule for function application is more complicated. To begin with, and

this was indeed the original rule in L0, we can state that the return value of a

function call aliases all of its arguments.

aliases(f(e1, . . . , en)) =
⋃

1≤i≤n

aliases(ei) (–Too restrictive!)

However, it turns out that this is far too restrictive. Consider a call f1(a)

to the function f1 whose type is shown on Figure 7 - if the return value aliased

the argument a, then we could never use the return value at all, as it would

alias something that has been consumed, namely the parameter a:

let x = f1(a) in // Now ’x’ would alias ’a’.

x // Violates Uniqueness Rule 1,

// as something aliasing ’a’ is accessed

Hence, a first elaboration is that the return value should only alias those

function arguments that are not consumed:

aliases(f(e1, . . . , en)) =
⋃

1≤i≤n,ei is not consumed

aliases(ei) (–Still too restrictive!)

The argument for the soundness of this rule is as follows: even if the return

value may at runtime alias a consumed argument, we do not need to record it,

as that argument will never be accessed elsewhere.

Unfortunately, the above rule is still too restrictive, as can be illustrated

by function f2 from Figure 7. Consider a call f2(a) - by the above rule, the

return value would be aliased to a, which would violate Uniqueness Rule 3, as

a may be used again.

Hence, we add another elaboration, wherein the alias set is empty if the

return value is unique.
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fun [int] f1(*[int] a) = ...

fun *[int] f2([int] a) = ...

Figure 7: Unique arguments
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

aliases(f(e1, . . . , en)) =

∅ If f returns an unique value⋃
1≤i≤n

ei is not consumed
aliases(ei) Otherwise

The final rule is essentially correct, except that it ignores tuples. As men-

tioned earlier, sharing information for tuples is represented element-wise. Hence,

we can simply apply the above rule piecewise for each element in the tuple.

Although the current aliasing rules for function calls have proven sufficient

for now, there are cases where it is too conservative. Consider the following

function.

fun [int] contrived([[int]] src, [int] indexes, int i) =

src[indexes[i]]

In a call contrived(src,indexes,i), by the above rules, we would consider

the return value to be aliased to both src and indexes, as both are non-

consumed parameters. Yet, it is clear by inspecting the actual function definition

that the return value will only index the src parameter.

This problem is not solvable merely through refinement of the aliasing rules

- either the user must annotate each function with information about which

of the parameters may be aliased by the return value, or the compiler could

deduce it using some sharing inference algorithm. As the latter would add a

great deal of complexity, and the former require a language change, we have

postponed tackling this problem until it becomes a problem in practice.

3.2 Tracking uniqueness

Let us summarise:

• If the type of an array parameter is preceded by a single asterisk, it

denotes that the array is unique, i.e., that it will never be reused outside

of the current function.

• The source operand to a let-with must be unique. If it is not, it is

reported as a type error.

Let-with and function calls are the only places in which variable consumption

can happen. As a first example, let us consider a function that replaces the

value at a given position in an integer array.

fun *[int] replace(*[int] arr, int i, int x) =

let arr[i] = x in arr
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let b = a in // Now b ∈ aliases(a).
let c = a with [i] <- x in // ∀v ∈ aliases(a)⇒ Mark v as consumed.
b // Error, because b ∈ aliases(a)!

Figure 8: Example of array consumption
..................................................................................

The type of this function expresses the fact that it consumes its array

argument, and also returns a unique array. This permits composition - re-

place(replace(a, i1, x), i2, y) is a valid application. Defining replace

as

fun [int] replace2(*[int] arr, int i, int x) =

let arr[i] = x in arr

would still be type correct (a unique array can be used anywhere a nonunique

is expected), but the composition replace2(replace2(a, i1, x), i2, y)

would no longer be well typed.

Checking that uniqueness invariants are being upheld is far subtler than

normal type checking. In particular, detailed sharing analysis has to be per-

formed, in order to ensure that after an array a is consumed, it becomes an

error to use any value that may refer to (parts of) the old value of the array.

Whenever we consume a variable a, we mark as inaccessible all of its aliases, as

illustrated on Figure 8.

A key principle is that of sequence points that lexically checkpoint the use

of variables. As an example, assume that we are given a function f of type

*[int] -> int. That is, f consumes an array and returns an integer. The

expression

f(a) + a[i]

is invalid because a consumption and observation of the same variable hap-

pens within the same sequence. It is valid for a sequence to contain multiple

observations of the same variable, but if a variable is consumed, that must be

the only occurrence of the variable (or any of its aliases) within the sequence.

Binding constructs (lets, let-withs and loops) create sequence points that delimit

sequences. If we rewrite the expression to coordinate the consumption into its

own sequence, all will be well.

let c = a[i] // Since a[i] is of primitive type,

// c does not alias a.

in f(a) + c

The reason for this rule is to enable simpler code generation, as any necessary

order of operations is evident in the code. It does require a certain amount of

care when doing program transformations, as for example expression reordering

may result in an invalid program, as shown on Figure 9 and discussed in further

detail in Chapter 7.

In the previous examples, function arguments that were consumed were all

simple variables, making it easy to describe what was being consumed. But in

general, we might have an expression
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let x = a[0] in

let b = a with

[i] <- y in

x + b[1]

⇒
let b = a with [i] <- y in

let x = a[0] in // Error:

// violates Uniqueness Rule 1

x + b[1]

Figure 9: Expression reordering causing violation of uniqueness rules
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

replace(e, i, x)

where e is some arbitrary expression. In this case, we mark as consumed all

variables in aliases(e).

Constant, literal arrays are not considered unique, as the compiler may put

them in read-only memory and return the same reference every time they are

accessed. For example, the following program is invalid.

fun [int] fibs(int i, int x) =

let a = [1, 1, 2, 3, 5, 8, 13] in

let a[i] = x in a

Since a is not unique, its use in the let-with is a type error. However, we can

use copy to create a unique duplicate of the array.

fun [int] fibs(int i, int x) =

let a = copy([1, 1, 2, 3, 5, 8, 13]) in

let a[i] = x in a

If we have a function such as

fun int f(*[int] a, int x) = x

then it is not valid to curry it in such a way that we provide values for the

consumed parameters. For example, map(f (a), b) would be an error. The

reason for this is that f may be called an arbitrary number of times during the

mapping, but a can only be consumed once.
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Internal Representation

It is a common compilation technique to transform the externally visible language

into a simpler intermediate language, on which all optimisation and further

compilation is performed. This is usually necessary, because languages written

for human consumption have a large amount of bells and whistles that make

programming more convenient, but offer no significant avenues for optimisation,

but rather just leave more cases for the optimiser to handle.

We do not suffer as badly from that problem with L0, as it was designed

as an intermediate language itself. Nevertheless, before embarking on any

optimisation, we do transform the input program to an internal dialect of L0. In

most compilers, it is usually not possible to transform the intermediate language

to the external language, at least not without losing much of the structure of the

original program. In comparison, the transformation from external to internal

L0 is comparatively simple and reversible (with some loss of information; see

Section 4.3). Internal L0 also supports a mechanism for making usually implicit

checks explicit, such as bounds checks when indexing arrays, in some cases

permitting their optimisation through standard optimistaions. This is described

in Section 4.2.

A very important first notice: All names in internal L0 are globally unique.

This means that we will never have name shadowing, and we can uniquely

identify, say, a let-binding by one of the names it binds.

4.1 Tuple Transformation

The principal difference between external and internal L0 is that the latter does

not permit arrays of tuples. There are two reasons for this:

• Dataflow analysis is simplified by removing zip/unzip expressions - the

fusion algorithm in Chapter 7 benefits greatly from this.

• Arrays of tuples cannot in general be efficiently represented in memory

due to alignment constraints, and so we would have to remove them at

some stage anyway.

An array of tuples type is converted to a tuple containing arrays of the

original tuple components, for which the process is then repeated recursively.
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Futhermore, tuples are flattened. All other types are left unchanged. A few

examples:

[int]⇒ [int]

[{int,real}]⇒ {[int],[real]}

[{[int], real}]⇒ {[[int]], [real]}

{{int, bool}, real}⇒ {int, bool, real} (Flattening)

zip and unzip are not allowed in internal L0. Both are removed during

the conversion process, as they perform a transformation between representa-

tions that is not necessary in internal L0, although zip has some additional

complications that are discussed in Section 4.2.

Most expressions operating on arrays of tuples have to be modified to

operate on the components of the replacement tuples-of-arrays instead, but the

transformation is relatively trivial, so we will not describe it in detail.

Internal L0 also does not permit tuple-typed variables. Hence, every pattern

that binds a variable to a tuple must be converted to explicitly name the

elements of the tuple, e.g:

let x = {f(a), g(b)} in

...

⇓
let {x1,x2} = {f(a), g(b)} in

...

4.1.1 Tupleless SOACs

As internal L0 does not permit tuples of arrays, we need to find a way to convert

an expression such as:

map(fn int (int,int t) =>

let x,y = t in

f(x,y),

zip(a, b))

The solution is tupleless SOACs: variants of the normal SOACs in which several

arrays are traversed in parallel. For example, the previous expression will be

converted to:

mapT(fn {int} (int x, int y) =>

f(x,y),

a, b)

Conceptually, we can imagine that the tupleless SOACs all have a built-in zip.

Furthermore, initial values for tuple-typed accumulators (for reduceT, scanT

and redomapT) are given element-wise, and also passed element-wise to the

function. This, combined with the ban on arrays of tuples, implies that no

parameter of a function in a tupleless SOAC is ever tuple-typed.
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e ::= <c>mapT(fn t (t1 v1, ..., tn vn) => ef, e1, ..., en)
| <c>filterT(fn t (t1 v1, ..., tn vn) => ef, e1, ..., en)
| <c>reduceT(fn t (t1 v1, ..., tn vn) => ef, {x1, ..., xn}, e1, ..., en)
| <c>scanT(fn t (t1 v1, ..., tn vn) => ef, {x1, ..., xn}, e1, ..., en)
| <c>redomapT(fn to (to1 vo1, ..., ton von) => eo,

fn ti (ti1 vi1, ..., tin vin) => ei,
{x1, ..., xn}, e1, ..., en)

Figure 10: Tupleless Second-order array combinators

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

As a minor detail, curried functions are also not permitted in tupleless

SOACs, although we will still use them for notational convenience. The notation

is summarised on Figure 10 - the <c> notation is explained in the next section.

4.2 Assertions

Removal of zip carries with it an additional complication. Recall that zip is

responsible for checking that the input arrays are of the same (outer) size, and

if they are not, terminate the program with an error. The obvious solution is

to make each tupleless SOAC do the same check, but that would be wasteful

of computer resources. Even worse, it’s not a full solution to the problem.

Consider the following expression.

let c = zip(a,b) in

c[0]

How should this be transformed? There is an obvious solution:

{a[0], b[0]}

But it is of course wrong - there is no checking that a and b are of the same

length, hence the original expression may fail, while the transformed expression

may evaluate successfully. The final solution is to predicate the expression on

the fact that a and b must match.

if a and b have the same length

then {a[0], b[0]}

else fail

Using branches to accomplish this somewhat complicates further transformation

and optimisation however, so an approach based on assertions was chosen. First,

we introduce a new type, cert, which is inhabited by only one value Checked.

The idea is that a value of type cert acts as a certificate, certifying that some

property has been checked. We then add three new language constructs:

assert(e)

Returns Checked if the boolean expression e returns True, otherwise

terminates the program with an error.

conjoin(e1, . . . , en)

All of e1, . . . , en must be expressions of type cert. Always returns Checked.

The purpose of conjoin is to combine several cert values into one.
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<v1, . . . , vn>e

A predicated expression. Evaluate e and return its value. The variables

v1, . . . , vn are certificates: variables that must each be of type cert.

They exist solely to express a dependency between the expression e and

whichever assertions it is predicated upon, which implies that on any

execution path leading to e, the assertions computing the certificates will

have been executed first.

Now the index expression given above can be transformed into the following.

let c = assert(size(0,a) = size(0,b)) in

{<c>a[0], <c>b[0]}

An advantage of this approach is that the association between assertions and

predicated expressions is given by the same variable-usage rules that govern all

other expressions, and it is therefore not necessary to handle assert specially

in the various transformations. It is, however, necessary to maintain the list of

certificates when transforming a predicated expression, but it turns out that

this is simple in practice. Essentially, the rule of thumb is that every expression

derived one or more predicated expressions must be predicated likewise.

The assertion design also has the particularly convenient property that even

if later transformations pick apart the tuple literal, the individual components

will still be predicated on the original property. Even more importantly, the

condition size(0,a) = size(0,b) is seen as a perfectly ordinary expression by

the rest of the compiler, and can be simplified (or removed altogether) by size

analysis, copy propagation, constant folding, common-subexpression elimination

and other standard optimisations.

One thing is worth noting: The assertion expression, or the value that it

computes, has no recognisable meaning by itself. It is not a proposition in the

sense of formal logics, and we can only determine which property it guarantees

by the way in which it is used. This limits what kinds of information the

compiler can deduce from an assertion, compared to using a real theorem prover

or dependent type system. In particular, we can perform only very limited static

checking, where through simplification we are able to obtain the expression

assert(False), although even then we cannot be certain that the assertion

is not dead code. Hence, the assertion system functions solely at run-time.

Nevertheless, the power-to-weight ratio is very high for this design, and it suits

our purpose well.

Having introduced an assertion mechanism to solve the problem of tupleless

SOACs, it is of course worth to consider whether it can be used for other purposes

as well. As it turns out, we can use assertions to express bounds-checking (using

a somewhat ugly syntax):

a[i] ⇒ let c = assert(0 <= i && i < size(0,a)) in

a[<c> | i]
Again, what we gain is the ability to exploit our standard expression-

optimisation machinery to simplify and perhaps even remove the bounds check.

In particular, range analysis can be used to hoist such expressions out of inner

loops - all the while staying within the (internal) L0 language. This will be

covered in greater detail in Section 6.1.
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t ::= cert (Certificate)

k ::= Checked (Always-true certificate)

c ::= v1, . . . , vn (Sequence of variables)

e ::= assert(e) (Assertion)
| conjoin(e1, ..., en) (Conjoin assertions)
| <c>id[e1, ..., en] (Indexing)
| <c>size(k, e) (Array length)
| <c>reshape((e1,...,en), e) (Array reshape)
| <c>transpose(e) (Transposition)
| <c>split(e1, e2) (Split e2 at index e1)
| <c>concat(e1, e2) (Concatenation)
| let <c>v1 = v2 with (In-place update)

[<c>|e1,...,en] <- ev
in eb

| v[<c>|e1, ..., en] (Indexing)

Figure 11: Assertions
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.2.1 Function Calls

One question is left - namely how functions mesh with the assertion system.

One solution is to simply require function calls to be predicated. That is, the

program

fun [int] f([{int,int}] input) =

map(op+, input)

f(zip(a,b))

is converted into

fun [int] f([int] input1, [int] input2) =

mapT(op +, input1, input2)

let c = assert(size(0,a) = size(0,b)) in

f<c>(a,b)

This is satisfactory from the point of view of the caller - the function f (after

undergoing transformation) has the precondition that a and b are of the same

size, and this is indeed checked by the above call. The body of the function is

slightly more dubious, as mapT is invoked without a certificate that its inputs

are of the same size, but as long as the caller takes care to only invoke the

function when this precondition is satisfied (which we do in the above case), all

will be well.

The real problem occurs if we inline f. If we do it näıvely, we get this

program:

let c = assert(size(0,a) = size(0,b)) in

mapT(op +, a, b)
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And now we have a problem – c is not used anywhere, and may thus be moved

to after the mapT expression, or maybe even removed as dead code! This is

bad. A possible solution would be to make the inliner smarter, and modify

the inlined function body such that every leaf of its syntax tree is predicated

on the same certificates as the original function call. This is a rather clumsy

solution however, and may cause unnecessary predication on branches of the

function that do not depend on the precondition, which would inhibit some

transformations, like hoisting. A more fine-grained solution is needed.

That solution is to embed the certificates directly into the parameter list of

the function. A function that originally accepted a single parameter of type

[{int,int}] will, after conversion to internal L0, accept three parameters of

types cert, [int], [int]. The example given at the beginning of the section

will become:

fun [int] f(cert input_c, [int] input1, [int] input2) =

mapT<input_c>(op +, input1, input2)

let c = assert(size(0,a) = size(0,b)) in

f(c, a,b)

Näıve inlining will produce:

let c = assert(size(0,a) = size(0,b)) in

mapT<c>(op +, a, b)

Which is the desired result.

Return values can be handled in a similar fashion. The program

fun [{int,int}] f(int x) =

zip(iota(x), iota(x))

let a = f(10) in

map(g,a)

is converted into

fun {cert, [int], [int]} f(int x) =

let v1 = iota(x) in

let v2 = iota(x) in

let c = assert(size(0, v1) = size(0, v2)) in

{c, v1, v2}

let {c, a1, a2} = f(10) in

mapT<c>(g, a1, a2)

The return type of f has been modified to include a certificate for the

postcondition that the two return arrays have the same outer size.1

This solution requires a large amount of tedious tracking of certificates in

the module that converts external to internal L0, but as a tradeoff, the rest

1In this specific case, later simplification will eventually result in the assertion being
removed and replaced with the literal Checked, but it has been retained for clarity in this
example.

31



CHAPTER 4. INTERNAL REPRESENTATION

of the compiler can be kept simpler, as all dependencies between predicated

expressions and assertions are explicit.

4.3 Converting from Internal to External L0

The internal language matches the external quite closely; nevertheless, the

transformation from external to internal language does not have a fully defined

inverse. That is, given a program in internal L0, we can compute an equivalent

program in external L0, but it might not be the original program. The steps

are simple in principle:

1. Convert tupleless SOACs to ordinary SOACs, zipping the arguments and

unzipping the return value.

2. Remove all expressions and bindings of type cert, including function

parameters.

3. Remove predicates from all predicated expressions.

4. Remove all asserts.

The problem is that we cannot reconstruct the original arrays of tuples from

the tuples of arrays of internal L0. We cannot know whether any tuple of arrays

we encounter was originally an array of tuples or not. However, as long as the

entry point of the program, the main function, does not use arrays of tuples as

argument or return value, there should be no observable difference. If necessary,

we could handle main on an ad-hoc basis to preserve its original type.
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Optimisations
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Chapter 5

First Order Optimisations

As a data-parallel programming language, most of the interesting optimisations

for L0 naturally revolve around SOACs. Yet, classical optimisations such as copy

propagation, constant folding, hoisting and common subexpression elimination

(CSE) remain important. For example, they are part of optimising the delayed

representation of some constructs, as demonstrated on Chapter 5.

