
ad -heap: an Efficient Heap Data Structure for
Asymmetric Multicore Processors

Weifeng Liu and Brian Vinter

Niels Bohr Institute
University of Copenhagen

Denmark

{weifeng, vinter}@nbi.dk

March 1, 2014

Weifeng Liu and Brian Vinter (NBI) ad-heap (GPGPU-7, Salt Lake City) March 1, 2014 1 / 52



First Section Heap Data Structure Review

Binary heap

Figure: The layout of a binary heap (2-heap) of size 12.

Given a node at storage position i , its parent node is at b(i − 1)/2c, its
child nodes are at 2i + 1 and 2i + 2.

Weifeng Liu and Brian Vinter (NBI) ad-heap (GPGPU-7, Salt Lake City) March 1, 2014 2 / 52



First Section Heap Data Structure Review

d-heaps [Johnson, 1975]

Figure: The layout of a 4-heap of size 12.

For node i , its parent node is at b(i − 1)/dc, its child nodes begin from
di + 1 and end up at di + d .

Weifeng Liu and Brian Vinter (NBI) ad-heap (GPGPU-7, Salt Lake City) March 1, 2014 3 / 52



First Section Heap Data Structure Review

Cache-aligned d-heaps [LaMarca and Ladner, 1996]

Figure: The layout of a cache-aligned 4-heap of size 12.

For node i , its parent node is at b(i − 1)/dc+ offset, its child nodes begin
from di + 1 + offset and end up at di + d + offset, where offset = d − 1 is
the padded head size.

Weifeng Liu and Brian Vinter (NBI) ad-heap (GPGPU-7, Salt Lake City) March 1, 2014 4 / 52



First Section Heap Data Structure Review

Operations on the d-heaps

insert

adds a new node at the end of the heap, increases the heap size to n + 1,
and takes O(logdn) worst-case time to reconstruct the heap property,

delete-max

copies the last node to the position of the root node, decreases the heap
size to n− 1, and takes O(dlogdn) worst-case time to reconstruct the heap
property,

update-key

updates a node, keeps the heap size unchanged, and takes O(dlogdn)
worst-case time to reconstruct the heap property.

Weifeng Liu and Brian Vinter (NBI) ad-heap (GPGPU-7, Salt Lake City) March 1, 2014 5 / 52



First Section Heap Data Structure Review

Update-key operation on the root node (step 0)

Figure: Initial status.

Weifeng Liu and Brian Vinter (NBI) ad-heap (GPGPU-7, Salt Lake City) March 1, 2014 6 / 52



First Section Heap Data Structure Review

Update-key operation on the root node (step 1)

Figure: Update the value of the root node. Then the heap property on the level-1
and level-2 might be broken.

Weifeng Liu and Brian Vinter (NBI) ad-heap (GPGPU-7, Salt Lake City) March 1, 2014 7 / 52



First Section Heap Data Structure Review

Update-key operation on the root node (step 2)

Figure: Find the maximum child node of the updated parent node.

Weifeng Liu and Brian Vinter (NBI) ad-heap (GPGPU-7, Salt Lake City) March 1, 2014 8 / 52



First Section Heap Data Structure Review

Update-key operation on the root node (step 3)

Figure: Compare, and swap if the max child node is larger than its parent node.
Then the heap property on the level-2 and level-3 might be broken.

Weifeng Liu and Brian Vinter (NBI) ad-heap (GPGPU-7, Salt Lake City) March 1, 2014 9 / 52



First Section Heap Data Structure Review

Update-key operation on the root node (step 4)

Figure: Find the maximum child node of the updated parent node.

Weifeng Liu and Brian Vinter (NBI) ad-heap (GPGPU-7, Salt Lake City) March 1, 2014 10 / 52



First Section Heap Data Structure Review

Update-key operation on the root node (step 5)

Figure: Compare, and swap if the max child node is larger than its parent node.
Then no more child node, heap property reconstruction is done.

Weifeng Liu and Brian Vinter (NBI) ad-heap (GPGPU-7, Salt Lake City) March 1, 2014 11 / 52



First Section Heap Data Structure Review

Update-key operation on the root node (step 6)

Figure: Final status.

Weifeng Liu and Brian Vinter (NBI) ad-heap (GPGPU-7, Salt Lake City) March 1, 2014 12 / 52



First Section Heap Data Structure Review

Unroll the above update-key operation

Step 1: update the root node

Step 2: find-maxchild

Step 3: compare-and-swap

Step 4: find-maxchild

Step 5: compare-and-swap

Step 6: heap property satisfied, return

Weifeng Liu and Brian Vinter (NBI) ad-heap (GPGPU-7, Salt Lake City) March 1, 2014 13 / 52



Second Section When Heaps Met GPUs

Running d-heaps on GPUs?

