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Abstract

This paper presents and evaluates a novel second-order operator,
named redomap, that stems from map-reduce compositions in
the context of the purely-functional array language Futhark, which
is aimed at efficient GPGPU execution. Main contributions are:
First, we demonstrate an aggressive fusion technique that is cen-
tered on the redomap operator. Second, we present a compila-
tion technique for redomap that efficiently sequentializes the ex-
cess parallelism and ensures coalesced access to global memory,
even for non-commutative reduce operators. Third, a detailed per-
formance evaluation shows that Futhark’s automatically generated
code matches or exceeds performance of hand-tuned Thrust code.

Our evaluation infrastructure is publicly available and we en-
courage replication and verification of our results.

Categories and Subject Descriptors D.1.3 [Concurrent Pro-
gramming]: Parallel Programming; D.3.4 [Processors]: Compiler

Keywords GPGPU, map-reduce, autoparallelization, functional
language

1. Introduction

Commodity many-core hardware is now mainstream, driven in par-
ticular by the evolution of general purpose graphics programming
units (GPGPUs) that support thousands of cores, but commodity
programming is still falling short of efficiently utilizing this hard-
ware: Principal reasons are that low-level programming APIs, such
as CUDA and OpenCL, are difficult to use and the translation of a
sequential program is quite tedious and requires specialized users.

For example, the implementation of parallel reduce and scan
operators is not only algorithmically challenging, but also requires
efficient use of the fast memory and barrier synchronizations. Li-
braries that provide generic implementations of common bulk-
parallel operators, such as Thrust [18], enhance programmability,
but at cost in performance, for example because:

1 A “naive” translation might not take advantage of the way in
which, for example, map and reduce operators may be effi-
ciently composed, and

2 Even when the library supports a wealth of such combined
operators and the expert user take full advantage of those, per-
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formance still remains sub-optimal due to generality-related
constraints, e.g., the reduce operator requires an array-of-
tuples representation, which results in less-coalesced accesses
to global memory than a tuple-of-arrays representation would.

This context opens the door for data-parallel array languages [3,
15, 20] to emerge as the mainstream environment for programming
massively-parallel hardware. In essence:

1 the non-specialist user is encouraged to “naively” write the
application in its clearest form, in terms of a small and easy to
understand set of simple operators, such as map, reduce, which

2 are optimized automatically by compiler analysis that scales
to program-level to reach efficiencies that outperform highly-
tuned code that relies on generic parallel libraries.

This paper analyses in detail the simple but common, hence
important, case of map-reduce composition in the context of
Futhark [17]: a purely-functional array language that supports
nested parallelism on regular multidimensional arrays. We remark
that Futhark adopts a non-restricted semantics for the map and
reduce operators, for example (i) the mapped function may re-
ceive an array argument and return an array, and (ii) the reduce
operator is arbitrary (user defined), may be only associative or also
commutative, and its supported input type may be a tuple of scalars
or even arrays in some cases. The contributions of this paper are:

First, we demonstrate in Section 3 how map and reduce oper-
ators are composed aggressively (at all nest-levels in the program)
by a combination of producer-consumer and horizontal fusion. The
result of fusion is an operator, named redomap, that is not exposed
to the user language because (i) its semantics is non-trivial/non-
intuitive, and (ii) because in all map-reduce examples we encoun-
tered so far the compiler reliably fuses such compositions.

Second, we present in Section 4 how the high-level operator is
translated to a lower-level representation in a manner that optimizes
both (i) efficient sequentialization of the parallelism in excess,
and (ii) coalesced access to global memory, which in particular
may have appeared as an artifact of efficient sequentialization.
Intuitively, the latter is achieved by reshaping the array to have an
inner dimension of the sequential-chunk size, and by transposing
this dimension to the outermost level.

Third, we present in Section 5 a detailed evaluation of perfor-
mance results on a mini-benchmark that demonstrate that the au-
tomatically optimized Futhark code outperforms tuned Thrust pro-
grams by a geometric-mean factor of 1.75× (and as high as 8×).