This chapter will cover the implementation of copy propagation and constant

folding for L0. Hoisting and CSE will be covered in Chapter 6.

5.1 Inlining

One property holds for all optimisations performed by the L0 compiler: They

are all strictly intraprocedural. Thus, we rely on aggressive inlining as the first

step of the optimisation pipeline, wherein we inline every non-recursive function

call. Inlining a large function at multiple call sites can of course result in a

tremendous amount of code bloat, but as function calls are in any case usually

always inlined on current GPU hardware, due to very little (or no) stack being

available, this is perhaps excusable.

After inlining, most functions will be dead, and are summarily removed.

5.2 Let- and tuple-normalisation

At its core, program optimisation is about recognising code patterns, and

rewriting them to a more efficient form that retains the meaning of the original

code. To make this process simpler, we pre-process the program to give it a

more regular structure. The use of internal L0 as presented in Chapter 4 is an

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
let a = iota(n) in

let b = replicate(m, x) in

let c = transpose(arr) in

a[4] + b[1] + c[i,j]

(a) Unoptimised

4 + x + arr[j,i]

(b) Optimised

Figure 12: Optimising indexing into replicate, iota and transpose
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important step in this process, but it is not sufficient by itself. To this end, we

use a transformation pass that rewrites needlessly complex program structure

into a simpler form. The mechanics behind the transformation are tedious and

unimportant (basically a recursive traversal through the syntax tree), and it is

best understood by the invariants guaranteed of the resulting program:

• Tuple expressions can appear only as the final result of a function, SOAC,

or if expression, and similarly for the tuple pattern of a let binding, e.g.,

a formal argument cannot be a tuple,

• Consecutive let, let-with and loop expressions are at the same nesting

level, e.g., e1 cannot be a let expression when used in let p = e1 in e2,

• Each if is bound to a corresponding let expression, and an if’s condition

cannot be in itself an if expression, e.g.,

a + if (if c1 then e1 else e2)

then e3
else e4

⇓
let c2 = if c1 then e1 else e2 in

let b = if c2 then e3 else e4 in a+b

• Function calls, including SOACs, have their own let binding, e.g., g(reduceT(f,a))

⇒ let y = reduceT(f,e,a) in g(y),

• All actual arguments in a function call are vars, e.g., f(a+b)⇒let x=a+b in f(x).

Note that we consider“function-like” constructs such as transpose, reshape

and replicate to be functions as far as the above invariants are considerned.

5.3 Copy/constant propagation and constant folding

Copy propagation is the mechanism by which we eliminate bindings that are

merely copies of existing variables. Constant propagation is the inlining of

constant bindings where the bindings are used. Constant-folding is the process

of evaluating a constant expression at compile time, for example an addition

where both operands are statically known. Figure 13 illustrates the difference

between the three processes.

In imperative compilers, these optimisations are usually performed on a

program after it has been converted to a basic block graph. However, after

undergoing the let/tuple-normalisation described in the previous section, it is

easy to perform all three optimisations in tandem directly on the syntax tree of

an L0 program.

The central idea is that we consider some expressions to be inlineable. When-

ever the RHS of a let-expression is inlineable, we substitute any occurrences of

the name bound by the binding within the body of the let-expression by the

RHS (we ignore bindings where the pattern is a tuple-pattern for now). For

example, consider this expression:
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let x = 2 in

let y = 3 in

let z = x in

z + y

⇓
let x = 2 in

let y = 3 in

x + y

(a) Copy propagation

let x = 2 in

let y = 3 in

x + y

⇓
2 + 3

(b) Constant propagation

2 + 3

⇓
5

(c) Constant folding

Figure 13: Examples of copy/constant propagation and constant folding

let b = transpose(a) in

b[i,j]

⇓
a[j,i]

let b = reshape((n,m), a) in

b[i,j]

⇓
a[i*m+j] // Assuming ’a’ has rank 1.

Figure 14: Removing reshape and transpose

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

let a = 2 in

e

We consider the expression 2 (a constant number) to be inlinable, hence we

substitute 2 for a within e and remove the binding of a entirely.

A big question is which expressions to inline. As inlining may duplicate

the inlined expression, we should only inline where such duplication will not

result in additional computation at run-time. As a start, we can certainly inline

variables and non-array constants. Incidentally, this by itself provides copy-

and constant-propagation.

As for other expressions, we note that reshape and transpose operations

are entirely index-space transformations, and can thus be handled at compile-

time wherever the result of the operation is used. Although uninplemented in

the current L0 compiler, it is envisioned that a transformation similar to the

one on Figure 14 will be used by the code generator. Therefore, we freely inline

reshape and transpose. As iota and replicate can be removed in a similar

manner, they are therefore also considered inlineable.

Bindings with tuple-patterns can be inlined under some circumstances,

specifically if the RHS is itself a tuple literal, where every component is an

inlineable expression.

However, even if an expression is in principle inlineable, there are still three

cases that prevent inlining:

• If an array-typed variable is indexed, we need to keep it in the program,

unless the replacement expression is itself a variable (that is, copy propaga-

tion). This is because L0 only permits indexing of variables, not arbitrary

array-typed expressions.

• If an array-typed variable is used as the source in a let-with, we again

need to keep its binding in the program.
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• If a variable cannot be substituted with an expression for some other

reason (notably, because it would violate the let-normalisation properties

from Section 5.2), we also cannot remove its binding.

Apart from substituting variables, we also look at other expressions to

determine whether constant folding is possible. This is done by a bottom-up

traversal of the syntax tree, where each expression is processed as follows:

x binop y

If x and y are literals, compute and substitute with the result.

unop x

If x and y is a literal, compute and substitute with the result.

size(k, a)

Depending on k and how a was bound, we may be able to replace the

size expression.

• If k = 0 and a is the result of iota(n) or replicate(n,e), we can

substitute with simply n, as that is the size of a.

• If a is a literal constant, we can substitute with the exact size.

let pat = e in body

If, after transforming body, none of the names in pat are used, remove the

binding.

if c then a else b

If c can be constant-folded to either True or False, replace with the

corresponding branch.

f(...)

If all parameters to a function call are literal values, we use the interpreter

to evaluate the function and insert its return value. At the moment, we

assume that the function will terminate, although this assumption is not

really justifiable. Instead, we should probably only evaluate non-recursive

functions.

assert(True)

Replace with Checked.

<c1,...,cn>e

Remove any certificate ci that is bound to Checked (i.e. a certificate that

is always true).

conjoin(c1,...,cn) hfill

Remove any certificate ci that is bound to Checked (i.e. a certificate that

is always true).

a[i]

There are several potential avenues for constant-folding index operations,

depending on how a was bound:
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a is bound to a variable b: Replace with b[i].

a is iota(n): Replace with i – note that this may make an invalid pro-

gram valid, as we remove the bounds check i < n. We could use the

assertion mechanism from Section 4.2 to bring it back, but this is

not done in the current compiler.

a is b[j]: Replace with b[j,i].

a is an array literal: Replace with the corresponding element in the array

literal.

a is replicate(n, v): Replace with v.

a[i,j]

If more than one index is given, we can handle the same cases as above

(although indexing into e.g. an iota would of course be a type error), as

well as a few more:1

a is transpose(b): Replace with b[j,i].

a is replicate(n,iota(m)): Replace with j.

1For simplicity, we treat only the case where two indices are given. The implementation
in the L0 compiler supports an arbitrary number of indices.
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The Rebinder

In the compiler literature, hoisting (also known as loop-invariant code motion)

is the movement of loop-invariant expressions out of a loop. This has a clear

benefit: rather than executing once per iteration of the loop, the expression is

executed once before the loop begins. For L0, hoisting can be an important

optimisation, as it holds the potential for moving bounds checks and other

assertions out of inner loops. We will see an example of this in the next section.

Common Subexpression Elimination (henceforth referred to as CSE) is a

popular compiler optimisation that identifies identical expressions (i.e. ex-

pressions that always evaluate to the same value), and replaces them with a

variable holding the computed value. If the common expressions are expensive

or computed very frequently, e.g. by being part of an inner loop, this can result

in significant speedup.

It turns out that hoisting and common subexpression elimination can be

unified in a single framework, which in the L0 compiler is termed the Rebinder.

This chapter will start out by describing basic principles of hoisting and CSE

in Sections 6.1 and 6.2. In Section 6.3, we will describe their implementation in

the L0 compiler.

6.1 Hoisting

When compiling an imperative language, we must be careful not to move any

code with side effects, but in a pure language such as L0, we can hoist freely

(with a few restrictions that I’ll get to in Section 6.1.1). A simple example of

hoisting in action is shown on Figure 15.

At first glance, hoisting may seem to apply too rarely to be of much benefit,

since most programmers would put loop-invariant code outside of the loop in

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
map(fn int (int x) =>

let k = y + z in

x + k,

a)
⇒

let k = y + z in

map(fn int (int x) =>

x + k,

a)

Figure 15: Hoisting in action
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the first place. However, there are two important use cases that do not involve

programmer-written code:

• Much L0 code is not written by the programmer, but is rather the result

of program transformation by the compiler. Inlining and constant folding

may easily result in the creation of loop-invariant expressions within a

loop.

• Explicit bounds checks, as introduced in Section 4.2, can sometimes be

hoisted out of inner loops.

The latter case merits futher elaboration. Consider the following program:

map(fn int (int i) =>

a[i] + a[i*2],

iota(n))

Here, a is a free variable. Once the compiler has turned the implicit bound

checks explicit, the program will look like this:

map(fn int (int i) =>

let c1 = assert(i >= 0 && i < size(0,a)) in

let c2 = assert(i*2 >= 0 && i*2 < size(0,a)) in

a[<c1>|i] + a[<c2>|i*2],

iota(n))

Now, the assertions are not loop-invariant, as they depend on i. If we

assume a sufficiently smart compiler, for example by employing some extension

of symbolic range propagation[10], we can deduce that the variable i will always

be in the range [0, n− 1]. This allows us to rewrite the assertions – the checks

for non-negativity goes away, as it is always true, and we only have to check

the upper bound for the maximum values that i and i*2 may attain:

map(fn int (int i) =>

let c1 = assert(n < size(0,a)) in

let c2 = assert(n*2 < size(0,a)) in

a[<c1>|i] + a[<c2>|i*2],

iota(n))

Now c1 and c2 are loop-invariant, and we can move them out of the loop

body, and perform bounds checking just once, before entering the loop:

let c1 = assert(n < size(0,a)) in

let c2 = assert(n*2 < size(0,a)) in

map(fn int (int i) =>

a[<c1>|i] + a[<c2>|i*2],

iota(n))

For a simple loop such as the above, the potential benefits are great, as most

of the instructions of the original loop body was devoted to bounds checkings.

The L0 compiler does not yet support the range analysis that enables the

critical rewrite of the assert expressions. An unpublished bachelors thesis by
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Jonas Brunsgaard and Rasmus Wriedt Larsen suggests that the technique works

in practice, but their work has not yet been merged with the main compiler

code base.

Hoisting assertions such as these is useful not only when the program uses

explicit array indexing. While the array accesses performed by SOACs are

by construction always in-bounds, and therefore do not need dynamic checks,

the assert expressions we generate when transforming from external SOACs

to tupleless SOACs are conceptually identical to bounds checks, and similarly

important to hoist. For example, consider this program:

map(fn [int] ([int] r) =>

map(op+, zip(r, b)),

a)

After transformation to internal L0, we get the following:

mapT(fn {[int]} ([int] r) =>

let c = assert(size(0,r) = size(0,b)) in

<c>mapT(op+, r, b),

a)

The assertion is not loop-invariant, and range analysis is no help. For this

case, structural size analysis (described in depth in Section 9.1.1) reveals that

since r is a row of a, the outer size of r (size(0,r)) is equal to the inner size

of a (size(1,a)). Thus, the compiler rewrites to:

mapT(fn {[int]} ([int] r) =>

let c = assert(size(1,a) = size(0,b)) in

<c>mapT(op+, r, b),

a)

The assertion is now loop-invariant and can be hoisted:

let c = assert(size(1,a) = size(0,b)) in

mapT(fn {[int]} ([int] r) =>

<c>mapT(op+, r, b),

a)

The details of how hoisting is implemented in the L0 compiler is covered in

Section 6.3.

6.1.1 What Not to Hoist

Clearly, we can hoist only loop-invariant expressions. Unfortunately, not all

loop-invariant expressions are hoistable, and as is often the case when seemingly

valid transformations become problematic, constraints imposed by uniqueness

types are at fault. Consider the following program:

map(fn (int i) =>

let a = iota(10) in

f(a, i),

b)
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It seems that we should be able to hoist a out of the loop like this:

let a = iota(10) in

map(fn (int i) =>

f(a, i),

b)

However, if the function call f(a,i) consumes the a argument, hoisting

would result in an invalid program, as a would be consumed multiple times. We

need a “freshly allocated” a for each iteration of the loop. Hence, we must not

hoist a binding out of a loop in which it is consumed.

As a minor, but important point, it is strictly not permitted to hoist out

of loops unless it can be proven that the loop will always execute at least one

iteration. The L0 compiler currently ignores this restriction, implicitly assuming

that all arrays are non-empty.

Hoisting out of branches

Most compilers generally do not hoist out of branches, as branching is often

used to prevent expensive execution of expensive expressions whose value is

not needed. On many GPUs however, execution happens in lock-step across all

processors. This implies that unless the branch condition computes the same

value in all threads, both sides of the branch will have to be executed [20].

This implies that in some cases, hoisting out of a branch does not cause more

instructions to be executed, and hoisting might expose the possibility of other

optimisations, particularly common subexpression elimination (see Section 6.2).

We should still be careful when hoisting expressions out of the branches of

a conditional, as it is possible that the expression may result in an error unless

the condition checked by the conditional is true. For example, consider this

expression:

if c then y / x

else if p then y / x

else 0

If y / x was hoisted out of the branch, the resulting program might end up

dividing by zero. Assertions and array indexing are other operations that are

not safe to hoist out of a branch. Most expressions are safe however, and the L0

compiler aggressively hoists these out of branches. Depending on improvements

in hardware, or the targeting of L0 for non-GPU systems, it is likely that this

strategy will need to be revised.

Performance Considerations

There is another potential case where hoisting, while not resulting in an invalid

program, proves detrimental rather than beneficial to performance. This occurs

when retrieving the hoisted value from memory would be more expensive than

re-computing it for each loop iteration, which is particularly likely to occur on

GPUs, as global memory accesses are enormously expensive. Balancing this

problem is not currently tackled by the L0 compiler, which instead hoists as
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aggressively as possible. Note that this is not a problem when hoisting assertions,

such as bounds checks, as the resulting values are not actually accessed from

within the loop.

6.2 Common Subexpression Elimination

Common Subexpression Elimination (henceforth referred to as CSE) is a popular

compiler optimisation that identifies identical expressions (i.e. expressions that

always evaluate to the same value), and replaces them with a variable holding

the value. For example, this program:

2 * x + 2 * x

Can be transformed through CSE into:

let tmp = 2 * x in

tmp + tmp

This saves us a multiplication. As with hoisting, CSE can potentially

be detrimental to performance if it increases memory pressure, but again like

hoisting, this is not something the L0 compiler currently takes into consideration.

We must be careful not to perform CSE such that we end with a violation

of the uniqueness rules. Consider this program:

let a = iota(10) in

let b = iota(10) in

let a[2] = 5 in

f(a,b)

Since iota(10) appears in two places, we might be tempted to factor it out:

let tmp = iota(10) in

let a = tmp in

let b = tmp in

let a[2] = 5 in

f(a,b)

However, this violates Uniqueness Rule 1, as b is aliased to a, yet is used after

a is consumed in a let-with expression. The solution is to not perform CSE on

expressions whose result is eventually consumed – or more conservatively, never

perform CSE on an expression of type *[α]. The latter is easier to implement,

although too conservative, but is what the L0 compiler currently does.

6.3 Rebinder Implementation

Conceptually, hoisting and CSE are rather different transformations. However,

they both depend on identifying subexpressions that can be moved (in the case

of hoisting) or replaced (in the case of CSE), but where the actual expression

rewriting is quite simple. In the L0 compiler, the observation was made that a

lot of the machinery used to implement hoisting could be easily extended to also
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perform CSE, and thus was born a compiler pass with the rather idiosyncratic

name the Rebinder.

The central idea is to assume a program in a slightly modified A-normal

form [35], a format similar to three address code, where the definition of each

let-binding is a simple expression, and the body of a let-binding is either

another binding or a variable. A simple expression is either a branch1, or

an expression where all subexpressions are variables or constants (except for

the bodies of SOAC functions), which implies that their execution terminates

immediately. For example, the following program:

fun real solve(real a, real b, real c) =

(-b + sqrt(b*b - 4.0*a*c)) / (2.0*a)

Would look like this in A-normal form. Note that it is also let-normalised

(Section 5.2):

fun real solve(real a_0, real b_1, real c_2) =

let negate_3 = -b_1 in

let times_4 = b_1 * b_1 in

let times_5 = 4.0 * a_0 in

let times_6 = times_5 * c_2 in

let minus_7 = times_4 - times_6 in

let norm_8 = sqrt(minus_7) in

let plus_9 = negate_3 + norm_8 in

let times_10 = 2.0 * a_0 in

let divide_11 = plus_9 / times_10 in

divide_11

This simplifies hoisting and CSE significantly, as the problem is now reduced

to moving nodes in the syntax tree (for hoisting) and substituting definitions of

let-bindings (for CSE). A-normalisation is performed by a separate pass before

entering the Rebinder, and is generally trivial, but there are a few difficulties

that I will cover in Section 6.3.3.

In order to keep the exposition simpler, loop and let-with will be ignored

(except with respect to upholding uniqueness constraints), and only discuss

hoisting of normal let-bindings.