Weifeng Liu and Brian Vinter (NBI) ad-heap (GPGPU-7, Salt Lake City) March 1, 2014 14 / 52



Second Section When Heaps Met GPUs

The above update-key operation on GPUs

Given a 32-heap running in a thread-block (or work-group) of size 32
threads (or work-items).

Step 1: update the root node

Weifeng Liu and Brian Vinter (NBI) ad-heap (GPGPU-7, Salt Lake City) March 1, 2014 15 / 52



Second Section When Heaps Met GPUs

The above update-key operation on GPUs

Given a 32-heap running in a thread-block (or work-group) of size 32
threads (or work-items).

Step 1: update the root node

Step 2: find-maxchild (parallel reduction)

Weifeng Liu and Brian Vinter (NBI) ad-heap (GPGPU-7, Salt Lake City) March 1, 2014 16 / 52



Second Section When Heaps Met GPUs

The above update-key operation on GPUs

Given a 32-heap running in a thread-block (or work-group) of size 32
threads (or work-items).

Step 1: update the root node

Step 2: find-maxchild (parallel reduction)

Step 3: compare-and-swap

Weifeng Liu and Brian Vinter (NBI) ad-heap (GPGPU-7, Salt Lake City) March 1, 2014 17 / 52



Second Section When Heaps Met GPUs

The above update-key operation on GPUs

Given a 32-heap running in a thread-block (or work-group) of size 32
threads (or work-items).

Step 1: update the root node

Step 2: find-maxchild (parallel reduction)

Step 3: compare-and-swap

Step 4: find-maxchild (parallel reduction)

Weifeng Liu and Brian Vinter (NBI) ad-heap (GPGPU-7, Salt Lake City) March 1, 2014 18 / 52



Second Section When Heaps Met GPUs

The above update-key operation on GPUs

Given a 32-heap running in a thread-block (or work-group) of size 32
threads (or work-items).

Step 1: update the root node

Step 2: find-maxchild (parallel reduction)

Step 3: compare-and-swap

Step 4: find-maxchild (parallel reduction)

Step 5: compare-and-swap

Weifeng Liu and Brian Vinter (NBI) ad-heap (GPGPU-7, Salt Lake City) March 1, 2014 19 / 52



Second Section When Heaps Met GPUs

The above update-key operation on GPUs

Given a 32-heap running in a thread-block (or work-group) of size 32
threads (or work-items).

Step 1: update the root node

Step 2: find-maxchild (parallel reduction)

Step 3: compare-and-swap

Step 4: find-maxchild (parallel reduction)

Step 5: compare-and-swap

Step 6: heap property satisfied, return

Weifeng Liu and Brian Vinter (NBI) ad-heap (GPGPU-7, Salt Lake City) March 1, 2014 20 / 52



Second Section When Heaps Met GPUs

Pros and Cons

Pros – why we want GPUs?

Run much faster find-maxchild using parallel reduction

Load continuous child nodes with few memory transactions (coalesced
memory access)

Shallow heap can accelerate insert operation

Cons – why we hate them?

Run slow compare-and-swap using only one single weak thread

Other threads have to wait for a long time due to single-thread
high-latency off-chip memory access

Weifeng Liu and Brian Vinter (NBI) ad-heap (GPGPU-7, Salt Lake City) March 1, 2014 21 / 52



Third Section Asymmetric Multicore Processors

Emerging Asymmetric Multicore Processors (AMPs)

Weifeng Liu and Brian Vinter (NBI) ad-heap (GPGPU-7, Salt Lake City) March 1, 2014 22 / 52



Third Section Asymmetric Multicore Processors

The block diagram of an AMP used in this work

The chip consists of four major parts:

a group of Latency Compute Units (LCUs) with caches,

a group of Throughput Compute Units (TCUs) with shared command
processors, scratchpad memory and caches,

a shared memory management unit, and

a shared global DRAM

Weifeng Liu and Brian Vinter (NBI) ad-heap (GPGPU-7, Salt Lake City) March 1, 2014 23 / 52



Third Section Asymmetric Multicore Processors

Heterogeneous System Architecture (HSA): a step forward

Main features in the current HSA design:

the two types of compute units share unified memory address space

no data transfer through PCIe link
large pageable memory for the TCUs
much more efficient LCU-TCU interactions due to coherency

fast LCU-TCU synchronization mechanism

user-mode queueing system
shared memory signal object
much lighter driver overhead

Weifeng Liu and Brian Vinter (NBI) ad-heap (GPGPU-7, Salt Lake City) March 1, 2014 24 / 52



Third Section Asymmetric Multicore Processors

Leveraging the AMPs?

A direct way is to exploit task, data and pipeline parallelism in the two
types of cores.

But, we still have two questions:

Whether or not the AMPs can expose fine-grained parallelism in
fundamental data structure and algorithm design?