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:
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q̄(n) ::= q1, . . . , qn (notation)
s, x ::= id (variable names, s for scalar)
k ::= Ct | [k1, . . . , kn] (scalar or array value)
z ::= id | Ct (variable name or constant)
g, h ::= id (function names)
p ::= τ1 x1 (typed variable)

t ::= int | bool | f32 | f64 (basic types)
τ ::= t | [τ, s] (size-dep array types)
ρ ::= (τ1, . . . , τn) (tuple (of arrays) types)
φ ::= ρ1 → ρ2 (fun/lambda type)

l ::= fn t̄(n) (p̄(m)) => e (anonymous fun)

e ::= z (Variable or Value)

| (ȳ(n)) (n-tuple exp)
| x[y1, ..., yn] (array indexing)
| y1 ⊙ y2 (binop-call)
| g(ȳ) (function-call)
| if s then e1 else e2 (if binding)
| let ( p̄ ) = e1 in e2 (let-binding)
| iota(s) ([0,. . . , s− 1])

| map(l, x̄(n)) (n-ary map)

| reduce(l, z̄(n), x̄(n)) (reduce with n-ary op)

| scan(l, z̄(n), x̄(n)) (scan with n-ary op)
| x with [s1,...,sn] <- y (in-place update)

| loop (p̄(n) = ȳ(n)) = (sequential do-loop)

for s < S do e (next iter p̄(n)← e)

P ::= fun ρ g(p) = e; P | ǫ (named function def)

Figure 1: Syntax of a Subset of Futhark’s Core Language.

2. A Brief and Informal Introduction to Futhark

Futhark1 is a monomorphic, statically typed, eagerly evaluated,
pure functional language, in which nested parallelism is expressed
via a set of second-order array combinators (SOACs), e.g., map,
reduce, scan, filter, and which aims at efficient execution on
GPGPUs. Figure 1 presents the abstract syntax of a subset of the
Futhark core language, which is a restricted language used inter-
nally by the compiler. Whenever q is an object of some kind, we

write q̄(n) (or simply q̄) to range over sequences of n objects of
that kind, that is, q1, . . . , qn. Important details are:

• Similarly to the A-normal form representation [26], operands
of compound expressions must be variables or values.

• The keyword in is optional before let (this is solely for aes-
thetic reasons).

• The source Futhark language uses the traditional array-of-tuples
representation, supporting zip/unzip operators and in which,
for example, map receives exactly one array argument.

• However, as shown in Figure 1, the core language does not sup-
port tuples because the program is (automatically) normalized
to the tuple-of-arrays form. As a result, SOACs such as map take
as input several arrays, and results in several arrays; our map
can be seen as implicitly zipping its input and unzipping its
output. This transformation is automatically performed early on
in the compilation process, using a traditional array-of-tuples to
tuple-of-array transformation [4].

• For any array variable defined in a let-binding pattern, its type
is parameterised with the exact shape information, i.e., at array-

1 The language is named after the first six letters of the runic alphabet, (i.e.,
“Fuþark”). The filter operator is not covered in this paper.

loop ( ( x1 , . . . , xn ) =
( a1 , . . . , an ) ) =

f o r i < n do

g ( i , x1 , . . . , xn )

- - E q u i v a l e n t t o :

f ( 0 , n , a1 , . . . , an )

⇒

- - E q u i v a l e n t f u n c t i o n

fun t f ( i n t i
, i n t n
, t 1 x1

. . . , t n xn ) =
i f i >= n then x
e l s e f ( i +1 , n , g ( i , x1 , . . . , xn ) )

Figure 2: Loop to recursive function

creation point. For example, [[int,m],n] denotes a two-
dimensional n × m array of integers, where n and m must
be constants or integer variables in scope.

• All arrays must be regular, that is, all rows of an array must have
the same shape. For example array [[4],[1.0]] is illegal; this
is mostly verified through run-time checks.

• Futhark supports sequential do-loops, whose semantics is
equivalent to a simple form of tail-recursive functions, as illus-
trated in Figure 2. The do-loop construct enables several impor-
tant optimizations such as aggressive hoisting and map-loop
interchange (outside the scope of this paper). The latter may
significantly enhance the amount of parallelism that can be
statically extracted.