To try to give an intuition of the Rebinder, let us consider the following

contrived program:

fun int main([int] a, int i, int v) =

let res =

reduceT(fn {int} (int sum, int x) =>

sum + x + v*a[i],

{v*a[i]}, a) in

res

The goal is to hoist the loop-invariant expression v*a[i] out of the loop,

and use CSE to combine it with the initial value of the accumulator. To this

end, it is first transformed to A-normal form:

1Not permitted in “standard” A-normal form.
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fun int main([int] a_0, int i_1, int v_2) =

let index_10 = a_0[i_1] in

let times_11 = v_2 * index_10 in

let {res_5} =

reduceT(fn {int} (int sum_3, int x_4) =>

let plus_6 = sum_3 + x_4 in

let index_7 = a_0[i_1] in

let times_8 = v_2 * index_7 in

let plus_9 = plus_6 + times_8 in

plus_9,

{times_11}, a_0) in

res_5

The intuition we will use is to strip an expression e of any enclosing bindings,

resulting in a “core” expression e′, and a set of bindings. There may be free

variables in e′ that are bound by the bindings in the set. At some point, we

will have to insert the bindings in the program, but we will try to put them

as far up the syntax tree as possible. For example, stripping the body of main

above would result in the core expression res_5 and the bindings index_10,

times_11, and res_5.

The set of bindings, which we will term the potentially hoistable set, is a

partially ordered set of binding pairs (pi, ei). A binding pair (pi, ei) corresponds

to the L0 binding let pi =ei. The partial order is �: for two bindings bi, bj ,

bi � bj if bj uses any variables bound by bi, or if bi = bj . The potentially

hoistable set thus represents an acyclic data-dependency graph.

The Rebinder proceeds with a recursive walk down the syntax tree, collecting

bindings into the potentially hoistable set. Additionally, for each binding, we

recurse down its right-hand side in order to determine whether it contains any

hoistable subexpressions. This is only the case if the RHS is a SOAC – where

we can hoist out of the body – or if – where we can hoist out of the branches.

For all other expressions, due to the program being in A-normal form, the

subexpressions will be variables or constants, which are not hoisted.

A traversal of the example program listed above follows:

• First, we encounter the index_10 and times_11 bindings, and their right-

hand sides are inspected. Neither of these inspections yield hoistable

subexpressions, but we remove index_10 and index_11 themselves and

insert them into the potentially hoistable set.

• Next, we encounter the res_5 binding and we descend recursively into

the scope of the SOAC function body:

– We inspect the right-hand sides of plus_6, index_7, times_8 and

plus_9, none of which yield hoistable subexpressions. We collect

these bindings into a potentially hoistable set and remove them from

the function body, leaving just the expression {plus}.

– We are now done inspecting the function, and we need to decide

which of the bindings in the potentially hoistable set can in fact be

hoisted out. The function parameters are sum_3 and x_4, and any
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bindings that depend on these cannot be hoisted (the details are

given in Section 6.3.1). This leaves the bindings for index_7 and

times_8 as hoistable; while plus_6 and plus_9 are re-inserted into

the program.

This yields the index_7 and times_8 bindings as new elements in the

potentially hoistable set. We also add the modified res_5 binding itself.

• Since there are no more bindings left, and we are at the top level of a

function, we insert the bindings in the potentially hoistable set (index_10,

times_11, res_5, index_7 and times_8) in the program, yielding:

fun int main([int] a_0, int i_1, int v_2) =

let index_10 = a_0[i_1] in

let times_11 = v_2 * index_10 in

let index_7 = a_0[i_1] in

let times_8 = v_2 * index_7 in

let res_5 =

reduceT(fn {int} (int sum_3, int x_4) =>

let plus_6 = sum_3 + x_4 in

let plus_9 = plus_6 + times_8 in

{plus_9},

{times_11}, a_0) in

res_5

We could now do a separate CSE pass over the entire program, but there

may be a more efficient strategy. The Rebinder is able to perform the CSE

optimisation whenever we insert the non-hoistable bindings into the syntax tree.

We will try to provide an intuition for the approach, using the above example:

When, at the end, we have to insert bindings for index_10, times_11, res_5,

index_7 and times_8, we have to determine an order that does not result in

a variable being used before it is defined. This is easy, since the potentially

hoistable set is already dependency-ordered and thus defines a data dependency

graph (shown on Figure 16). The following insertion order is obtained by

performing a depth-first traversal of the graph:

1. index_10

2. times_11

3. index_7

4. times_8

5. res_5.

None of these bindings can be removed, as the names they bind may be

used in subexpressions, but their right-hand sides (RHS) can be changed freely.

This is what is exploited to perform CSE. The following steps are performed:

index_10: Inserted unchanged, but we record its RHS, in case we end up seeing

an identical expression later on.
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a_0i_1v_2

index_10

times_11

index_7

times_8

res_5

Figure 16: Data dependency graph for example program
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times_11: Likewise inserted unchanged, as its RHS does not correspond to any

previously seen.

index_7: Since the RHS of this binding is identical to the RHS of index_10,

we replace the RHS of index_7 with the variable index_10. We insert the

resulting binding let times_11 = index_7 and record the substitution

index_y→ index_10.

times_8: The substitution index_y→ index_10 is performed on the immedi-

ate subexpressions of the RHS, obtaining v_2 * index_10, then check

whether the resulting expression has been seen before. This turns out to

be identical to the RHS of times_11, and therefore we insert the binding

let times_8 = times_11.

res_5: The substitution index_y → index_10, times_8 → times_11 is per-

formed, although no changes are made. The binding is then inserted.

The result is the following program:

fun int main([int] a_0, int i_1, int v_2) =

let index_10 = a_0[i_1] in

let times_11 = v_2 * index_10 in

let index_7 = index_10 in

let times_8 = times_11 in

let res_5 =

reduceT(fn {int} (int sum_3, int x_4) =>

let plus_6 = sum_3 + x_4 in

let plus_9 = plus_6 + times_8 in

{plus_9},

{times_11}, a_0) in

res_5

Copy propagation can then be used to remove the index_7 and times_8

bindings.
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6.3.1 Hoisting Bindings

The problem is as follows: We are given a potentially hoistable set, {(pi, ei)},
of patterns pi and ei. Each pattern pi defines several names that may be used

by other expressions in the set.

We need to split the potentially hoistable set into a hoistable set, and a set

of the bindings that cannot be hoisted further, the unhoistable set. To this end,

we are given a unary relation B, that given a binding (pi, ei), tells us whether

ei is blocked from being hoisted. As the most archetypical reason, B(pi, ei)

whenever ei uses a parameter of the function that we are trying to hoist out of,

but the relation also checks the other cases mentioned in Section 6.1.1. We will

consider as unhoistable any binding that is unhoistable according to B, as well

as any binding that depends on an unhoistable binding.

Each of the expressions ei may use variables from any of the patterns pj
(except its own), but there may also be free variables that are not contained in

any pattern in the potentially hoistable set. These correspond to names bound

higher up in the program.

Since the potentially hoistable set is partially ordered, we can process its

elements in dependency order. We keep track of the names bound by unhoistable

bindings in an unhoisted name set, initially empty. For each binding (pi, ei), we

check whether B(pi, ei) or ei uses a name in the unhoisted name set:

• If so, the binding is put into the unhoistable set, and the names in pi are

added to the unhoisted name set.

• Otherwise, the binding is put into the hoistable set.

The end result is a set of hoistable bindings, and a set of nonhoistable bindings.

Because of the ordering, we are guaranteed that no binding in the former uses

a name bound in the latter.

6.3.2 Inserting Bindings

After dividing the potentially hoistable set into hoistable and non-hoistable

bindings, we have to insert all non-hoistable bindings around the core expression.

Concretely, we are given a core expression ec and an ordered set of expressions

{(pi, ei)}, where binding (pi, ei) must precede binding (pi+1, ei+1). We can

take this opportunity to perform dead code elimination by removing any binding

(pi, ei) that is not used in either ec or any enclosed binding. The idea is to

track which names are actually used in the lexical scope of the binding, and

remove bindings that are never referenced.

The algorithm is as follows. We will track two pieces of data: A set F , which

is initialised to the free variables of ec
2. Then we proceed backwards through

the list of bindings, i.e., we first process the binding that should be innermost.

For each binding (pi, ei), we check whether any of the names bound by pi are

present in F . If so, we add the free variables of ei to F and insert the binding.

If the binding is not used, we skip it.

2This can be done efficiently if the rebinder constantly tracks the free variables of the
core expression.
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let a = x * y in

let b = a * z in

b

(a) (x * y) * z

let a = y * z in

let b * x * a in

b

(b) x * (y * z)

let a = z * y in

let b * x * a in

b

(c) x * (z * y)

Figure 17: Normalisation of syntactically different expressions
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6.3.3 Simplification of Expressions

The CSE technique described in the previous sections depends heavily on

semantically identical code also having (α-)equivalent bindings. However, in

many cases, two expressions may have different syntax trees, yet semantically be

the same. For example, consider the expressions (x*y)*z versus x*(y*z). If we

assume that * is associative3, these expressions will always compute the same

value. With respect to A-normal form, the two different normalised expressions

are shown on Figure 17.

Despite the syntactical difference between these two expressions, they are

clearly semantically identical, and we would like for CSE to remove one of them.

Given the way our CSE optimisation works, the only solution is to ensure that

equivalent expessions A-normalise to α-equivalent bindings. In general, this is

a very hard-problem - in fact, determining whether two expressions will always

evaluate to the same result is undecideable, as it reduces to the halting problem.

Fortunately, the problem becomes quite tractable with restricted to arithmetic

operations, through the use of simplification before employing the normaliser.

One solution, which was implemented in an unpublished bachelors thesis

by Jonas Brunsgaard and Rasmus Wriedt Larsen, is to simplify arithmetic

expressions into a form known as sum-of-products. In this form, the top node of

the syntax tree for an arithmetic expression is always an addition node with n

multiplication children. Each of these multiplication nodes may have m children,

which can be arbitary numeric expressions. By ordering the children of each

node according to some criterion (say, lexicographically), we obtain a unique

tree structure for arithmetic expressions that ignores superficial syntactical

differences, such as one shown on Figure 17. This unique tree structure can

then be A-normalised into an equally unique set of bindings.

3Strictly not the case for floating-point multiplication.
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Fusion

This chapter will outline the principles behind producer-consumer loop fu-

sion, describe their implementation in the L0 compiler, and discuss possible

complications and restrictions of our handling of loop fusion.

In producer-consumer fusion, the aim is to merge (or fuse) two loops, where

the output of the first loop – the producer – is used as input to the second –

the consumer. We currently only fuse loops that are expressed via SOACs, not

the loop-notation. The reason for this is to simplify analysis, as it can be hard

to determine in which cases arbitrary do-loops can be combined, whereas it is

possible to define simple rules for how and when SOACs can be fused.

As a simple case, we can fuse the two loops in

(map f) ◦ (map g)

and get

map (f ◦ g),

thus removing the need to construct an intermediary array for the result of

map g, and in the context of GPGPU, reducing the likelyhood of global memory

accesses, which exhibit high memory latency. We will write “c1-c2 fusion” for the

case where a fusion is formed with c1 as the producer and c2 as the consumer.

Therefore, the previous example would be “map-map”-fusion.

The rules by which we combine SOACs through fusion is called our fusion

algebra. We aim at preserving the parallelism of the resulting expressions.

Most fusion algorithms in the literature are unable to handle fusion across

zip/unzip, and more generally the case where the output of a producer is

used by several consumers. The algorithm presented in this chapter is capable

of fusing such cases whenever possible without duplicating computation, as

demonstrated on Chapter 7.

This chapter covers two main themes: Section 7.1.1 describes informally

which producer-consumer we can fuse, as well as the form of the resulting

SOAC. Section 7.4 describes our aggressive fusion algorithm, in particular when

a producer result may be used by multiple consumers, without duplicating

computation
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let b = map(op+(1), a) in

let c = map(op+(2), b) in

let d = map(op+(3), b) in

map(op+, zip(c,d))

(a) Unfused

map(fn int (int x) =>

let c = x + 2 in

let d = x + 3 in

c + d,

a)

(b) Fused

Figure 18: Fusing multiple consumers without duplicating computation

Producers Consumers
map map

reduce

scan

filter filter

redomap

Figure 19: Producers and consumers in L0
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7.1 Fusion in L0

The language used to describe the fusion algorithm in this chapter is let-

normalised, internal L0, as described in Chapter 4 and Section 5.2. We will

also assume that all instances of replicate(n,x) have been rewritten as

map(fn t (int i) => x, iota(n))1. For clarity, expository examples will

use the external L0.

Figure 19 lists which L0 SOACs are producers, which are consumers, and

which are both. In particular, note that even if we have a reduce-expression

returning an array, this does not mean that the reduce-expression is a producer

- because, in our algebra, it cannot be fused into another SOAC expression. The

reason is that the output of the reduction is only fully known after the final

input array element has been processed. Consider the following program:

let b = reduce(fn [int] ([int] acc, int x) =>

map(op + (x), acc),

iota(10), a) in

map(f, b)

The contents of the array b is not determined until the very last element of

a has been processed, and thus fusion with the map-expression cannot take place.

While it is possible to use reduce in a way that could theoretically be fused with

a consumer (for example by using it to simulate map), the analysis necessary

to determine whether a given reduction is fusible would be quite onerous, and

likely not useful in any but contrived examples, such as the above-mentioned

simulation of map.

In this way, reduce differs from map, in which each element of the output is

calculated from one element of the input — a classic case of data-parallelism.

1In the actual implementation, we convert these back into replicate expressions if they
are not fused, but for clarity the bookkeeping necessary is elided in this presentation.
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Even if we have a producer-consumer-pair, not all such pairs can be fused,

and not all are desirable to fuse. For instance, filter-map fusion is not possible,

although filter-reduce is. The reason is that, with the former, the size of the

map-output is the same as the size of its input, yet the size of the output of

filter cannot be known in advance, which precludes an efficient fused form.

7.1.1 Fusion algebra

In this section, we will give an informal introduction to which SOACs can be

fused, as well as the form of the result. In order to preserve clarity, we will not

go into great detail until Section 7.3.

map-map fusion

The quintessential example of fusion is composing two consecutive map operations

into a single map, as follows:

let {x1, x2} = mapT(f, a1)

in mapT(g, x1, y)

⇓
mapT(fn β (α1 a1i, α2 yi) =>

let {x1i, x2i} = f(a1i)

in g(x1i, yi)

, a1, y )

replicate fusion

replicate is an interesting case. We wish to always be able to fuse replicate

into a consumer, like this:

let x = replicate(N,a) in

mapT(f, x) in

⇓
mapT(fn β1 (int i) =>

f(a), b)

And indeed, this can be done through ordinary map-fusion if replicate(N,a)

is first rewritten to map as described in Section 7.1.

map-reduce and map-scan fusion

The result of map-reduce-fusion is normally redomap.

let {x1, x2} = mapT(f, a1)

in reduceT(⊕,e1,e2, x1,y)

⇓
redomapT(⊕
, fn (β1,β2) ( β1 e1, β2 e2

, α1 a1i,α2 yi)

=> let {x1i, x2i} = f(a1i)

in ⊕(e1,e2,x1i,yi)
, (e1, e2), a1, y )
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let {c} = mapT(fn {int} (int x, int y) => {x+y},

a, b) in

reduceT(op +, {0}, c)

⇓
reduceT(fn int (int acc, int x, int y) => acc + x + y,

{0}, a, b) // Type error, as accumulator

// type must match array input type

Figure 20: Cannot fuse to reduce (but redomap would be valid)
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In general, we cannot fuse map and reduce to another reduce, as the

accumulator type of a reduction must match the element type of the input

array. Adding the input of the map to the input of the reduce may violate this

requirement, as demonstrated on Figure 20.

The solution is to first rewrite reduceT(⊕,x,a) to redomapT(⊕,⊕,x,a),

since we can always fuse map with redomap:

let {x1, x2} = mapT(f, a1)

in redomapT(⊕, g, e, x1, y)

⇓
redomapT(⊕
, fn β (β e, α1 a1i, α2 yi)

=> let {x1i, x2i} = f(a1i)

in g(e, x1i, yi)

, e, a1, y )

However, there are a few rare cases where we can fuse map and reduce to

reduce. This only happens when the input to the map has the same count and

types as the outputs of the map that are being used as input to the reduce.

let {x1, x2} = mapT(f, a1, a2)

in reduceT(⊕,{e1, e2, e3}, x1, x2, y)

⇓
reduceT(fn (α1,α2) ( α1 x1, α2 x2, α3 x3,

α1 ai1, α2 ai2, α3 ye) =>

let {x1, x2} = f(ae1, ae2)

in ⊕(x1, x2, x3, x1, x2, ye)

, {e1, e2, e3}, a1, a2, y)

In fact, under these circumstances we can also fuse map with scan:

let {x1, x2} = mapT(f, a1, a2)

in scanT(⊕,{e1, e2, e3}, x1, x2, y)

⇓
scanT(fn (α1,α2) ( α1 x1, α2 x2, α3 x3,

α1 ai1, α2 ai2, α3 ye) =>

let {x1, x2} = f(ae1, ae2)

in ⊕(x1, x2, x3, x1, x2, ye),

{e1, e2, e3}, a1, a2, y)

It should be clear that the composed function is still associative, as required

by scan and reduce.
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filter-filter fusion

Fusing filter-filter is quite simple - it’s a new filter SOAC where both

of the filter functions must return true for each element. However, we can only

perform the fusion if the input set of the consumer is a subset of the output set

of the producer. Put another way, the consumer must accept input from no

other source than the producer involved in the fusion.2

let {x1,x2}=filterT(c1,a1,a2) in

let {y} = filterT(c2, x1) in

...

⇓
let {y, _} = filterT(fn bool (α1 ai1,α2 ai2) =>

if c1(ai1, ai2)

then c2(ai1)

else False,

a1, a2 ) in

...