Can new designs outperform their conventional counterparts plus the
coarse-grained (task, data and pipeline) parallelization?

Weifeng Liu and Brian Vinter (NBI) ad-heap (GPGPU-7, Salt Lake City) March 1, 2014 25 / 52



Fourth Section ad-heap

ad -heap data structure

We propose ad-heap (asymmetric d-heap), a new heap data structure that
can obtain performance benefits from both of the two types of cores.

The ad-heap data structure introduces a new component – a bridge
structure, located in the originally empty head part of the d-heap. The
bridge consists of one node counter and one sequence of size 2h, where h
is the height of the heap.

Figure: The layout of the ad-heap data structure.

Weifeng Liu and Brian Vinter (NBI) ad-heap (GPGPU-7, Salt Lake City) March 1, 2014 26 / 52



Fourth Section ad-heap

Update-key operation on the root node (step 0)

Figure: Initial status.

Weifeng Liu and Brian Vinter (NBI) ad-heap (GPGPU-7, Salt Lake City) March 1, 2014 27 / 52



Fourth Section ad-heap

Update-key operation on the root node (step 1)

Figure: An LCU updates the value of the root node. Then the heap property on
the level-1 and level-2 might be broken, so we issue an LCU → TCU call.

Weifeng Liu and Brian Vinter (NBI) ad-heap (GPGPU-7, Salt Lake City) March 1, 2014 28 / 52



Fourth Section ad-heap

Update-key operation on the root node (step 2)

Figure: An invoked TCU initializes the bridge in its scratchpad memory, finds the
maximum child node of the updated parent node.

Weifeng Liu and Brian Vinter (NBI) ad-heap (GPGPU-7, Salt Lake City) March 1, 2014 29 / 52



Fourth Section ad-heap

Update-key operation on the root node (step 3)

Figure: The TCU compares, and updates node counter, saves the parent node
position and the max child node value to the on-chip bridge, if the max child
node is larger than its parent node. Then the heap property on the level-2 and
level-3 might be broken.

Weifeng Liu and Brian Vinter (NBI) ad-heap (GPGPU-7, Salt Lake City) March 1, 2014 30 / 52



Fourth Section ad-heap

Update-key operation on the root node (step 4)

Figure: The TCU finds the maximum child node of the updated parent node.

Weifeng Liu and Brian Vinter (NBI) ad-heap (GPGPU-7, Salt Lake City) March 1, 2014 31 / 52



Fourth Section ad-heap

Update-key operation on the root node (step 5)

Figure: The TCU compares, and updates node counter, saves the parent node
position and the max child node value to the bridge, if the max child node is
larger than its parent node.

Weifeng Liu and Brian Vinter (NBI) ad-heap (GPGPU-7, Salt Lake City) March 1, 2014 32 / 52



Fourth Section ad-heap

Update-key operation on the root node (step 6)

Figure: The TCU updates node counter and saves the child node position and the
parent node value to the bridge, due to no more child node and the heap property
reconstruction is done.

Weifeng Liu and Brian Vinter (NBI) ad-heap (GPGPU-7, Salt Lake City) March 1, 2014 33 / 52



Fourth Section ad-heap

Update-key operation on the root node (step 7)

Figure: The TCU dumps the bridge from the scratchpad memory to the global
memory. Then we issue an TCU → LCU call.

Weifeng Liu and Brian Vinter (NBI) ad-heap (GPGPU-7, Salt Lake City) March 1, 2014 34 / 52



Fourth Section ad-heap

Update-key operation on the root node (step 8)

Figure: An invoked LCU reads each key-value pair, saves the value to its final
position. Then all entries are up-to-date.

Weifeng Liu and Brian Vinter (NBI) ad-heap (GPGPU-7, Salt Lake City) March 1, 2014 35 / 52



Fourth Section ad-heap

Update-key operation on the root node (step 9)

Figure: Final status.

Weifeng Liu and Brian Vinter (NBI) ad-heap (GPGPU-7, Salt Lake City) March 1, 2014 36 / 52



Fourth Section ad-heap

Largely reduced TCU off-chip cost

Using the ad-heap, the number of the TCU off-chip memory access needs
hd/w + (2h + 1)/w transactions, instead of h(d/w + 1) in the d-heap,
where h is the heap height and w is warp size.

For example, given a 7-level 32-heap and set w to 32, the d-heap needs 14
off-chip memory transactions while the ad-heap only needs 8.

Weifeng Liu and Brian Vinter (NBI) ad-heap (GPGPU-7, Salt Lake City) March 1, 2014 37 / 52



Fifth Section Performance Evaluation

ad -heap simulator (before the HSA tools are ready)

The simulator pre-executes a d-heap based workload, counts the numbers
of all kinds of operations, then run the same workload on real CPU-GPU
systems.