The compiler performs producer-consumer and horizontal fu-
sion, which is demonstrated in Section 3 in the simple(r) case
of map-reduce compositions. Fusion is followed by extraction
of flat-parallel kernels suitable for translation to GPU code. This
step resembles the loop distribution performed by imperative ap-
proaches. Ultimately, several key lower-level optimizations are per-
formed, such as changing the in-memory representation of arrays
via transposition to promote coalesced accesses2 to global GPGPU

memory.

3. Redomap: Type, Semantics and Fusion Rules

The Futhark source language does not support the redomap
second-order array combinator (SOAC), because this is synthesized
automatically by fusion from map-reduce compositions.

In previous work [17] we have proposed an aggressive tech-
nique for fusing producer-consumer SOACs, without duplicating
computation, even when the produced array is used in several
places. Semantically, this is achieved by a bottom-up traversal of
program’s dependency graph, in which SOACs are fused whenever a
T2 reduction is possible (i.e., a SOAC can be fused if it is the source
of only one dependency edge, and the target of the dependence is
another (compatible) SOAC). The technique was further refined to
solve some hindrances to fusion, for example, to move interven-
ing transpositions before/after the fused kernel and to interchange
an outer reduce with an inner map in order to create more fusion
opportunities.

Using a Haskell notation, the redomap construct was inspired
by the following rewriting of a map-reduce composition:
red ⊙ e . map f ≡ red ⊙ e . map (red ⊙ e . map f) .splitp
≡ red ⊙ e . map (foldl g e) . splitp ≡ redomap ⊙ g e

• the input array is split into a number of chunks that roughly
equals the number of available processors

• each processor efficiently sequentializes the computation on its
chunk by rewriting the inner (red ⊙ e) . (map f) as foldl g e,

• and finally, the partial results are reduced across processors.

2 Coalesced access requires that neighboring threads access neighboring
memory words in a SIMD instruction.
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As such, in previous work, redomap had type:
redomap:: (α→ α→ α)→ (α→ β → α)→ α→ [β] → α
in which the first argument is a binary associative operator (⊙), the
second is the folded function (g), the third is the neutral element
(e) of the group induced by ⊙, and the fourth is the input array.

The result type of redomap is α, that is, the result (and input)
type of the binary associative operator ⊙. This is a significant re-
striction because, for example, it does not allow fusing the follow-
ing code:

l e t x = map ( f , a )
l e t r = reduce ( + , 0 . 0 , x )
in ( r , x )

If the result of the map is used outside of the reduce then they
cannot be fused because redomap’s type disallows the return of x.

Another significant restriction of the previous work was that
horizontal fusion was not supported. The remaining of this section
discusses our solution to solving the (two) observed limitations.

3.1 Extended Redomap: Type and Semantics

Denoting with z̄(n) the sequence z1, . . . , zn, the type of the
redomap (in the Futhark core language) was extended to:

( ((ᾱ(p), ᾱ(p))→ ᾱ(p)), ((ᾱ(p), β̄(q))→ (ᾱ(p), γ̄(r))),
ᾱ(p), [β1, n], . . . , [βq, n] ) → (ᾱ(p), [γ1, n], . . . , [γr, n])

1st argument is a binary associative operator, of type (ᾱ(p), ᾱ(p))→
ᾱ(p), where ᾱ(p) intuitively denotes a tuple of p elements,

2nd argument is the folded function g of type: ((ᾱ(p), β̄(q)) →
(ᾱ(p), γ̄(r))), That is, it receives the accumulator of type ᾱ(p)

and an arbitrary number q of (array) elements β̄(q) and produces

a new accumulator ᾱ(p) and an arbitrary number r of (array)

elements γ̄(r)

3rd argument is the neutral element of type ᾱ(p),

• The remaining arguments are q arrays of equal-size outermost
dimension n (i.e., [β1, n], . . . , [βq, n]).

• The result has two components: (i) the reduced part of type

ᾱ(p), and (ii) the mapped part [γ1, n], . . . , [γr, n] which corre-
sponds to r arrays of outermost size equal to n whose elements
were produced by each invocation of g.