As a bit of a technical curiosity, we are forced to use an if-expression, as

the && operator in L0 is not short-circuiting.

filter-reduce fusion

We can fuse filter with reduce and obtain reduce only in the case where the

input set of the reduce is equal to the output set of the filter.

let {x} = filterT(c, a) in

reduceT(⊕, e, x)

⇓
reduceT(fn β (β e, β ai) =>

if c(ai) then ⊕(e,ai) else e,

{e}, a)

We can fuse filter with reduce and obtain redomapT if the input set of

the reduce is included in the output set of the filter.

let {x1,x2} = filterT(c, a1, a2)

in reduceT(⊕, {e}, x1)

⇓
redomapT(⊕,

fn β (β e, α1 ai1, α2 ai2) =>

if c(ai1, ai2)

then ⊕(e, ai1)

else e,

{e}, a1, a2)

2The implementation in the L0 compiler is currently even more restrictive, in that the
input set of the consumer must match the output set of the producer exactly. Fixing this
oversight is left as an exercise for the author.
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filter-redomap fusion

Similarly, we can fuse filter with redomapT and obtain redomapT if the input

set of the reduce is included in the output set of the filter.

let {x1,x2}=filterT(c, a1, a2)

in redomapT(⊕, g, {e}, x1)

⇓
redomapT(⊕,

fn β (β e, α1 ai1, α2 ai2) =>

if c(ai1, ai2)

then g(e, ai1)

else e,

{e}, a1, a2 )

7.1.2 Invalid fusion

We must be careful not to violate the uniqueness rules when performing fusion.

For example, consider the following program.

let b = map(f, a) in

let c = a with [i] <- x in

map(g, b)

Without the constraints imposed upon us by the semantics of in-place

modification, we could fuse to the following program.

let c = a with [i] <- x in

map(g ◦ f, a)

However, this results in a violation of Uniqueness Rule 1, and the resulting

program is thus invalid. In general, we must track the possible execution paths

from the producer-SOAC to the consumer-SOAC, and only fuse if none of the

inputs of the producer have been consumed (in the uniqueness type sense of

the word) by a let-with or function call on any possible execution paths. This

is easier than it may appear at first glance, as the fusion algorithm will only

fuse when the consumer is within the lexical scope of the producer anyway.

7.1.3 When to fuse

Even when fusion is possible, it may not be beneficial, and may be harmful to

overall performance in the following cases.

Computation may be duplicated.

In the program

let x = map(f, a) in

{map(g, x), map(h, x)}

fusing the x-producer into the two consumers will double the number of

calls to the function f, which might be expensive. The implementation

in the L0 compiler will currently only fuse if absolutely no computation
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is duplicated, although this is likely too conservative. Duplicating cheap

work, for example functions that use only primitive operations on scalars,

is probably not harmful to overall performance, although we have not

investigated this fully. In Section 9.2, we present a transformation that,

in some cases, duplicates computation in order to enhance fusibility.

In general, in the context of GPU, the tradeoff between duplicating

computation and increasing communication is not an easy problem to

solve. Accessing global memory can be more than a hundred times slower

than accessing local (register) memory, hence duplicating computation

may in some cases be preferable.

Can reduce memory locality.

Consider a simple case of fusing (map f) ◦ (map g). When g is executed

for an element of the input array, neighboring elements will be put into

the cache, making them faster to access. This exhibits good data locality.

In contrast, the composed function f ◦ g will perform more work after

accessing a given input element, increasing the risk that the input array

may be evicted from the cache before the next element is to be used. On

GPUs, there is the added risk of the kernel function exercising additional

register pressure, which may reduce hardware occupancy (thus reducing

latency hiding) by having fewer computational cores active. In this case,

it may be better to execute each of the two maps as separate kernels.

The L0 compiler does not currently handle this problem, as it is envisioned

that a later (and as-of-yet unimplemented) transformation will perform

loop distribution (sometimes called loop fission). This step is necessary

in any case, as it can be used to improve the degree of parallelism,

compared to the original program. Figure 21 demonstrates a fully fused

map where the degree of parallelism can be improved by distributing the

inner reductions out of the loop. In the original program, the inner map

had to wait for the two reductions to finish computing x and y before

executing its inner loop, whereas the distributed program consists of three

parallel loop nests.

The fusion algorithm is currently designed to fuse as much as possible,

although without duplicating computation.

7.2 Composition

To begin the exposition of the precise mechanics of fusion, we will present

the mechanics behind composing the functions involved in a fusion operation.

For example, consider the trivial example of map-map-fusion. In principle, the

equation seems simple enough:

map f ◦ map g = map (f ◦ g).

However, while the intuition behind the above equation is correct, it is woefully

imprecise. Fusion in L0 is not performed on simple maps that take input from
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map(fn int ([int] r) =>

let x = reduce(f, 0, r) in

let y = reduce(g, 0, r) in

map(h(x,y), r),

a)

⇓
let xs = map(reduce(f,0),a) in

let ys = map(reduce(g,0),a) in

map(fn [int] ({int,int,[int]} t) =>

let {r,x,y} = t in

map(h(x,y), r),

zip(a,xs,ys))

Figure 21: Loop distribution

let {x, y, z} = mapT(f, a) in

mapT(fn int (int a, int b, int c) => e, x, y, x)

⇓
let {x, y, z} = mapT(f, a) in

mapT(fn int (int a, int b, int d) =>

let c = a in e,
x, y, z)

Figure 22: Single-input transformation
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

only one other map, but complex mapTs that may take input from several sources,

where only some may be fusible. Hence, a more detailed elaboration is necessary.

This section will describe various ways of combining the functions used in

SOACs, as appropriate for different cases of fusion. In Section 7.3, we will

describe the rules used for fusion of full SOAC expressions.

In this section, we will assume that each output of a producer is used exactly

once in every relevant redomap- and map-consumer. This assumption can be

provided through trivial rewriting prior to performing function composition, as

illustrated on Figure 22. We gain the property that each output of the producer

is bound to exactly one parameter of the consumer’s function, making it easier

to describe the relationship between producer and consumer.3

The presentation will be of the form of judgements. To skip ahead a bit, we

will write the map-composition of two functions as

(lb, eb1 , . . . , ebm)
o1,...,ok◦

map
(la, ea1

, . . . , ean
)⇒ (lr, er1 , . . . , erl) .

This judgement is said to hold if the preconditions specified for the judgement

are upheld. The preconditions for a given judgement, if any, will be listed when

the judgement is defined below.

3In the actual implementation, this transformation is not done. Instead, the composition
uses more complicated bookkeeping, but presenting all details would obscure the exposition
of the central mechanism.
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7.2.1 map-map composition

We are given two functions:

la ≡ fn tar
(pa1

, ..., pan
) => ea

whose inputs are ea1
,...,eam

and whose outputs are o1,...,ok; and

lb ≡ fn tbr (pb1, ..., pbm) => eb,

whose inputs are eb1,...,ebm .

The goal is to compute a function

lr ≡ fn tbr (pr1, ..., prl) => er

that corresponds to the intuitive notion of the composition lb ◦ la.

For notational convenience, we define the following sets of parameters of the

two functions.

params(la) = {pa1 , . . . , pan}

params(lb) = {pb1 , . . . , pbm}

If the inputs of lb are disjoint from the outputs of la, then we are done, and

lr = lb. Otherwise, there is a non-empty mapping

I(oi) = pbj when oi = ebj

of outputs of la to the corresponding parameters of lb. The parameters (and

corresponding inputs) to the desired function lr are the parameters of lb, except

those in I, concatenated with the parameters of la:

{er1 , . . . , erl} = params(lr) = (params(lb)\δ)⊕ params(la)

where δ are the parameters pbj in the range of I.

The body of lr is then defined as follows:

er ≡ let {I(o1),...,I(ok)} = ea in eb

We will refer to this entire operation as:

(lb, eb1 , . . . , ebm)
o1,...,ok◦

map
(la, ea1

, . . . , ean
)⇒ (lr, er1 , . . . , erl)

7.2.2 filter-filter composition

We do not have fold per se in L0, but this method of composition is used for

both reduce and the fold-like semantics of redomap, hence the name.

We are given two functions:

la ≡ fn {bool} (pa1
, ..., pan

) => ea

which take as inputs ea1
,...,ien , and whose outputs are o1,...,ok; and

lb ≡ fn {bool} (pb1, ..., pbn) => eb,
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whose inputs are eb1,...,ebn .

Precondition: Every input ebi must correspond to some output oj , and

every output oi must correspond to some input ebi . That is, the producer set of

la is equal to the input set of lb. Or to put it another way, lb takes input from

no other source.

The goal is to compute a function

lr ≡ fn {bool} (pa1, ..., pan) => er

whose inputs are ir1,...,irl , that corresponds to the intuitive composition of

la ∧ lb. Note that the parameters are the same as for la, which means that we

have to explicitly create a let-binding for the names of the parameters of lb or

they will be free in eb. To this end, define the mapping

I(oi) = pbj when oi = ebj .

The body of lr is now definable as

er ≡ let {ok} = ea in ok &&

let {I(o1),...,I(ok)} = {pai,...,pan} in eb

where ok is some fresh variable.

We will refer to this entire operation as:

(lb, eb1 , . . . , ebn)
o1,...,ok◦
filter

(la, ea1 , . . . , ean)⇒ (lr, ea1 , . . . , ean)

7.2.3 filter-fold composition

We are given two functions:

la ≡ fn {bool} (pa1
, ..., pan

) => ea

which take as inputs ea1,...,ien , and whose outputs are o1,...,ok; and

lb ≡ fn tbr (ub1, ..., ubm, pb1, ..., pbn) => eb,

whose inputs are eb1,...,ebn .

Precondition: Every input ebi corresponds to some output oj , and every

output oi corresponds to some input ebi . That is, the producer set of la is equal

to the input set of lb. Or to put it another way, lb takes input from no other

source. The ubs are accumulator parameters that do not correspond to an array

input.

The goal is to compute a function

lr ≡ fn tbr (pr1, ..., prl) => er.

Note that the parameters are the same as for la, which means that we have

to explicitly create a let-binding for the names of the parameters of lb before

eb makes sense. To this end, define the mapping

I(oi) = pbj when oi = ebj .
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The body of lr is now definable as

er ≡ let {ok} = ea in if ok

then let {I(o1),...,I(ok)} = {pai,...,pan} in eb

else {ub1, ..., ubm}

where ok is some fresh variable.

We will refer to this entire operation as:

(lb, eb1 , . . . , ebn)
o1,...,ok◦
fold

(la, ea1
, . . . , ean

)⇒ (lr, ea1
, . . . , ean

)

7.3 Fusion rules

With function composition defined, we can define fusion rules for SOACs. We

present fusion as a judgement

producer
os
 consumer

⇒ result
.

This means that producer, which produces outputs os, can be fused with

consumer, yielding result as the combined SOAC. Valid judgements of this

form are given by the following inference rules, which should mostly be intuitive.

(lb, esb)
os◦
map

(la, esa)⇒ (lr, esr)

mapT(la,esa)
os
 mapT(lb,esb)

⇒mapT(lr,esr)

(Fuse-Map-Map)

(lb, esb)
os◦
map

(la, esa)⇒ (lr, esr)

mapT(la,esa)
os
 scanT(lb,{us},esb)

⇒scanT(lr,{us},esr)

(esa = esb) (Fuse-Map-Scan)

Fusing map-reduce and filter-reduce is usually done by first rewriting

reduce to redomap, although when the producer-output and consumer-input

match exactly, filter-reduce can fuse to reduce.

filterT(la,esa)
os
 redomapT(lb,lb,{us},esb)

⇒redomapT(lb,lr,{us},esr)

filterT(la,esa)
os
 reduceT(lb,{us},esb)

⇒reduceT(lr,{us},esa)

(esb ⊆ os)

(Fuse-Filter-Reduce-1)

Note that Fuse-Filter-Reduce-1 has a side condition that implies that

the types of esa are equal to the types of esb. This permits us to keep the result

as a reduceT rather than a redomapT.

(fn tbr (psb) => eb, esb)
os◦
map

(la, esa)⇒ (fn tbr (psr) => er, esr)

mapT(la,esa)
os
 redomapT(⊕,fn tb (usb, psb) => eb,{vs},esb)

⇒redomapT(⊕,fn tb (usb, psr) => er,{vs},esr)

(Fuse-Map-Redomap)
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1

4

2 3

T2

T1

Figure 23: T1-T2-reduction
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(fn tbr (psb) => eb, esb)
os◦
fold

(la, esa)⇒ (fn tbr (psr) => er, esa)

filterT(la,esa)
os
 redomapT(⊕,fn tb (usb, psb) => eb,{vs},esb)

⇒redomapT(⊕,fn tb (usb, psr) => er,{vs},esa)

(Fuse-Filter-Redomap)

filterT(la,esa)
{os}
 redomapT(lb,lb,{us},esb)

⇒redomapT(⊕,lr,{us},esr)

filterT(la,esa)
os
 reduceT(lb,{us},esb)

⇒redomapT(⊕,lr,{us},esr)

(Fuse-Filter-Reduce-2)

7.4 The fusion algorithm

The entire algorithm consists of two distinct stages:

1. Traverse the program, collecting SOAC-expressions and fusing producers

into consumers where possible. The end result is a mapping from SOACs

in the original program, to replacement SOAC expressions (the result of

fusion operations). This is called the gathering phase.

2. Traverse the program again, using the result of the gathering phase to

replace SOAC expressions with their fully fused forms. This may lead to

dead code, as the output variables of producers that have been fused into

their consumers are no longer used. These can be removed using standard

dead code removal.

The replacement stage is trivial, hence the rest of this section will be

concerned solely with the gathering stage.

L0, as a block-structured language, is suited to region-based analysis, and

the fusion algorithm is indeed designed as a reduction of a dataflow graph.

Our structural analysis is inspired by the T1-T2-reduction [1]. We say that

a flow graph is reducible if it can be reduced to a single node by the following

two transformations:

T1: Remove an edge from a node to itself.
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{x1} = mapT(h1, x2) mapT(h2, x2)

{y1,y2,y3} = mapT(f1, x1, x2)

{z1,z2} =
  mapT(f2, y1, y2)

{q1,q2} =
  mapT(g,y3,z1,y2,y3)

mapT(h, q1, q2, z2, y1, y3)

1

{x1} = mapT(h1, x2) mapT(h2, x2)

{y1,y2,y3} = mapT(f1, x1, x2)

{z1,z2} =
  mapT(f2, y1, y2)

  mapT(fn {real}
          (real zli, real y2i,
           real z2i, real y1i,
           real y3i) =>
    let {q1i,q2i} = g(y3i,z1i,
                      y2i,y3i) in
    h(q1i,q2i,z2i,y1i, y3i),
   z1,y2,z2,y1,y3)

2

{x1} = mapT(h1, x2) mapT(h2, x2)

{y1,y2,y3} = mapT(f1, x1, x2)

  mapT(fn {real}
          (real y2i,
           real y1i, real y3i) =>
    let {z1i,z2i} = f2(y1i,y2i) in
    let {q1i,q2i} =
      g(y3i,z1i,y2i,y3i) in
    h(q1i,q2i,z2i,y1i,y3i),
  y2,y1,y3)

3

{x1} = mapT(h1, x2) mapT(h2, x2)

mapT(fn {real}
        (real x1i, real x2i) =>
  let {y1i,y2i,y3i} =
    f1(x1i,x2i) in
  let {z1i,z2i} =
    f2(y1i,y2i) in
  let {q1i,q2i} =
    g(y3i,z1i,y2i,y3i) in
  h(q1i,q2i,z2i,y1i,y3i),
 x1, x2)

4

Figure 24: Fusion by T2 transformation on the dependency graph
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

T2: Combine two nodes m and n, where m is the single predecessor of n, and

n is not the entry of the flow graph.

On Figure 23 is shown a small flow graph and highlights instances where

the two reductions could apply. The overall idea is to construct a flow graph of

the L0 program, reduce it to a single point, and at each reduction step combine

the information stored at the nodes being combined.

L0 always produces a reducible graph. Each node corresponds to an ex-

pression, with the successors of the node being its subexpressions. This means

that we can implement the reduction simply as a bottom-up traversal of the L0

syntax tree.

Figure 24 depicts the intuitive idea on which our fusion transformation is

based. The top-left figure shows the dependency graph of a simple program,

where an arrow points from the consumer to the producer.

The main point is that all SOACs that appear inside the box dashed box can

be fused without duplicating any computation, even if several of the to-be-fused

arrays are used in different SOACs. For example, y1 is used to compute both

{z1,z2} and {q1,q2}4. This is accomplished by means of T2 reduction on the

4Note also that not all input arrays of a SOAC need be produced by the same SOAC.
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dependency graph:

The rightmost child, i.e., mapT(g,..), of the root SOAC (mapT(f1,...))

has only one incoming edge, hence it can be fused. This is achieved by:

1. Replacing in the root SOAC the child’s output with the child’s input

arrays

2. Inserting a call to the child’s function in the root’s function, which com-

putes the per-element output of the child,

3. Removing duplicate input arrays of the resulting SOAC.

This operation is exactly what the fusion rules in Section 7.3 formalise.

The top-right part of Figure 24 shows the (optimised) result of the first

fusion, where the copy statements have been eliminated by copy propagation. In

the new graph, the leftmost child of the root, i.e., the one computing {z1,z2},

has only one incoming edge and can be fused. The resulting graph, shown in

the bottom-left figure can be fused again resulting in the bottom-right graph

of Figure 24. At this point no further T2 reduction is possible, because the

SOAC computing x1 has two incoming edges. This example demonstrates a key

benefit of removing zip/unzip and using the tupleless SOACs representation:

There are no intermediate nodes in the data-dependency graph between fusable

producer and consumer.

7.4.1 Dataflow rules

During reduction, we will track the following pieces of information.

SOACs : Exp→ (Label × Pat× Exp)Set. The set of SOACs that appears in

an expression, modelled as a mapping from a (unique) label to a pair of

a SOAC expression and its output pattern. We shall say SOACs(e) to

refer to this mapping, and SOACs(e)[l] to refer to the SOAC with label

l. For example,

SOACs(let {a,b,c} = mapT(f,x,y,z) in {a,b,c}) =

{(`, {a,b,c}, mapT(f,x,y,z))},

where ` is a fresh label. After the SOACs set has been computed, we can

use SOACs(eb), where eb is the body of a function to refer to the set of

all SOACS in that function. Since the fusion transformation is strictly

intraprocedural, this is sufficient for our needs.