The AMP queueing system is simulated by DKit C++ Library and Boost
C++ Libraries.

Weifeng Liu and Brian Vinter (NBI) ad-heap (GPGPU-7, Salt Lake City) March 1, 2014 38 / 52



Fifth Section Performance Evaluation

Testbeds

System Machine 1 Machine 2

CPU AMD A6-1450 APU Intel Core i7-3770
CPU cores 4 cores/1.0 GHz 4 cores/3.4 GHz
GPU AMD Radeon HD 8250 nVidia GeForce GTX 680
GPU SIMD units 128 Radeon cores 1536 CUDA cores
ad-heap simulator C++ and OpenCL C++ and CUDA

Table: The Machines Used in Our Experiments

Weifeng Liu and Brian Vinter (NBI) ad-heap (GPGPU-7, Salt Lake City) March 1, 2014 39 / 52



Fifth Section Performance Evaluation

Benchmark and Datasets

Benchmark: a heap-based batch k-selection algorithm that finds the kth
smallest entry from each of the sub-lists in parallel. One of its applications
is batch kNN search in large-scale concurrent queries.

We set sizes of the list sets to 225 and 228 on the two machines,
respectively, data type to 32-bit integer (randomly generated), size of each
sub-list to the same length l (from 211 to 221), and k to 0.1l .

Weifeng Liu and Brian Vinter (NBI) ad-heap (GPGPU-7, Salt Lake City) March 1, 2014 40 / 52



Fifth Section Performance Evaluation

Performance results of the Machine 1

Figure: d = 8

Weifeng Liu and Brian Vinter (NBI) ad-heap (GPGPU-7, Salt Lake City) March 1, 2014 41 / 52



Fifth Section Performance Evaluation

Performance results of the Machine 1

Figure: d = 16

Weifeng Liu and Brian Vinter (NBI) ad-heap (GPGPU-7, Salt Lake City) March 1, 2014 42 / 52



Fifth Section Performance Evaluation

Performance results of the Machine 1

Figure: d = 32

Weifeng Liu and Brian Vinter (NBI) ad-heap (GPGPU-7, Salt Lake City) March 1, 2014 43 / 52



Fifth Section Performance Evaluation

Performance results of the Machine 1

Figure: d = 64

Weifeng Liu and Brian Vinter (NBI) ad-heap (GPGPU-7, Salt Lake City) March 1, 2014 44 / 52



Fifth Section Performance Evaluation

Performance results of the Machine 1

Figure: aggregated results

Weifeng Liu and Brian Vinter (NBI) ad-heap (GPGPU-7, Salt Lake City) March 1, 2014 45 / 52



Fifth Section Performance Evaluation

Performance results of the Machine 2

Figure: d = 8

Weifeng Liu and Brian Vinter (NBI) ad-heap (GPGPU-7, Salt Lake City) March 1, 2014 46 / 52



Fifth Section Performance Evaluation

Performance results of the Machine 2

Figure: d = 16

Weifeng Liu and Brian Vinter (NBI) ad-heap (GPGPU-7, Salt Lake City) March 1, 2014 47 / 52



Fifth Section Performance Evaluation

Performance results of the Machine 2

Figure: d = 32

Weifeng Liu and Brian Vinter (NBI) ad-heap (GPGPU-7, Salt Lake City) March 1, 2014 48 / 52



Fifth Section Performance Evaluation

Performance results of the Machine 2

Figure: d = 64

Weifeng Liu and Brian Vinter (NBI) ad-heap (GPGPU-7, Salt Lake City) March 1, 2014 49 / 52



Fifth Section Performance Evaluation

Performance results of the Machine 2

Figure: aggregated results

Weifeng Liu and Brian Vinter (NBI) ad-heap (GPGPU-7, Salt Lake City) March 1, 2014 50 / 52



Sixth Section Conclusion

Conclusion

We proposed ad-heap, a new efficient heap data structure for the AMPs,
and obtained up to 1.5x and 3.6x performance of the optimal scheduling
method on two representative machines, respectively.

The performance numbers also showed that redesigning data structure and
algorithm is necessary for exposing higher computational power of the
AMPs.

We are looking forward to running ad-heap on real HSA programming
tools but not simulators.

Weifeng Liu and Brian Vinter (NBI) ad-heap (GPGPU-7, Salt Lake City) March 1, 2014 51 / 52



Sixth Section Conclusion

Thanks!

Questions?

Weifeng Liu and Brian Vinter (NBI) ad-heap (GPGPU-7, Salt Lake City) March 1, 2014 52 / 52


	First Section
	Heap Data Structure Review

	Second Section
	When Heaps Met GPUs

	Third Section
	Asymmetric Multicore Processors

	Fourth Section
	ad-heap

	Fifth Section
	Performance Evaluation

	Sixth Section
	Conclusion