The semantics of redomap is:

redomap(⊕, g, ē(p), b̄(q)) ≡ let (ā(p), c̄(r)) = map(g, b̄(q))
in (reduce(⊕, ē(p), ā(p)), c̄(r))

except that in practice it is executed very similar to the OPENMP-
style parallel loop with reduction pragmas. That is, each processor
computes a partial accumulator from a chunk of the mapped arrays,
and the partial accumulators are then reduced across processors.

3.2 Horizontal Fusion

The extension of the redomap operator opened the door to elimi-
nating two important limitations of the previous fusion engine:

First, fusion is allowed between two SOACs belonging to the
same block of let statements even if the array produced by the first
SOAC is used after the second3, i.e., as long as there is no unfused
use of first SOAC’s result array in between the two SOACs.

For example, even though in the code below x is used in the
result:

l e t x = map ( f , a ) in

l e t r = reduce ( + , 0 . 0 , x )
in ( r , x )

the reduce and the map are safely fused into:

3 This can be further relaxed by using a dependency-graph representation
of block of let statements.

l e t ( x , r )= redomap ( +
, fn ( f32 , f32 ) ( f32 e , f32 a ) =>

l e t x = f ( a ) in ( e+x , x )
, 0 . 0 , a )

in ( r , x )

Second, we allow horizontal fusion (i.e., when the two SOACs
are not in a producer-consumer relation), whenever the two SOACs
belong to the same block of let statements, their outermost sizes
are equal, and as before, there is no (unfused) use of the result array
in between the two SOACs. For example:

l e t x = reduce ( + , 0 . 0 , a )
l e t y = reduce (∗ , 1 . 0 , a )

is fused horizontally as:

l e t ( x , y )= reduce ( fn ( f32 , f32 ) ( f32 x1 , f32 y1 ,
f32 x2 , f32 y2 ) =>

l e t r1 = x1 + x2
l e t r2 = y1 ∗ y2
in ( r1 , r2 )

, 0 . 0 , a , a )

3.3 Demonstrating Redomap Fusion

Figure 3 demonstrates the fusion engine on a contrived example
whose structure resembles code from FinPar’s Interest-Rate Cali-
bration benchmark [1]. The original code is presented at the top,
and reduceComm denotes a reduce in which the binary operator
is declared to be also commutative (besides being associative). The
previous fusion implementation would have succeeded in fusing
the first three maps, denoted (7 − 9), but not the remaining SOACs
(1− 6). The rest of the figure demonstrates the enhanced fusion:

Step I: Since fusion proceeds bottom up, the last two maps, de-
noted (1) and (2) are fused horizontally, resulting in the map
denoted (10), which receives two array arguments x and y and
produces arrays v and w.

Step II: The obtained map (10) is fused horizontally with the
reduce (3) resulting in the redomap (11), whose binary as-
sociative and commutative operator is max.

Step III: The obtained redomap (11) is fused horizontally with
the other two reduces, (4 − 5), by extending the associative
and commutative operator of the redomap to work over three-
float tuples (and modifying accordingly the folded function).

Step IV : The resulting redomap, (12) consumes the array t pro-
duced by the map (16) and as such are fused together, and sim-
ilarly for the maps producing arrays y, x and is, which are
(7− 9). At the end, the original program has been fused in one
redomap construct, which is shown at the bottom of Figure 3.

The resulting code requires only the two result arrays v and w to
be maintained in global memory. Because the input array iota(n)
is optimized away by reference to the thread index space, the rest of
the computation involves only scalars. The next section describes
in detail how the redomap second-order operator is mapped to
efficient GPGPU code.

4. Optimizing Sequentialization and Coalescing

The efficient implementation of reductions on GPUs is well studied
in the literature [16, 21]. This section gives a short introduction to
the subject to enable discussion of the implementation and optimi-
sation of the redomap construct.