This mapping may not necessarily contain all SOACs that appear syn-

tactically in the program. A core idea behind the fusion algorithm is

that whenever we would add a SOAC to this mapping, we instead check

whether it can be fused with the SOACs already present.

unfusible : Exp→ NameSet. The infusible set, a set of variable names, is key

to preventing unwanted fusion, as it indicates which SOACs should never

be fused. The infusible set prevents both undesired and invalid fusion,

as outlined in sections Sections 7.1.2 and 7.1.3 respectively. Given an
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L0 expression e, we shall say unfusible(e) to refer to the infusible set

produced by e. For example:

unfusible(let x = mapT(f,a) in

let y = mapT(g,a) in {x,y}) = {a},

because a is used twice, and hence fusing its producer into f and g would

cause work duplication. To simplify the example, f and g are ignored

when computing the infusible set, although as we shall see below, this is

not the case in practice.

arrInputs : Exp→ Name→ Labels. A mapping from arrays to a set of the

SOACs that use the array as input. This is modelled as a set of pairs,

each pair consisting of an array name and a SOAC name. We shall refer

to the mapping generated by a given expression e as arrInputs(e). For

example,

arrInputs(mapT(f, x, y, z)) = {(x, {`}), (y, {`}), (z, {`})},

where ` is the label of the mapT-SOAC.

We define an associative and commutative operation t to combine multiset

mappings by taking the union of values (in the case of arrInputs, sets

of labels, s) of corresponding keys (for arrInputs, variable names, v),

as follows.

{(v1, s1), . . . , (vn, sn)} t {(vn+1, sn+1), . . . , (vn+m, sn+m)} =

{(vi,
⋃

(vi,sj),0≤j≤n+m

sj)},

Intuitively, x t y is a mapping that contains the union of the keys in x

and y, with the value for a key v being the union of the values for v in

x and y (or just an untouched value, if v was only present in one of the

mappings).

Similarly, we use u to denote a similar mapping, except taking the inter-

section of values.

{(v1, s1), . . . , (vn, sn)} u {(vn+1, sn+1), . . . , (vn+m, sn+m)} =

{(vi,
⋂

(vi,sj),0≤j≤n+m

sj)},

consumed : Exp→ Label→ NameSet. A mapping from the labels of SOACs

in an expression, to a set of the names that are consumed on the path to

that SOAC. The purpose of this mapping is to ensure that we do not fuse

in violation of the uniqueness rules. For example, if

consumed(e)[`] = {a}

then we cannot fuse any producer taking a as input with the SOAC

labelled `, as a is consumed on the execution path to `.
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If more specific rules are not given, the data flows default to the following.

unfusible(e) =
⋃

e′∈childExps(e)

unfusible(e′)

arrInputs(e) =
⊔

e′∈childExps(e)

e′

SOACs(e) =
⋃

e′∈childExps(e)

SOACs(e′)

consumed(e) =
⊔

e′∈childExps(e)

consumed(e′)

Where childExps(e) are the immediate children of e, e.g.

childExps(if p(x) then t(y) else f(z)) = {p(x), t(y), f(z)}.

Now for specific rules, based on the shape of the given expression.

Case e ≡ v (v is a variable)

This rule is only applied when v is not an array input to a SOAC. This

implies that the producer of v cannot be fused, as its output v is used

here.

unfusible(e) = {v}

Case e ≡ v[e1, ..., en]

If an element is retrieved from an array through indexing, we have no

choice but to manifest that array, thus forcing us to avoid fusion due

to our principle of avoiding duplication of computation. In many cases,

for example if the array v is the result of a map operation, it might be

beneficial to replace the index operation by an inlined copy of the map

function, and let the original map be fused. Duplicating computation of a

single element is likely acceptable, but not done in the general case by the

current implementation, and it is hard to determine the optimal choice

as long as L0 does not yet have a well-defined cost model. Nevertheless,

Section 9.2 will describe how we inline particularly simple cases.

unfusible(e) = {v} ∪
⋃

1≤i≤n

unfusible(ei)

Case e ≡ if ec then et else ef
The unfusible of a conditional consists of whatever is in the unfusible
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let b = map(f, a) in

if p(x) then map(g,b)

else map(h,b)

Figure 25: Fusion into branches acceptable

let b = map(f, a) in

if p(x) then concat(map(g,b),map(v,b))

else map(h,b)

Figure 26: Duplicating computation in one branch

let b = map(f, a) in

if p(map(v,b)) then map(g,b)

else map(h,b)

Figure 27: Duplicating computation in conditional

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

sets of its branches, plus any SOAC outputs that may be used multiple

times. Note that an output can be used in both the true and the false

branch, and it will still only have been considered to be used once, becase

only one of the true and false branch will be executed, never both.

arrInputs(e) =

{(v, s′) | (v, s) ∈ arrInputs(et) ∪ arrInputs(ef )}
Where s′ is the set of all SOAC consumers of v in both et and ef .

unfusible(e) =

unfusible(ec) ∪ unfusible(et) ∪ unfusible(ef )

∪ (arrInputs(ec) u arrInputs(et))

∪ (arrInputs(ec) u arrInputs(ef ))

The reason for these rules can be illustrated by the following examples. In

Figure 25, it is clear that fusing computation of b with both map(g,b) and

map(h,b) will not cause duplicated computation, as the two consumers

are on separate control-flow paths. On the other hand, if even one branch

contains multiple uses, as in Figure 26, we should not fuse. Additionally,

if both the conditional expression and a branch consumes the same array,

as on Figure 27, then we should also not fuse.

Case e ≡ loop (p = e1) = for v < e2 do e3 in e4
For loops, we add any arrays used as SOAC inputs in the loop body to

the infusible set. This is because fusing into the loop would duplicate

computation by re-evaluating the function in the consumer for every
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let b = map(f, a) in

loop (v) = for i < n do

let c = map(g, b) in

h(v,c) in

...

Figure 28: Fusing the producer into the consumer in the loop body would duplicate
computation

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

iteration of the loop – see Figure 28 for an example of this. This is similar

to how we ban fusing into SOAC-functions.

Note that any use of an array for another purpose than as SOAC input

results in that array name being present in unfusible(e3) already, thus

banning fusion.

unfusible(e) =

unfusible(e1) ∪ unfusible(e2) ∪ unfusible(e3) ∪ unfusible(e4)

∪ {v | (v, s) ∈ arrInputs(e3)}

Case e ≡ let {vs} = soac in eb
The big question here is whether soac can be fused as producer with

something in SOACs(eb). In the following, `p is a fresh name. Let

ζ =
⋃
v∈vs

arrInputs(eb, v)

be the set of the labels of all SOACs that contain at least one of our

outputs in their input set.

For all `ci ∈ ζ, we find the corresponding triple (`ci , vs
c
i , soac

c
i ) in SOACs(eb).

We can check whether fusion is possible by determining whether the fol-

lowing judgement is derivable.

soac
vs
 soacci

⇒ soacri

In total, the following four conditions must all be upheld before we can

fuse:

1. There must be at least one consumer soacci with which we can

fuse. Note that even if there are more than one, we do not end up

duplicating computation, as they would belong to different branches.

2. For each consumer soacci , we must be able to fuse and and get some

soacri . If we could only fuse with some, we would be unable to

remove the producer from the resulting program, thus duplicating

computation.
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3. None of vs are in the infusible set. That is,

vs ∩ unfusible(eb) =

This rule also helps avoiding duplicate computation.

4. Fusion must not bring an array past a point where it is consumed.

Formally, we must have that,

consumed(eb)[`
c
i ] ∩ (The array inputs of soac) = ∅

for all `ci . Violating this rule would create an invalid program.

If the four conditions are true: In this case, we are fusing soac with

several SOACs soacci , each with a corresponding label `ci , and fused

as soacri . In the following, let ef be the body of the function in soac.

SOACs(e) =

(SOACs(eb)\ζ)

∪ SOACs(ef )

∪ {(`ci , (vs, soacri )) | for each soacci}

arrInputs(e) =

(arrInputs(eb) with all mappings to each `ci removed)

t {(v, `ci ) | for all array inputs v in each soacci}

unfusible(e) =

unfusible(eb)

∪ {v | (v, s) ∈ arrInputs(ef )}

If they are not: We cannot fuse with soac as a producer, and we must

add it as a kernel by itself. It may be fused as the consumer at some

later stage of the algorithm, however. To the unfusible set, we first

add every array variable used as a SOAC input in the body of soac.

We also also insert every array variable used both as input to soac,

but also to some SOAC in eb. The rationale is that fusing whichever

SOAC (if any) outputs this variable would duplicate computation,

as we have at least two consumers.
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unfusible(e) =

unfusible(eb)

∪ {v | (v, s) ∈ arrInputs(ef )}
∪ {v | v is used as input to soac but is also in arrInputs(eb)}

arrInputs(e) =

arrInputs(eb)

t arrInputs(ef )

t {(e1, {`p}), . . . , (en, {`p})}

SOACs(e) = SOACs(eb) ∪ {(`p, (vs, soac))}

Case e ≡ let v1 = v2 with [e1,...,en] <- ev in eb
For any soac ` in the body eb, we note that the aliases of v2 are consumed

on the path to `.

consumed(e) =

{(`, aliases(v2) ∪ consumed(eb)[`]) | (`, p`, e`) ∈ consumed(eb)}
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Fusion-enabling SOAC

Transformations

The fusion rules in Section 7.3 cover only simple cases, where the output of

the producer is used directly by the consumer, without any intermediary steps.

This means that the following program, where the output of the producer is

first passed through transpose, cannot be fused.

let {b} = mapT(f, a) in

mapT(fn [int] ([int] r) => mapT(g, r), transpose(b))

However, it is actually possible to fuse this case by first moving the transposition

to after the consumer instead:

let {b} = mapT(f, a) in

transpose(mapT(fn [int] ([int] r) => mapT(g, r), b))

After this transformation, the simple map-map fusion rule applies. When moving

around transformations such as transpose (and, later, reshape), remember

that we think of them as having a delayed representation, and hence moving

them will not influence the cost model of the program.

In many cases, such rewriting of a producer-consumer pair is necessary before

the simple fusion rules can apply. Indeed, one might consider the Fuse-Map-

Redomap rule a particularly simple example of such a rewriting. Fortunately,

these rewriting schemes can be incorporated into the existing fusion framework

simply by considering them as additional inference rules. The rewriting above

can be defined as follows (using the nested map notation from Figure 29):

mapT(la,ea)
eb mapT2(lb,eb)
⇒soac

mapT(la,ea)
eb mapT2(lb,transpose(eb))
⇒transpose(soac)

(Fuse-Map-Transpose-Map-Single)

Of course, this rule is far too specific - it covers only map-producers and

-consumers, and with a single output and input respectively. In the next section,

we will see a more general treatment of when we can fuse across arrays.

Furthermore, we will need to extend the SOAC notation we use for express-

ing fusion judgements. The Fuse-Map-Transpose-Map-Single rule uses
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mapT1(f, a1, ... , ak) ≡
mapT(f, a1, ..., ak)

mapTn+1(f, a1, ..., ak) ≡
mapT(fn {[β1], ..., [βt]} ([α1] x1, ..., [αk] xk)) =>

mapTn(f, x1, ..., xk)

Figure 29: Nested map notation

let {b} = mapT(f, a) in

let {c} = transpose(b) in

mapT(g, c)

(a) Before inlining

let {b} = mapT(f, a) in

mapT(g, transpose(b))

(b) After inlining

Figure 30: Inlining transposition
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transpose in places where we have previously considered only plain variables

and SOAC expressions. Their meaning is as follows:

• Whenever we use transpose (or, later, reshape) around a SOAC, the

intent is that we transpose every output of the SOAC. Thus, even though

transpose(mapT(...)) is technically not type-correct L0, since mapT

returns a tuple, the intended meaning is that every output is transposed.

• When we enclose inputs to a SOAC in transpose or reshape, as in for ex-

ample mapT(f,transpose(es)), the intended meaning is to apply trans-

pose to every input, i.e. mapT(f, transpose(e1), ..., transpose(en)).

Conceptually, we integrate transpose and reshape into the consumers by

inlining them in the input positions prior to fusion. This is illustrated on

Figure 30

We add the following two ancillary fusion rules for fusing with a consumer

whose output is transposed or reshaped.

soacp
os
 soacc

⇒soacr

soacp
os
 transpose(soacc)

⇒transpose(soacr)

(Fuse-Transposed-Consumer)

soacp
os
 soacc

⇒soacr

soacp
os
 reshape(shape, soacc)

⇒reshape(shape, soacr)

(Fuse-Reshaped-Consumer)

The intuition behind these rules is that fusion is not sensitive to what

happens with the output of the consumer.

We will need a judgement to determine which SOAC inputs are simply

transformations of an origin array. The judgement

<(e) = v
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let {b} = map(f, a) in

map2(g, transpose(b))

(a) Unfusible

let {b} = map(f, a) in

transpose(map2(g, b))

(b) Fusible

Figure 31: Pushing transposition past consumer

let b = map2(f, a) in

map(g, transpose(b))

(a) Unfusible

let b = map2(f, transpose(a)) in

map(g, b)

(b) Fusible

Figure 32: Pulling transposition before producer
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means that e is an application of transpose or reshape (possibly both, or

several in sequence) of the array-typed variable v. For example e, may be

transpose(v). Valid judgements are defined by the following inference rules.

<(e) = v

<(transpose(k, n, e)) = v

<(e) = v

<(reshape(shape, e)) = v

If v is a variable
<(v) = v

When <(e) = v, we will say that the source array of e is v.

8.1 Fusing across transpose

In the general case, transpose acts like a fusion blocker - if the output of a

producer is transformed before being fed to the consumer, then most likely fusion

cannot take place. In some instances, we can perform a local transformation,

either pushing the transposition past the consumer, or pulling it to before the

producer. An example is seen on Figure 31 - on Figure 31a, the transposition

blocks fusion, but by pushing the transpose operation to the return value

of the consumer, as on Figure 31b, we expose map-map-fusibility. Figure 32

demonstrates same concept, but by pulling instead of pushing the transposition.

To get an intution for the validity of these transformations, we employ the

concept of transpose depth. A standard textbook transposition interchanges

the outer two dimensions - hence we say that it has a depth of 2, as those are

the dimensions that are affected. If a SOAC does not directly access the two

outermost dimensions, as for example a mapT2 does not, we can interchange

them without modifying the values that are seen by the body of the SOAC. This

can also be generalised to support the generalised (k, n)-transposition described

in Section 2.3.
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D(k, n) =

{
k + n n ≥ 0

k n < 0

Figure 33: Transposition depth

transpose−1(k,n,e) ≡ transpose(k+n,-n,e)

Figure 34: Inverse transpose
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Specifically, mapTn accesses the element at index [i1, . . . , in], but we are free

to transpose the indices i1, . . . , in−1. Of course, the order of the results will

be different, which is why we need to perform an inverse transposition on the

result. To this end, Figure 33 defines a function for determining the transpose

depth of a (k, n)-transpose, and Figure 34 defines a notation for the inverse of

a transposition.

Note the crucial property transpose−1(k, n, transpose(k, n, e)) = e.

Our presentation will assume that transpositions are inlined as part of the

inputs to the consumer, as on Figure 31.

8.1.1 Pushing transpose

To get an intution for how the transformation works, let us look at a slightly

more complicated example:

let {b} = mapT(f, a) in

mapD(k,n)(g, transpose(k, n, b), c)

The consumer takes two inputs, and only one of them is from the producer.

Our goal is to remove the transpose from b - we do not care about whether

the algorithm will eventually try to fuse c as well. Observe that by applying an

inverse transposition to both inputs, we would remove the transposition sur-

rounding b, thus obtaining inputs b and transpose−1(k, n, c), and thereby

exposing map-map-fusibility between the producer and consumer. Of course,

we still have to transpose the output of the new consumer. This solution also

works only when all inputs coming from the producer are transposed in the

exact same way, as otherwise applying the inverse transposition would not cause

the transpositions to go away.

To define fusion rules that fit into the framework established in Chapter 7,

we will need a bit of machinery. First, we define a judgement for determining

whether the outputs of a producer are transposed by the consumer:

transposed(os, es)⇒ (k, n)

Here, os must be the outputs of a producer, and es are the inputs of the

consumer. The judgement produces (k, n) if one of the outputs are transposed

in es, defined by the following inference rules:
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<(e) = v (v ∈ os)
transposed(os, transpose(k,n,e), es)⇒ (k, n)

<(e) = v transposed(os, es)⇒ (k, n) (v /∈ os)
transposed(os, e, es)⇒ (k, n)

We also need a judgement for checking whether all inputs coming from the

producer are transposed the exact same way, and if so, produce a modified

input list with inverse transpositions applied:

transpose−1(k, n, os, es)⇒ es′

This judgement states that all inputs in es whose underlying array is in

os is (k, n)-transposed. Furthermore, the result of applying an inverse (k, n)-

transposition to every input in es is es′. The judgement is defined by the

following inference rules:

transpose−1(k, n, os, transpose(k,n,e))⇒ e

(e is not a transposition)

transpose−1(k, n, os, e)⇒ e

<(e) = v transpose−1(k, n, os, es)⇒ es′ (v ∈ os)
transpose−1(k, n, os, transpose(k, n, e), es)⇒ e, es′

<(e) = v transpose−1(k, n, os, es)⇒ es′ (v ∈ os)
transpose−1(k, n, os, transpose(k, n, e), es)⇒ e, es′

<(e) = v transpose−1(k, n, os, es)⇒ es′ (v /∈ os)
transpose−1(k, n, os, e, es)⇒ transpose−1(k, n, e), es′

We can now define a fusion rule for pushing transpose past mapT operations

of sufficient nesting. The general outline is as follows: First, determine whether

an output of the producer is (k, n)-transposed by the consumer. Then, check

whether all of the producer outputs used by the consumer are (k, n)-transposed,

and if so, apply the inverse transposition to every input, obtaining es′. Finally,

attempt to fuse the result.

transposed(os, es)⇒ (k, n)
transpose−1(k, n, os, es)⇒ es′

soacp
os
 mapTD(k,n)(f,es′)
⇒soacr

soacp
os
 mapTD(k,n)(f,es)

⇒transpose(k, n, soacr)

(Push-Transpose)
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8.1.2 Pulling transpose

Consider the following program:

let {b1, b2} = mapTD(k,n)(f, a1, a2) in

reduceT(g, transpose(k, n, b1), transpose(k, n, b2), c)

We can only push transpositions past sufficiently deeply nested mapTs, and

in this case the consumer is a reduceT. However, since all of the inputs derived

from outputs of the consumer are (k, n)-transposed, we can instead transform

the producer itself by (k, n)-transposing its inputs. This produces the following

program, where mapT-reduceT fusion is possible:

let {b1, b2} = mapTD(k,n)(f, transpose(k, n, a1), transpose(k, n, a2)) in

reduceT(g, b1, b2, c)

Again, this relies on the fact that the body of the producer is invariant with

respect to the outer D(k, n) dimensions.