To execute a reduction in parallel on an idealised perfectly par-
allel machine, we might use tree reduction: to reduce an n-element
array [x1, . . . , xn] using operator ⊕, we launch n/2 threads, with
thread i computing x2i ⊕ x2i+1. The initial n elements are thus
reduced to n/2 elements. The process is repeated until just a

19



- - O r i g i n a l Program :

fun ( f32 , f32 , f32 , [ f32 ] , [ f32 ] )
main ( f32 a , f32 b , i n t n ) =

l e t i s = map ( f32 , i o t a ( n ) ) - - ( 9 )

l e t x = map ( ∗a , i s ) - - ( 8 )

l e t y = map ( ∗b , x ) - - ( 7 )

l e t t = map ( + , z i p ( x , y ) ) - - ( 6 )

in

l e t t 0 = reduceComm ( + , 0 . 0 f32 , t ) - - ( 5 )

l e t t 1 = reduceComm ( min , i n f ( ) , x ) - - ( 4 )

l e t t 2 = reduceComm ( max , 0 . 0 f32 , y ) - - ( 3 )

in

l e t v = map(∗ a , x ) - - ( 2 )

l e t w = map(∗b , y ) - - ( 1 )

in ( t0 , t1 , t2 , v , w)

- - I . h o r i z o n t a l f u s i o n ( 1 ) and ( 2 ) r e s u l t s i n ( 1 0 ) :

l e t ( [ f32 , n ] v , [ f32 , n ] w) =
map ( fn ( f32 , f32 ) ( f32 xi , f32 y i ) => - - ( 1 0 )

l e t ( f32 r e s _ 1 ) = x i ∗ a
l e t ( f32 r e s _ 2 ) = y i ∗ b
in ( r e s_1 , r e s _ 2 ) ,

, x , y )

- - I I . h o r i z o n t a l f u s i o n ( 1 0 ) and ( 3 ) r e s u l t s i n ( 1 1 ) :

l e t ( f32 t2 , [ f32 , n ] v , [ f32 , n ] w) =
redomapComm ( max - - ( 1 1 )

, fn ( f32 , f32 , f32 )
( f32 acc , f32 yi , f32 x i ) =>
l e t ( f32 r e s ) = max ( acc , y i )
l e t ( f32 v i ) = x i ∗ a
l e t ( f32 wi ) = y i ∗ b
in ( r e s , v i , wi )

, ( 0 . 0 f32 ) , y , x )

- - I I I . h o r i z o n t a l f u s i o n ( 1 1 ) and ( 4 , 5 ) r e s u l t s i n ( 1 2 ) :

l e t ( f32 t0 , f32 t1 , f32 t2 , [ f32 , n ] v , [ f32 , n ] w) =
redomapComm ( fn ( f32 , f32 , f32 ) - - ( 1 2 )

( f32 x1 , f32 x2 , f32 x3
, f32 y1 , f32 y2 , f32 y3 ) =>

l e t ( f32 z1 ) = x1 + y1
l e t ( f32 z2 ) = min ( x2 , y2 )
l e t ( f32 z3 ) = max ( x3 , y3 )
in ( z1 , z2 , z3 ) ,

fn ( f32 , f32 , f32 , f32 , f32 )
( f32 acc1 , f32 acc2 , f32 acc3
, f32 t i , f32 xi , f32 y i ) =>

l e t ( f32 r e s 1 ) = acc1 + t i
l e t ( f32 r e s 2 ) = min ( acc2 , x i )
l e t ( f32 r e s 3 ) = max ( acc3 , y i )
l e t ( f32 v i ) = x i ∗ a
l e t ( f32 wi ) = y i ∗ b
in ( r e s1 , r e s2 , r e s3 , v i , wi ) ,

( 0 . 0 f32 , I n f i n i t y f 3 2 , 0 . 0 f32 ) , t , x , y )

- - IV . Producer - consumer f u s i o n be tween ( 1 2 ) and ( 6 ) ,

- - t h e n ( 7 ) t h e n ( 8 ) t h e n ( 9 ) r e s u l t s i n ( 1 3 ) :

l e t ( f32 t0 , f32 t1 , f32 t2 , [ f32 , n ] v , [ f32 , n ] w) =
redomapComm ( fn ( f32 , f32 , f32 ) - - ( 1 3 )