Again, we will need an ancillary judgement.

untranspose(k, n, os, es)⇒ es′

This judgement checks that all inputs in es that use an input from os

are (k, n)-transposed, and produces a new sequence of inputs es′ where such

transposes are removed. It is defined by the following inference rules.

untranspose(k, n, os, transpose(k,n,e))⇒ e

(e is not a transposition)

untranspose(k, n, os, e)⇒ e

<(e) = v untranspose(k, n, os, es)⇒ es′ (v ∈ os)
untranspose(k, n, os, transpose(k, n, e), es)⇒ e, es′

<(e) = v untranspose(k, n, os, es)⇒ es′ (v /∈ os)
untranspose(k, n, os, e, es)⇒ e, es′

We can now define a fusion rule for pulling transpositions past mapT producers

of sufficient nesting. The general outline is as follows: First, determine whether

an output of the producer is (k, n)-transposed by the consumer. Then, check

whether all of the producer outputs used by the consumer are (k, n)-transposed,

and if so, strip those transpositions and (k, n)-transpose the inputs to the

producer instead. Finally, attempt to fuse the result.

transposed(os, esc)⇒ (k, n) untranspose(k, n, os, esc)⇒ es′c
mapTD(k,n)(f,transpose(k,n,esp))

os
 mapT(g, es′c)

⇒soacr

mapTD(k,n)(f,esp)
os
 mapT(g, esc)

⇒soacr

(Pull-Transpose)
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8.2 Fusing across reshape

The idea behind fusing across reshape operations is similar to the one covering

transpose, although less well-developed. We support solely pulling reshape

prior to mapT producers taking single-dimensional arrays as input. For example,

we can fuse the following program:

let {b} = mapT(f, a) in // a is one-dimensional

reduceT(g, reshape((e1, . . . , en), b))

Conceptually, the producer applies the function f to every element in a. We

reshape a to be n-dimensional and change the producer to be a depth-n nest:

let {b} = mapTn(f, reshape((e1, . . . , en) a)) in

reduceT(g, b)

In the resulting program, mapT-reduceT-fusability is exposed.

Again, we need ancillary judgements. These are entirely analogous to the

“transposed” and “untransposed” judgements.

reshaped(os, es)⇒ (k, n)

<(e) = v (v ∈ os)
reshaped(os, reshape(shape,e))⇒ shape

<(e) = v reshaped(os, es)⇒ shape (v /∈ os)
reshaped(os, e, es)⇒ shape

unreshape(shape, os, es)⇒ es′

unreshape(shape, os, reshape(shape,e))⇒ e

(e is not a reshaping)

unreshape(shape, os, e)⇒ e

<(e) = v unreshape(shape, os, es)⇒ es′ (v ∈ os)
unreshape(k, n, os, reshape(shape, e), es)⇒ e, es′

<(e) = v unreshape(shape, os, es)⇒ es′ (v /∈ os)
unreshape(shape, os, e, es)⇒ e, es′

The fusion rule is also extremely similar to Pull-Transpose.

reshaped(os, esc)⇒ (es1, . . . , e
s
n) unreshaped((es1, . . . , e

s
n), os, esc)⇒ es′c

(All of esp have rank 1) mapTn(f, reshape((es1, . . . , e
s
n), esp))

os
 mapT(g, es′c)

⇒soacr

mapT(f, esp)
os
 mapT(g, esc)

⇒soacr

(Pull-Reshape)
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scanT(fn [real] ([real] x, [real] y) =>

mapT(op +, x, y),

{0.0, ..., 0.0}, a)

(a) Unfusible

transpose(

mapT (fn [real] ([real] x) =>

scanT(op +, 0.0, x),

transpose(a)))

(b) Potentially fusible

Figure 35: Interchange Scan With Inner Maps
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8.3 ISWIM - Interchange Scan With Inner Maps

The fusion algebra for scanT is quite poor – in particular, it can never be

fused as a producer. In some cases however, we can rewrite scanT to expose

producer-fusibility. This section presents a high-level transformation that may

enable fusion of scanT. Specifically, when the body of a scanT operation consists

of a nested mapT, we can interchange the two loops and transpose both input

and output. A simple example to demonstrate the intuitive idea is illustrated

on Figure 35. Using Haskell-like notation, a scan operation on a matrix in

which the binary associative operator is zipWith � has the same semantics as

transposing the matrix, mapping each of the rows, i.e., former columns, with

scan � and transposing back the result.

In principle, this transformation interchanges the scanT with the inner mapT,

hence ISWIM, with the result that the transformed code can be executed as a

segmented scan [9], i.e., exploiting both levels of parallelism. With scanT on the

outside, we would have to choose between the parallel scanT and the parallel

mapT. Furthermore, pushing the least parallel construct, i.e., scanT, at the

innermost position might reveal a deeper mapT-nest, e.g., if the original scanT

was inside a mapT itself, thus increasing the depth of parallelism. Finally, if the

created mapT nest exhibits enough parallelism, then the scanT can be executed

sequentially rather than in parallel. In this way, the ISWIM transformation is

not solely about enabling fusion, but is worthwhile on its own.

Two fusion rules are defined. One where ISWIM is applied to the producer,

and one where it is applied to the consumer.

soacp
os
 transpose(mapT(scanT(f), {ev1 , . . . , e

v
k}, e

a
1 , . . . , e

a
k))

⇒soacr

soacp
os
 scanT(mapT(f),{ev1 ,...,e

v
k},e

a
1 ,...,e

a
k)

⇒soacr

(Fuse-ISWIM-Consumer)

transpose(mapT(scanT(f), {ev1 , . . . , e
v
k}, e

a
1 , . . . , e

a
k))

os
 soacc

⇒soacr

scanT(mapT(f),{ev1 ,...,e
v
k},e

a
1 ,...,e

a
k)

os
 soacc

⇒soacr

(Fuse-ISWIM-Producer)

ISWIM depends critically on the fusion algorithm being able to fuse through

transpose. There is also a further generalisation for ISWIM, illustrated on

Figure 36, which permits the inner mapT to be arbitrarily nested, but it has not

yet been implemented in the L0 compiler.
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scanT( fn ( [1[...n+1α1]], ..., [1[...n+1αk]] )

( [1[...n+1α1]] x11, ..., [1[...n+1αk]] x1k,

[1[...n+1α1]] x21, ..., [1[...n+1αk]] x2k ) =>

mapTn+1(⊕, x11,..., x1k, x21,..., x2k),

(ne1, ..., nek), a1, ..., ak)

≡
let (..., ret, ...) = (..., mapn+1( replicate(1), net ), ...)

// Replicate dimension n+ 1 of neutral elements so mapT sizes match

let ( y1, ..., yk ) =

mapT(fn ( [1[...n+1α1]], ..., [1[...n+1αk]] )

( [1[...n+1α1]] x1, ..., [1[...n+1αk]] xk ) =>

mapTn(fn (α1, ..., αk)

(α1 e1,...,αk ek,

α1 x1,...,αk xk)

=>scanT(⊕, e1[0],...,ek[0], x1,...,xk),

re1, ..., rek, x1, ..., xk ),

transpose(1,n+1,a1), ..., transpose(1,n+1,ak))

in (transpose(n+1, q1-(n+1), y1), ..., transpose(n+1, qk-(n+1), yk))

// transpose back the result; qt is the dimension of αt

Figure 36: Arbitrary-depth generalisation of ISWIM
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8.4 Fusing A Transposed Producer

While an input program will never contain a producer of the form transpose(k,n,soac),

the ISWIM transformation may create them. To fuse these, we first move the

transpositions to the inputs of the consumer.

We need yet another ancillary judgement:

transpose(k, n, os, es)⇒ es′

This judgement wraps every input in es whose source array is in os in an

(k, n)-transposition, producing es′. It is defined by the following inference rules:

<(e) = v (v ∈ os)
transpose(k, n, os, e)⇒ transpose(k,n,e)

<(e) = v (v /∈ os)
transpose(k, n, os, e)⇒ e

<(e) = v (v ∈ os) transpose(k, n, os, e, es)⇒ es′

transpose(k, n, os, e, es)⇒ transpose(k,n,e), es′

<(e) = v (v /∈ os) transpose(k, n, os, e, es)⇒ es′

transpose(k, n, os, e, es)⇒ e, es′

We can now define a fusion rule. First, we extract the array inputs of the

consumer (not formalised), then transpose those whose source arrays come
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from the producer, producing es′. Finally, we attempt fusion where we have

substituted the original array inputs in the consumer with es′.

Inputs of soacc is es transpose(k, n, os, es)⇒ es′

soacp
os
 soacc with inputs es′

⇒soacr

transpose(k, n, soacp)
os
 soacc

⇒soacr

(Fuse-Transposed-Producer)
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Chapter 9

Hindrance Removal

The fusion algorithm presented in previous chapters assumed an input program

with a structure that made any possibilities for fusion as explicit as possible.

The most obvious such structure is the normalised input program and the use

of tupleless SOACs, but there are other transformations we can do in order to

enable more possibilities for fusion.

In particular, recall that the fusion algorithm is very strict about never

duplicating computation, and hence multiple uses of the output of a SOAC may

easily block any fusion of the SOAC. We call such a use a hindrance, with an

example shown on Figure 37a. In some cases, the hindrances are unavoidable,

but in other cases, a pre-fusion transformation of the program can remove some

unnecessary hindrances.

Section 9.1 will cover cases where we can rewrite size-expressions that ref-

erence a SOAC output. Although primarily concerned with increasing fusibility,

Section 9.1.3 will describe how removing hindrances can also enable hoisting,

particularly of bounds checks. Section 9.2 will describe inlining of index expres-

sions where the index array is the result of a map operation. This inlining may

duplicate a small amount of computation.

An important detail is that neither of the presented transformations should

be considered optimisations per se. Rather, their purpose is enable the fusion

optimisation to apply more often.

Both transformations are run completely independently (and in advance) of

fusion. This results in greater conceptual and technical simplicity, but at some

cost in precision. In particular, the rewriting of size-expressions can in fact

inhibit fusion in some cases.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
let b = map(f, a) in

size(0,b) + reduce(op +, 0, b)

(a) Hindrance blocking fusion

let b = map(f, a) in

size(0,a) + reduce(op +, 0, b)

(b) Hindrance removed

Figure 37: Typical case of size-hindrance
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9.1 Size Hindrance Removal

Consider the program shown on Figure 37. The output of the map producer,

b, is used in two places - as input to a consumer reduce, and as argument to

a size expression. This means that fusing the two SOACs would duplicate

computation, as we be unable to remove the original map expression.

Fortunately, in this case, we can exploit a property of map to rewrite the size

expression. Specifically, the outer size of the array output from a map expression

is equal to the outer size of its array inputs. In the context of Figure 37,

this means that the expression size(0,b) will always give the same value as

size(0,a). Hence, we can rewrite the program as shown on Figure 37(b),

which has now become fusible.

At first glance, removing size hindrances may appear to rarely be useful,

but in fact, it is crucial to making the fusion algorithm perform well in practice.

The reason is that the assertions described in Section 4.2 check the dimensions

of various arrays via size expressions. Hence, after the transformation from

external to internal L0, we will have generated several size expressions, many

of which may act as hindrances to fusion. As an example, consider this simple

program:

fun [int] main([int] a, [int] b) =

let a2 = map(op+(1), a) in

let b2 = map(op+(2), b) in

map(op+, zip(a2, b2))

After transformation to internal L0, we obtain the following (slightly denor-

malised for readability):

fun [int] main([int] a, [int] b) =

let {a2} = mapT(op + (1), a) in

let {b2} = mapT(op + (2), b) in

let a2_sz = size(0, a2) in

let b2_sz = size(0, b2)) in

let zip_assert = assert(a2_sz = b2_sz) in

let {res} = <zip_assert>mapT(op + a2, b2) in

res

Two size-hindrances are present. Since a2 and b2 are the outputs of

mapping over a and b respectively, we can rewrite size(0,a2) to size(0,a)

and size(0,b2) to size(0,b), thus removing the nuisances and turning the

program fusible.

Our chosen approach is quite simple: Traverse the program, and whenever

an expression of the form size(k,v) is encountered, see if it can be rewritten

to a “better” form. In most cases, we will have several alternative expressions

to choose from, and hence we need a way to determine the best replacement.

For our purposes, we will want the expression that has the least chance

of being a hindrance to fusion. As noted in the introduction to this chapter,

hindrance removal is done outside of the fusion module, and hence we do not have

access to precise information about whether a candidate replacement expression
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fun [int] main([int] a) =

let b = map(op + (1), a) in

let c = map(op + (2), b) in

let n = size(0, c) in

let d = map(op + (n), c) in

d

Figure 38: Multiple potential hindrance replacements
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

removes a potential hindrance, or perhaps even moves it. Section 9.1.2 will

describe cases in which moving size-expressions may cause new hindrances to

appear.

It is conceptually simple to generate alternatives to the expression size(k,v).

During traversal of the program, we track the binding of all array-typed variables

in a symbol table mapping variable names to static size information. For

example, after seeing the binding let a = iota(e), we know that size(0,a)

can be rewritten to e. The details of size analysis are described in Section 9.1.1.

However, in some cases there may be several possible replacement expressions,

and we need a way to select the best one.

We define a heuristic determining the quality of a candidate expression e as

follows: For every free variable vi in e, determine the data-flow path from vi
to either a constant or a function parameter. The quality of the expression is

inversely proportional to the number of nodes in this path, exluding nodes that

are simply copies or indexing. That is, the expression with the lowest number

is best. The idea behind this heuristic is to choose the expression that we can

move the furthest up the program, ideally preceding all SOACs.

For example, for the program shown on Figure 38, the hindrance size(0,

c) can be replaced with either size(0, b) or size(0, a). We pick the latter,

because its single free variable can be traced directly to a function parameter

(a), whereas the free variable in the former can only reach a function parameter

through the binding for b.

In the L0 compiler, size hindrance removal is implemented as part of the

Rebinder introduced in Section 6.3. Array sizes are tracked by inspecting

bindings during the traversal of the syntax tree, as described in the next

section. Whenever we encounter a binding of a size-expression, we use the size

information to obtain candidate replacements, then use the quality heuristic to

determine the best replacement.

9.1.1 Size analysis

To aid in rewriting size expressions, the Rebinder maintains a symbol table

mapping variables to size information. The size analysis presented in this

section is an entirely ad hoc mechanism focused solely on the removal of size

nuisances. More sophisticated size analysis, which could be used to optimise

memory allocation in the code generator, is left as a future project.

The size information we store takes the form of a sequence of sets of

expressions, with the set at index i representing the various expressions that

evaluate to the size of that dimension. For example, we may have the following
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mapping in the symbol table:

a 7→ 〈{10}, ∅, {size(0,b), size(1,c)}]

This indicates that the the first dimension of a has size 10, we know nothing

of the second dimension, and the size of the third dimension is equal to the

first dimension of b or the second dimension of c. If the symbol table contains

bindings for b and c, we can look them up recursively and find even more

accurate size information.

If a mapping refers to an array variable with n dimensions, the mapping

may contain less than n sets. This implicitly means that we know nothing (i.e.

∅) about the excess dimensions.

The mappings generated by different bindings are given below. Note that

not all bindings generate a mapping; this means that the symbol table does not

necessarily include size information for all variables in scope.

let a = iota(e)

a 7→ 〈{e}〉

let a = replicate(en, ev)

We know that the number of rows in a is en, but we also know that the

size of dimension d of a will be the size of dimension d+ 1 in ev. This is

reflected in the size binding:

a 7→ 〈{en}, {size(0,ev)}, . . . , {size(n,ev)}〉, where n is the rank of ev.

let {a,b} = split(en, ev)

The semantics of split(en, ev) is that the first returned array contains

the initial en elements, while the remaining size(0,ev)-en are in the the

second returned array. This leads to the following size bindings:

a 7→ 〈{en}, {size(1,ev)}, . . . , {size(n,ev)〉
b 7→ 〈{size(0,ev)− en, en}, {size(1,ev)}, . . . , {size(n,ev)〉
Where n is the rank of ev.

let a = concat(ex, ey)

a 7→ 〈{size(0,ex)+size(0,ey)}, {size(1,ex), size(1,ey)}, . . . , {size(n,ex), size(n,ey)〉,
where n is the rank of ex and ey (the same, according to the type rules of

L0).

let a = b[e0, . . . , en]

a 7→ 〈{size(n+ 1,b)}, . . . , {size(m,b)}〉, where m is the rank of b.

let a = transpose(e)

a 7→ 〈{size(1,e)}, {size(0,e)}, {size(2,e)}, . . . , {size(n,b)}〉, where

n is the rank of b.

let a = b with [...] <- e

a 7→ 〈{size(0,b)}, . . . , {size(n,b)}〉, where n is the rank of b.

let {a1, . . . , ak} = mapT(fn t (p1, . . . , pn) => e, e1, ..., en)

Within the body of the SOAC function (e), the symbol table will map the

parameters to row slices of their corresponding arrays:
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p1 7→ 〈{size(1, e1)}, . . . , {size(m, e1)}〉, where m is the rank of e1.
...

pn 7→ 〈{size(1, en)}, . . . , {size(m, en)}〉, where m is the rank of en.

Additionally, we know by the semantics of mapT that the outer size of any

ai must match the outer size of any ej . This gives rise to the following

mappings:

a1 7→ 〈{size(0, ej) | 1 ≤ j ≤ n}〉.
...

ak 7→ 〈{size(0, ej) | 1 ≤ j ≤ n}〉.

Similar rules apply to the other SOACs, but a few are interesting enough

to be mentioned explicitly.

let {a1, . . . , ak} = mapTd(fn t (p1, . . . , pn) => e, e1, ..., en)

We create the same bindings as above for the function parameters, but the

interesting fact is that since we are dealing with a d-deep mapping, the

outer d dimensions of the output correspond to the outer d dimensions of

the input. This gives rise to the following mappings:

a1 7→ 〈{size(0, ej) | 1 ≤ j ≤ n}, . . . , {size(d, ej) | 1 ≤ j ≤ n}〉.
...

ak 7→ 〈{size(0, ej) | 1 ≤ j ≤ n}, . . . , {size(d, ej) | 1 ≤ j ≤ n}〉.

let {a1, . . . , an} =

scanT(fn t (pv1, . . . , p
v
n, pa1 , . . . , p

a
n) => e, {v1, . . . , vn}, e1, ..., en)

Within the body of the SOAC function (e), the symbol table will map the

parameters to row slices of their corresponding arrays. Additionally, by

the semantics of scanT, we know that the inner size of ei must be equal

to the outer size of vi:

pa1 7→ 〈{size(1, e1), size(0, v1)}, . . . , {size(m, e1), size(m− 1, v1)}〉,
where m is the rank of e1.
...

pan 7→ 〈{size(1, en), size(0, vn)}, . . . , {size(m, en), size(m− 1, vn)}〉,
where m is the rank of en.

Additionally, we also know by the semantics of scanT that the outer size

of any ai must match the outer size of any ej . This gives rise to the

following mappings:

a1 7→ 〈{size(0, ej) | 1 ≤ j ≤ n}〉.
...

an 7→ 〈{size(0, ej) | 1 ≤ j ≤ n}〉.
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There is no rule for the binding of array literals - this is handled by the

constant folder presented in Section 5.3. Furthermore, a size expression

depending on an array literal binding will not ever inhibit fusion.

9.1.2 Accidentally Adding Hindrances

In some cases, our aggressive rewriting of size expressions may in fact create,

rather than remove hindrances. Consider the following program:

let b = map(f, a) in

let c = map2(g, b) in

let k = size(1,c) in

h(k,c)

Here, there is a clear opportunity for fusing the two maps. Note that the

function f is opaque, and we cannot know the size of the arrays it returns. Since

c is the result of a mapmyindu2 operation, the Rebinder can change size(1,c)

to size(1,b), resulting in the following program:

let b = map(f, a) in

let k = size(1,b) in

let c = map2(g, b) in

h(k,c)

The size expression is now a nuisance preventing fusion. One possible

solution, and the one taken in the current L0 compiler, is a preliminary fusion

stage, prior to executing the Rebinder, then run the Rebinder and re-run fusion.

A more precise solution would be to integrate nuisance removal into the fusion

algorithm, but this requires careful engineering in order to keep the resulting

compiler code complexity under control. Alternatively, it may be possible to

tweak the rules in the Rebinder to remove the possibility of creating fusion

hindrances, although this has not been investigated in depth.

9.1.3 Size Hindrance Removal as a Hoisting Enabler

This section has been solely concerned with size nuisance removal as a trans-

formation to enable fusion. However, it is equally useful in enabling hoisting.

Consider the following program:

mapT(fn {[int]} ([int] ar, [int] br) =>

let c = assert(size(0,ar) == size(0,br)) in

mapT<c>(op +, ar, br),

a, b)

Size analysis will reveal that size(0,ar) can be rewritten to size(1,a),

and size(0,br) to size(1,b), which can then be hoisted out of the loop. This

results in the following program:

let c = assert(size(1,ar) == size(1,br)) in

mapT(fn {[int]} ([int] ar, [int] br) =>

mapT<c>(op +, ar, br),

a, b)
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Not only does this result in removing the assertion from the inner loop, but

the result is a perfect map nest, potentially permitting fusion across transpose.

9.2 Inlining of indexing

The fusion algorithm presented in Chapter 7 is very strict about never duplicat-

ing computation, to the point where otherwise beneficial fusion is prevented.

For example, consider this program:

let b = map(f, a) in

reduce(min, b[0], b)

Fusion is not possible, as b is used in multiple places. If duplication of

computation were acceptable, we could rewrite b[0]) as f(a[0]), and get the

following program:

let b = map(f, a) in

reduce(min, f(a[0]), b)

We could then perform map-reduce fusion and obtain a fully fused re-

domap expression. If f is cheap, it is very likely that the small duplication of

computation is worthwhile.

Similarly to size hindrance removal, we can implement this as a transfor-

mation performed before running the fusion algorithm. Specifically, when we

find an expression of form b[i], where b is the result of an expression map(f,

a) and f is cheap (see below), we rewrite b[i] to f(a[i]), essentially inlining

part of the map operation.

A function is considered cheap if its body executes in constant time - notably,

no SOACs. We must also be careful not to inline into a loop, as this would

duplicate more than a constant amount of computation. This implies that every

such instance of inlining at most results in duplicating a constant amount of

work.

86



Part III

Evaluation

87



Chapter 10

Optimisation Results

It is difficult at this point to quantitatively report the impact of fusion and our

other optimisations, because the compiler does not yet produce quality parallel

code. There are three main problems:

1. The optimisation is “incomplete”, in the sense that we are still too con-

servative about duplicating trivial computation. In addition, we have no

heuristics for avoiding fusion in cases where the added memory traffic

becomes a detriment (as outline Section 7.1.3).

2. There is not yet a way to execute L0 code in an efficient manner. The L0

compiler has an interpreter, but its performance characteristics are very

different from parallel hardware – for example, variable bindings carry

great overhead.

The compiler also has a code generator which generates strictly sequential

C code. The resulting C code uses very näıve memory management,

however. In particular it copies arrays very often when executing SOACs,

although this might put the fusion optimisation in a better light, as it

will reduce the number of distinct SOAC expressions in the program.

3. Finally, fusion, which is our primary optimisation, does not really reduce

the number of discrete computation steps necessary to execute the program.

The purpose of our fusion optimisation is to increase parallelism and reduce

the number of discrete GPU kernels, which is not something that will

benefit the sequential code generated by our code generator.

Nevertheless, this chapter presents an evaluating the impact of the fusion

optimisation. This will primarily be in the form of manual inspection of program

structure before and after optimisation, with comments on the quality of the

result. The reader can be assured that said inspection of hundreds of lines of

machine-generated code was enormously tedious.

Six programs will be used for evaluation: three relatively simple, artificial

benchmarks, and three real-world financial programs that have been manually
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translated from C++ to what we consider “idiomatic”L0
1. We present run-time

statistics for these programs in Section 10.1.

The code for the artificial benchmarks can be found in Part IV, as well as

the programs resulting from optimisation, but are summarised here:

P0 Black-Scholes[7] pricing computation. 34 SLOC (Source Lines Of Code -

ignoring comments and blank lines).

P1 Matrix multiplication written in a functional style (i.e, no use of loop and

let-with). 13 SLOC.

P2 Shortest path algorithm written in a functional style. 27 SLOC.

The real world benchmarks are as follows.

R0 A stochastic option pricing engine. The optimisation of this program has

previously been studied in the literature[33]. 344 SLOC.

R1 A program for doing stochastic volatility calibration, i.e., given a set of

(observed) prices of contracts, we identify the parameters of a model

of such prices, as a function of volatility (unknown), time and strikes

(known), and unobserved parameters like alpha, beta, nu, etc.

In this program, the volatility is modelled as a system of continuous

partial differential equations, which are solved via Crank-Nicolson’s finite

differences method[15].

172 SLOC.

R2 A dynamic evolution model method, i.e., genetic algorithm, for calibrating

the interest rate based on a known history of swaption prices.

Briefly, the interest rate is modelled as a sum of two stochastic processes,

which gives four unknown (real) parameters, and in addition the two

processes are assumed correlated as well, i.e., a fifth parameter.

These five (unknown) parameters appear in the formula that computes

the swaption’s price, i.e., numerical integration via hermitian-polynomials

approximation.

The genetic algorithm is used to find the five parameters that best fit the

(known) history of swaption prices.

798 SLOC.

The structure of the artificial benchmarks are shown on Figure 39. P0, being

a straightforward sequence of four maps, fuses well. P1 also fuses well - the main

loop becomes a two-dimensional tmap, with the dot product at each location

being computed in a redomap. Although not visible in the data flow diagram, it

is worth remarking that hoisting has moved all assert expressions (originating

in the use of zip) out of the main loop, which can thus be evaluated with no

bounds checking - or indeed, any branching at all.

1Or at least as much as it makes sense to talk about an “idiomatic” style for a language
whose sole users are also its designers.
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P0 P1 P2
Before After Before After Before After
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Figure 39: Artificial benchmark dataflows, before and after optimisation
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

There is clearly a missed opportunity for fusion, though, the reason for

which becomes clear when we inspect the code around the unfused map:

...

let untuple_13 =

mapT(fn {[[int]]} ([int] param_0_8) =>

// tmp_repl_11 aliases param_0_8

let tmp_repl_11 = replicate(N_2, param_0_8) in

{tmp_repl_11},

x_0) in

let tmp_size_14 = size(2, untuple_13) in

... // untuple_13 is eventually input to main loop.

The size analyser is not smart enough to rewrite the size expression, and

untuple_13 is thus used several times, blocking fusion. The most reasonable

solution is to improve the size analyser, for which a potential approach is

outlined in Section 11.2. P2 suffers from the same problem, although again the

main loop is fully fused.

When illustrating the dataflow for the real-world benchmarks, I performed

some minor simplifications. Specifically, prologue and epilogue code has been

removed in order to emphasise the main loop.

Of the real-world benchmarks, R0, whose dataflow is illustrated on Figure 40,

benefits the most from optimisations. The program is turned into a big redomapT

that runs over an array of a thousand elements. The body of the redomapT

runs three loops in sequence. The two first could in principle be fused, but we

are again foiled by limitations of the size analyser. In this case, the use of an

explicit loop prevents the size analyser from determining the column size of

the two-dimensional array returned by the mapT. The fusion of R0 also requires

fusing across transpose and reshape.

For R1, the gains are more muted. The overall structure is a sequential,

iterative main loop, which of course limits what we can do, but the body of

this loop can in principle be parallelised. The unoptimised and optimised loop
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Figure 40: R0 benchmark dataflow, before and after optimisation
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Figure 41: R1 benchmark dataflow, before and after optimisation
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bodies can be seen on Figure 41. At first sight, two possible avenues for further

fusion are possible:

1. The first mapT could be fused into its two consumers. While this would

surely duplicate computation, perhaps it is worthwhile in this case. Inspect-

ing the code, which is shown in Figure 42, we find that the computation

that would be duplicated for each element is approximately four primitive

arithmetic operations, and two calls to exponent and logarithm functions.

Such duplication would likely be acceptable in this case, as it enables an

instance of fusion.

2. The reason for why the two latter mapTs are not fused is more tricky.

Although not expressed in the diagram, the input to the rightmost mapT is

transposed, and we have no fusion rule capable of handling a transposition

in this case, as neither consumer nor producer is a map nest.

It is not immediately clear how this could be solved.
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mapT(fn {*[real], *[real], *[real], *[real]} (real xi_481) =>

let tmp_call_488 = log(xi_481) in

let bop_493 = 0.5 * tmp_call_488 in

let {soac_v_506, soac_v_507, soac_v_508, soac_v_509} =

mapT(fn {real, real, real, real} (real yj_495) =>

let bop_496 = bop_493 + yj_495 in

let bop_498 = bop_496 - bop_477 in

let val_504 = 2.0 * bop_498 in

let tmp_call_505 = exp(val_504) in

{0.0, tmp_call_505, 0.0, 0.36},

untuple_247) in

{soac_v_506, soac_v_507, soac_v_508, soac_v_509},

untuple_130)

Figure 42: Unfused map in R1
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Figure 43: R2 benchmark dataflow, before and after optimisation
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...

let {soac_v_685, soac_v_686} =

mapT(fn {real, real} (real arg_675, real arg_676, real arg_677, real arg_678) =>

let baix_679 = arg_675 * mux_239 in

{arg_677 * exp(-baix_679),

(arg_678 - baix_679) / arg_676},

soac_v_669, soac_v_670, soac_v_671, soac_v_672) in

let {untuple_690} =

reduceT(fn {real} (real x_687, real y_688) =>

{x_687 + y_688},

{0.0}, soac_v_685) in

let {untuple_695} =

reduceT(fn {real} (real param_0_691, real param_1_692) =>

if param_0_691 < param_1_692

then {param_1_692}

else {param_0_691},

{-10000000000000000000000000000000000000000000000000.0},

soac_v_686) in

...

Figure 44: Unfused loops in R2
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R2 is easily the most complex benchmark, and also the one for which fusion

has the smallest impact on the data flow graph. As shown on Figure 43, the

body of the main loop contains three independent (but near-identical) loops

whose results are combined using a non-fusible series of reductions (summarised

as a single node). The optimised structure is virtually identical: the only

optimisation is a few instances of map-map and map-reduce fusion. However, it

is worth noting that there are instances where we take advantage of our fusion

algorithms ability to fuse just part of the input to a SOAC.

As in R1, each of the three inner loops have a case where multiple uses of

the output of a mapT SOAC prevents us from fusing it into a reduceT. Again,

it is worth inspecting the code to see whether our reluctance to duplicate

computation is again too conservative. The code in question (slightly simplified

for readability) is shown on Figure 44.

Again we see that that a relatively cheap mapT operation cannot be fused

without duplicating computation. This case is particularly interesting, because

the mapT conceptually computes two distinct arrays, with only the computation

of baix_679 (a single multiplication per element) being shared. This structure

was also present in the original program. In a future elaboration of the fusion

algorithm, it may be worthwhile to split SOACs apart to make the representation

of shared computation even more precise.

10.1 Runtime results

The real-world benchmarks were repeatedly passed through the L0 optimisations

until no further optimisation was achieved, then compiled with a code generator

generating sequential C code.

The resulting programs were compiled with GCC 4.8.2 using maximum

93



CHAPTER 10. OPTIMISATION RESULTS

Unoptimised Optimised Speedup
R0 0.430s 0.292s 46%
R1 0.098s 0.057s 71%
R2 0.061s 0.047s 31%

Figure 45: Benchmark runtimes
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optimisation (-O3) on an Intel Core i7-2630QM CPU running at 2.00GHz. Each

program was executed one thousand times and the run-times averaged. The

results are shown on Figure 45

It is hard to determine how much of the speedup is due to fusion in isolation

and how much is due to other optimisations, as they all interact to enable each

other. However, given that the C programs were compiled with full optimisation,

it is likely that the C compiler performed much hoisting and most of our simpler

optimisations itself.

Again, it must be emphasised that most of the speedup is likely due to

the code generator copying all input arrays upon executing a SOAC. With

this behaviour, fusion reducing the number of discrete SOAC expressions will

likewise reduce the number of expensive memory copies.
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Conclusions

This chapter summarises the result of our work. Section 11.1 compares our

fusion algorithm with fusion in other data-parallel programming languages, as

well as looking at other approaches to uniqueness typing. Section 11.2 outlines

a number of possible future improvements to L0 and the compiler. Section 11.3

provides a final summary of the results of this thesis.

11.1 Related Work

Our approach to performining fusion, via rewrite rules, is not unique by itself,

as this is the approach used in e.g. Data-Parallel Haskell [12] (DPH). What

sets us apart is the fact that our rewriting rules are defined on the dataflow

graph, and not the program itself. While DPH obtains good results, its rewrite

rules are quite limited – they are an inherently local view of the program,

and would be unable to cope with limitations in the presence of in-place array

updates, and whether the result of an array operation is used multiple times.

The Glasgow Haskell Compiler itself also bases its list fusion on rewrite rules

and cross-module inlining [23, 17].

The Repa [24] approach to fusion is based on a delayed representation of

arrays, which models an array as a function from index to value. With this

representation, fusion happens automatically through function composition,

although this can cause duplication of work in many cases. To counteract

this, Repa lets the user force an array, by which it is converted from the

delayed representation to a traditional sequence of values. The pull arrays of

Obsidian [14] use a similar mechanism. This approach puts the onus on the

programmer to specify points where the manifestation of arrays is beneficial,

even though this may be a low-level consideration that depends on details of the

target hardware. We therefore consider this a job better suited for the compiler.

Accelerate [29] uses an elaboration of the delayed arrays representation from

Repa, and in particular manages to avoid duplicating work. All array operations

have a uniform representation as constructors for delayed arrays, on which fusion

is performed by tree contraction. Accelerate supports multiple arrays as input

to the same array operation (using a zipWith construct). Although arrays are

usually used at least twice (once for getting the size, once for the data), it does
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not seem that they can handle the difficult case where the output of an array

operation is used as input to two other array operations.

NESL has been extended with a GPU backend [5], for which the authors

note that fusion is critical to the performance of the flattened program. The

NESL approach is to use a form of copy-propagation on the intermediary code,

and lift the resulting functions to work on entire arrays. This approach only

works for what we would term map-map fusion, however.

Our uniqueness attributes have some similarities to the “owning pointers”

found in the impure language Rust [22], albeit there are deep differences. In Rust,

owning pointers are used to manage memory – when an owning pointer goes

out of scope, the memory it points to is deallocated – while we use uniqueness

attributes to handle side effects. In addition, we allow function calls to consume

arrays passed as unique-type parameters, whereas in Rust this causes a deep

copy of the object referenced by the owning pointer.

A closer similarity is found in the pure functional language Clean, which con-

tains a sophisticated system of uniqueness typing [4]. Clean employs uniqueness

typing to re-use memory in cases where a function receives a unique argument,

but also (and perhaps more importantly) to control side effects including arbi-

trary I/O. As in L0, alias analysis is used to ensure that uniqueness properties

are not violated. A notable difference is that the Clean language itself does

not have any facilities for consuming unique objects, apart from specifying a

function parameter as unique, but delegate this to (unsafe) internal functions,

that are exposed safely via the type system. Furthermore, a unique return value

in Clean may alias some of the parameters to the function, which is forbidden

in L0. We have found that this greatly simplifies analysis, and allows it to be

fully intraprocedural.

11.2 Future Work

A very important immediate goal is the implementation of a code generator

targeting GPU execution. Furthermore, a number of other avenues for further

research and development of L0 ae available.

11.2.1 Size Information in Type System

The size analysis presented in Chapter 9 is quite restricted, and was designed

and extended on an ad-hoc basis in order to enable fusion of the real-world

benchmarks. Considering the great importance of accurate size information in

not only doing high-level optimisations, but also generating efficient low-level

code, it appears very worthwhile to integrate tracking of array sizes into the

language itself.

We suggest a type system extension inspired by dependent types, although

much simpler. As an example, let us look at how we would like to be able to

define matrix multiplication:

fun [[int,N],P] matMult([[int,N],M] a, [[int,M],P] b ) =

...
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This function declares that it takes two int array arguments, the first of

size N ×M and the second of size M × P , and returns an integer array of size

N × P . Any caller of matMult must first prove to the type system that the

arguments have the correct size, while matMult itself must prove that its body

always returns an array of the appropriate size.

Such a proof could be provided through a mechanism much like the current

assert, which allows us a sort of “escape hatch” for when we cannot statically

guarantee the size of our data - for example, when it is given to us as input

from the outside world, or the result of a filter. As the current L0 compiler is

already able to optimise and hoist many assertions away, this would be useful

by itself.

However, this would not solve the problem encountered in Chapter 10, when

the inability to transform a size expression prevented fusion in program R0.

The problematic part of R0 has this essential structure (where N is some variable

in scope):

let b = map(fn [real] (int x) =>

let xa = replicate(N,x) in

loop (xa) = for i < N do

let xa = f(xa) // Does not change size of xa

in

xa,

a) in

let n = size(1,b) in

map(g(n), b)

The current ad-hoc size analyser is not smart enough to figure out the inner

size (N) of the array b. Integrating size information into the type system would

allow us to annotate the return type of the anonymous function as follows:

let b = map(fn [real,N] (int x) =>

...,

a) in

...

We now statically promise that the inner size of b will always be N, possibly

backed by an assertion within the body of the map. The intent is that this

promise can be checked by the type-checker. Presumably, for the body of the

function to be type-correct, the function f would have been defined to return

an array of the same size as its input.

It is not yet clear exactly how we should deal with cases where the size of

an array dimension cannot be statically known, or where it is the result of a

complex expression. It is not desirable to support the full power of dependent

types, nor to include a full theorem prover in L0, as this could make it very

cumbersome to use L0 as a compiler target language. In the end, it is important

to remember that our primary motivation is to improve size tracking for the

benefit of optimisation and code generation.
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11.2.2 Improved Aliasing Analysis

The system of uniqueness types presented in Chapter 3 hinges crucially on

tracking potential sharing between arrays. However, the current model of

aliasing is very coarse-grained, as it cannot describe sharing at a more precise

level than entire arrays. For example, assume that we have the following

function:

fun *[int] replace(*[int] arr, int i, int x) =

let arr[i] = x in arr

The result of replace(a,i,x) is the array a with the element at index i

replaced by x. We may want to use this function to replace an element within

a slice of an array, like so1:

let b = a with [j] <- replace(a[j], j, x) in

...

Unfortunately, this code will be refused by the compiler: The call to replace

consumes the array a, because a[j] is aliased with a, yet a is used as the source

in a let-binding. Making a separate binding for the call to replace may make

things more clear:

let r = replace(a[j], j, x) in // Consumes a

let b = a with [j] <- r in

...

As far as the type system is concerned, both the call to replace and the

let-with expression consume the entirety of a, hence causing a compile-time

double-consumption error. The only solution is to use copy:

let r = replace(copy(a[j]), j, x) in // Consumes a

let b = a with [j] <- r in

...

It is clear to us however, that the call to replace only modifies the memory

associated with the jth row of a. Furthermore, when a is next accessed (and

consumed), the jth row is replaced anyway. Thus, it should be possible to

perform this entire operation in O(1) space.

We could of course make a specialised variant of replace for two-dimensional

arrays, but this leads to unnecessary code bloat. Thus, we believe that more

precising tracking of sharing would be worthwhile. The problem is not easy,

however, as the expression for the array index may be arbitrarily complicated.

11.2.3 Array Views

Array indexing in L0 is quite limited - only entire dimensions can be extracted.

With split, we can get slightly more control, but extracting e.g. the inner
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fun [[int]] inner([[int]] a) =

let n = size(0,a) in

let m = size(1,a) in

let {_,a2} = split(1,a) in

let {rows,_} = split(n-2,a2) in

map(fn [int] ([int] row) =>

let {_, row2} =

split(1,row) in

let {res, _} =

split(m-2,row2) in

res,

rows)

(a) L0

def inner(a):

a[1:-1, 1:-1]

(b) Numpy

Figure 46: Removing the outer elements of a 2-dimensional array
..................................................................................

elements of a 2-dimensional array is an enormously clumsy affair, as illustrated

on Figure 46a.

The primary reason for this is that split only slices the outer dimension. In

other systems, such as the Python library Numpy [34], it is comparatively much

simpler to simultaneously slice on every dimension of an array, as illustrated on

Figure 46b.

As an array-oriented programming language, L0 should have similar con-

venient support for slicing arrays. It is not only practical when writing code,

but the resulting slice expressions are much easier to analyse than a dense

expression using size and split.

More radically, many operations in L0 are operationally just transformations

of the index space of an underlying array. Transpositions, reshape, replicate,

and even array indexing, merely provide different views of underlying data.

Thus, perhaps the best solution would be to provide a language construct that

can express this mapping directly. We can envision a syntax like the following:

fun [[int]] transpose([[int]] a) =

arrange a as

size (n,m) => (m,n) // Determine size of output array

elem [i,j] => [j,i] // Map position (i,j) in output to position (j,i) in input

A crucial property is that every element of the output array maps directly

to some element in the input array, which means that at compile time, we can

remove the arrange intermediary and access the original array directly. This

design is very similar to the delayed arrays of Repa [24], which represent arrays

as a function from the index space to the value space. The built-in replicate

could be reformulated as follows:

fun [[[int]]] replicate(int k, [[int]] r) =

arrange r as

1Of course, in this contrived example, we could just use let-with rather than a separate
function.
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size (n,m) => (k,n,m)

elem [i,j,p] => [j,p]

We can also express entirely novel transformations, such as a rearrangement

that repeats every element of its input array twice:

fun [int] dupElem([int] a) =

arrange a as

size (n) => (n)

elem (2*i) => [i]

elem (2*i+1) => [i]

A large potential problem with a construct such as arrange is whether the

compiler will be able to recognise “known” transformations. For example, we

demonstrated in Chapter 8 that the fusion algorithm depends on being able to

recognise and rewrite transpose expressions, which it must be able to do, even

if they are formulated in terms of arrange. Hence, it would be important that

every arrange can be reduced to a canonical form that uniquely represents the

transformation it performs.

11.2.4 Software Engineering

The world already has plenty of papers and theses stuffed with long listings of

Haskell code, and we have therefore tried to shy away from talking too much

about the software architecture of the L0 compiler. While the overall code base

is healthy and well-structured, there are still several instances of technical debt

that should be paid off:

• While the compiler is nicely divided into discrete passes, the order in which

said passes should be invoked is a bit unclear. As it stands, programs are

passed through every pass several times, simply to ensure that they get

optimised fully. This requires some bit of re-engineering, probably also

involving changing some passes (particularly the fusion module) to be less

sensitive as to the shape of the input program.

• For this thesis, L0 has been divided into an external and internal language.

In the compiler, both of these are included in the same abstract syntax

tree definition, with most passes either silently ignoring or loudly crashing

if they encounter a construct that belongs to the external language. This

creates undue complexity, and should be resolved by splitting the language

more clearly, even if the cost is some code duplication (for example, we

might need separate but very similar parsers).

• Somewhat related to the previous issue, the L0 syntax tree definition does

not statically enforce normalisation. Again, compiler passes either ignore

them or crash when an un-normalised term is encountered.

• Many optimisations depend on every variable in the program posessing a

unique name. This property is ensured by tagging each input name with a

unique integer, then passing around a counter that can be used to generate
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fresh, globally unique integers. Unfortunately, many transformations (e.g.

inlining) end up duplicating bits of code, which then have to be entirely

renamed in order to preserve uniqueness. Furthermore, passing the counter

around is cumbersome, even if packaged in a state monad. An alternative

approach to handling name binding, based on de Bruijn indices [28], is

being considered. Such an approach would allow us to get rid of the

counter, while still being able to cheaply avoid unwanted name capture.

11.3 Conclusion

In this master’s thesis, we have presented the design of a pure functional

data-parallel language, with a design that enables both (i) a degree low-level

imperative programming, as well as (ii) supporting high-level structural transfor-

mations such as loop fusion. The language contains a type system for in-place

modification and aliasing of arrays and array slices that ensures referential

transparency, which in turn supports equational reasoning.

Previous work on fusion has taken two main directions: Either fusion is

performed aggressively, and the programmer is provided primitives to inhibit

fusion, for example by forcing array to materialise, or fusion is performed via

rewriting rules on the syntax tree. The latter approach relies tightly on the

inliner engine, and its applicability is limited to the case when each fused array

is consumed by one array combinator.

This thesis has presented a program-level, structural-analysis approach to

fusion that handles the difficult case in which an array produced by a second-

order array combinator (SOAC), such as map, is consumed by several other

SOACs (if the SOAC producer-consumer dependency graph is reducible). This

essentially allows fusion to operates across zip/unzip.

Furthermore, we have shown a compositional algebra for fusion that includes

array combinators, such as map, reduce, filter, scan, and redomap, and other

built-in functions that would otherwise hinder fusion applicability, such as size,

transpose, and reshape. This algebra also includes transformations that in

come cases allow fusion with scan as both consumer and producer.
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P0

fun real horner (real x) =

let {c1,c2,c3,c4,c5} =

{0.31938153,-0.356563782,1.781477937,-1.821255978,1.330274429}

in x * (c1 + x * (c2 + x * (c3 + x * (c4 + x * c5))))

fun real abs (real x) = if x < 0.0 then -x else x

fun real cnd0 (real d) =

let k = 1.0 / (1.0 + 0.2316419 * abs(d)) in

let p = horner(k) in

let rsqrt2pi = 0.39894228040143267793994605993438 in

rsqrt2pi * exp(-0.5*d*d) * p

fun real cnd (real d) =

let c = cnd0(d)

in if 0.0 < d then 1.0 - c else c

fun real go ({bool,real,real,real} x) =

let {call, price, strike, years} = x in

let r = 0.08 in // riskfree

let v = 0.30 in // volatility

let v_sqrtT = v * sqrt(years) in

let d1 = (log (price / strike) + (r + 0.5 * v * v) * years) / v_sqrtT in

let d2 = d1 - v_sqrtT in

let cndD1 = cnd(d1) in

let cndD2 = cnd(d2) in

let x_expRT = strike * exp (-r * years) in

if call then

price * cndD1 - x_expRT * cndD2

else

x_expRT * (1.0 - cndD2) - price * (1.0 - cndD1)

fun [real] blackscholes ([{bool,real,real,real}] xs) =

map (go, xs)
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fun [real] main () =

let days = 5*365 in

let a = map(op+(1), iota(days)) in

let a = map(toReal, a) in

let a = map(fn {bool,real,real,real} (real x) =>

{True, 58.0 + 4.0 * x / toReal(days), 65.0, x / 365.0},

a) in

blackscholes(a)

P0 – optimised

fun [real] main() =

let {untuple_141} =

mapT(fn {real} (int y_0) =>

let val_1 = 1 + y_0 in

let val_2 = toReal(val_1) in

let bop_9 = val_2 / 365.0 in

let bop_10 = 0.08 * bop_9 in

let val_11 = -bop_10 in

let tmp_call_12 = exp(val_11) in

let x_expRT_13 = 65.0 * tmp_call_12 in

let bop_14 = 0.125 * bop_9 in

let tmp_call_15 = sqrt(bop_9) in

let v_sqrtT_16 = 0.3 * tmp_call_15 in

let bop_17 = 4.0 * val_2 in

let bop_60 = bop_17 / 1825.0 in

let bop_61 = 58.0 + bop_60 in

let val_62 = bop_61 / 65.0 in

let tmp_call_63 = log(val_62) in

let bop_64 = tmp_call_63 + bop_14 in

let d1_65 = bop_64 / v_sqrtT_16 in

let bop_66 = d1_65 < 0.0 in

let negate_67 = -d1_65 in

let bop_68 = 0.5 * d1_65 in

let bop_69 = bop_68 * d1_65 in

let val_70 = -bop_69 in

let tmp_call_75 = exp(val_70) in

let bop_76 = 0.3989422804014327 * tmp_call_75 in

let bop_77 = 0.0 < d1_65 in

let d2_78 = d1_65 - v_sqrtT_16 in

let bop_83 = d2_78 < 0.0 in

let negate_84 = -d2_78 in

let bop_85 = 0.5 * d2_78 in

let bop_86 = bop_85 * d2_78 in

let val_87 = -bop_86 in

let tmp_call_88 = exp(val_87) in

let bop_90 = 0.3989422804014327 * tmp_call_88 in
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let bop_91 = 0.0 < d2_78 in

let tmp_bop_94 =

if bop_83

then negate_84

else d2_78 in

let bop_96 = 0.2316419 * tmp_bop_94 in

let bop_97 = 1.0 + bop_96 in

let k_103 = 1.0 / bop_97 in

let bop_108 = k_103 * 1.330274429 in

let bop_109 = -1.821255978 + bop_108 in

let bop_110 = k_103 * bop_109 in

let bop_111 = 1.781477937 + bop_110 in

let bop_112 = k_103 * bop_111 in

let bop_113 = -0.356563782 + bop_112 in

let bop_114 = k_103 * bop_113 in

let bop_115 = 0.31938153 + bop_114 in

let p_116 = k_103 * bop_115 in

let c_117 = bop_90 * p_116 in

let bop_118 = 1.0 - c_117 in

let cndD2_119 =

if bop_91

then bop_118

else c_117 in

let bop_120 = x_expRT_13 * cndD2_119 in

let tmp_bop_121 =

if bop_66

then negate_67

else d1_65 in

let bop_124 = 0.2316419 * tmp_bop_121 in

let bop_125 = 1.0 + bop_124 in

let k_126 = 1.0 / bop_125 in

let bop_127 = k_126 * 1.330274429 in

let bop_128 = -1.821255978 + bop_127 in

let bop_129 = k_126 * bop_128 in

let bop_130 = 1.781477937 + bop_129 in

let bop_131 = k_126 * bop_130 in

let bop_132 = -0.356563782 + bop_131 in

let bop_133 = k_126 * bop_132 in

let bop_134 = 0.31938153 + bop_133 in

let p_135 = k_126 * bop_134 in

let c_136 = bop_76 * p_135 in

let bop_137 = 1.0 - c_136 in

let cndD1_138 =

if bop_77

then bop_137

else c_136 in

let bop_139 = bop_61 * cndD1_138 in
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let bop_140 = bop_139 - bop_120 in

{bop_140},

iota(1825)) in

untuple_141

P1

fun int redplus1( [int] a) = reduce(op +, 0, a)

fun [int] redplus2([[int]] a) = map (redplus1, a)

fun [int] mul1( [int] a, [int] b) = map(op *, zip(a, b))

fun [[int]] mul2([[int]] a, [[int]] b) = map(mul1, zip(a, b))

fun [[int]] replin(int N, [int] a) = replicate(N, a)

fun [[int]] matmultFun([[int]] a, [[int]] b ) =

let N = size(0, a) in

let br = replicate( N, transpose(b) ) in

let ar = map ( replin(N), a ) in

let abr = map (mul2, zip(ar, br)) in

map(redplus2, abr)

fun [[int]] main([[int]] x, [[int]] y) =

matmultFun(x, y)

P1 – optimised

fun [[int]] main([[int]] x_0, [[int]] y_1) =

let tmp_size_2 = size(1, x_0) in

let tmp_size_3 = size(0, y_1) in

let tmp_e_4 = tmp_size_2 = tmp_size_3 in

let zip_assert_5 = assert(tmp_e_4) in

let tmp_size_6 = size(1, y_1) in

let N_13 = size(0, x_0) in

let tmp_e_19 = N_13 = tmp_size_6 in

let zip_assert_27 = assert(tmp_e_19) in

// untuple_45 aliases x_0

let {untuple_45} =

mapT(fn {[int]} ([int] param_0_33) =>

let {untuple_44} =

<zip_assert_27>

mapT(fn {int} ([int] arg_34) =>

let {untuple_43} =

<zip_assert_5>

redomapT(fn {int} (int x_35, int y_36) =>

let val_37 = x_35 + y_36 in

{val_37},
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fn {int} (int x_38, int arg_39, int arg_40) =>

let val_41 = arg_40 * arg_39 in

let val_42 = x_38 + val_41 in

{val_42},

{0}, arg_34, param_0_33) in

{untuple_43},

transpose(y_1)) in

{untuple_44},

x_0) in

untuple_45

P2

fun int MIN(int a, int b) = if(a<b) then a else b

fun [int] min1([int] a, [int] b) = map(MIN, zip(a, b))

fun int redmin1( [int] a) = reduce(MIN, 1200, a)

fun [int] redmin2([[int]] a) = map (redmin1, a)

fun [int] plus1( [int] a, [int] b) = map(op +, zip(a, b))

fun [[int]] plus2([[int]] a, [[int]] b) = map(plus1, zip(a, b))

fun [[int]] replin(int len, [int] a) = replicate(len, a)

fun [[int]] floydSbsFun(int N, [[int]] D ) =

let D3 = replicate( N, transpose(D) ) in

let D2 = map ( replin(N), D ) in

let abr = map(plus2, zip(D3, D2)) in

let partial = map(redmin2, abr) in

map(min1, zip(partial, D) )

fun [[int]] main() =

let arr = [[2,4,5], [1,1000,3], [3,7,1]] in

floydSbsFun(3, arr)

P2 – optimised

fun [[int]] main() =

let arr_0 = [[2, 4, 5],

[1, 1000, 3],

[3, 7, 1]] in

// untuple_37 aliases arr_0

let {untuple_37} =

mapT(fn {[int]} ([int] param_0_1) =>

let {untuple_36} =
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mapT(fn {int} (int arg_2, [int] arg_4) =>

let {untuple_33} =

redomapT(fn {int} (int param_0_5, int param_1_24) =>

let bop_25 = param_0_5 < param_1_24 in

let val_26 =

if bop_25

then param_0_5

else param_1_24 in

{val_26},

fn {int} (int param_0_27, int arg_28,

int arg_29) =>

let val_30 = arg_28 + arg_29 in

let bop_31 = param_0_27 < val_30 in

let val_32 =

if bop_31

then param_0_27

else val_30 in

{val_32},

{1200}, arg_4, param_0_1) in

let bop_34 = untuple_33 < arg_2 in

let val_35 =

if bop_34

then untuple_33

else arg_2 in

{val_35},

param_0_1, transpose(arr_0)) in

{untuple_36},

arr_0) in

untuple_37
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