( f32 x1 , f32 x2 , f32 x3
, f32 y1 , f32 y2 , f32 y3 ) =>

l e t ( f32 z1 ) = x1 + y1
l e t ( f32 z2 ) = min ( x2 , y2 )
l e t ( f32 z3 ) = max ( x3 , y3 )
in ( z1 , z2 , z3 ) ,

fn ( f32 , f32 , f32 , f32 , f32 )
( f32 acc1 , f32 acc2 , f32 acc3 , i n t i ) =>

l e t ( f32 i f l t ) = f32 ( i )
l e t ( f32 x i ) = i f l t ∗ a
l e t ( f32 y i ) = x i ∗ b
l e t ( f32 t i ) = x i + y i
l e t ( f32 r e s 1 ) = acc1 + t i
l e t ( f32 r e s 2 ) = min ( acc2 , x i )
l e t ( f32 r e s 3 ) = max ( acc3 , y i )
l e t ( f32 v i ) = x i ∗ a
l e t ( f32 wi ) = y i ∗ b
in ( r e s1 , r e s2 , r e s3 , v i , wi ) ,

( 0 . 0 f32 , I n f i n i t y f 3 2 , 0 . 0 f32 ) , i o t a ( n ) )

Figure 3: Fusion demonstrated on a simplified example, resem-
bling the structure of FinPar’s Interest-Rate Calibration benchmark.

Figure 4: Tree Reduction

single value is left–the final result of the reduction. We perform
O(log(n)) partial reductions, each of which is perfectly parallel,
resulting in a work depth of O(log(n)). Figure 4 shows a simple
example.

Tree reduction is optimal on an idealised perfectly parallel ma-
chine, but on real hardware, such as GPUs, it is inefficient. The
inefficiency is caused by exposing more parallelism than needed
to fully exploit the hardware. This excess parallelism means we
pay an unnecessary overhead due to communication cost between
threads. Efficient parallel execution relies on exposing as much par-
allelism as is needed to saturate the machine, but no more.

On a GPU, a simple improvement is to have every thread in a
workgroup4 read a single value from the initial array, after which
the threads cooperate in reducing their individual values to a partial
result per workgroup. Thus, if we use size-k workgroups, each
parallel level will result in a factor-k shrinkage, instead of the
factor-2 performed by the naive algorithm.

We can still do better: as mentioned earlier, a concrete GPU
can only use up to a certain amount of parallelism. The mount
depends on the hardware and exact form of the reduction, but
suppose that w groups of size k each are sufficient. Then, instead
of spawning a number of threads dependent on the input size n, we
always spawn w × k threads, organised into w workgroups. Each
thread sequentially reduces a chunk of the input consisting of n

w×k

elements, producing a per-thread intermediate result, which is then
reduced inside each workgroup (using tree reduction) to one result
per workgroup. If w is less than the maximum workgroup size, we
can then launch a new reduction with one workgroup of size w
that reduces the w per-workgroup results into the final result of the
reduction. If n is not divisible by w×k, not all threads will have the
exact same chunk size, but it is not hard to partition the array among
the threads. One interesting consequence is that in the sequential
stage, the function need not be a proper reduction operator, but can
be a fold function with no associativity requirements - this is what
we exploit in redomap.

This is an efficient algorithm: it uses only as much parallelism
as is necessary, and it requires only two kernel launches in total.
The only caveat is that we have to be careful about how the threads
traverse their assigned chunk of the input. On a GPU, we must en-
sure that memory accesses are coalesced in order to fully utilise the
memory bus. For reductions, which are bandwidth-bound for most
operators, this is an important concern. If each thread sequentially
accesses neighboring elements in the input array, as on figure 5a,
the resulting memory accesses will be non-coalesced, severely im-
pacting performance. The solution is to access with a stride, as on
figure 5b: if the per-thread chunk size is wk, then thread i should
access the input at indices i, i + 2wk, i + 3wk, and so forth. This
means that in the same cycle, neighboring threads i and and i + 1
within the same warp will access elements at neighboring indices
i+ jwk and i+1+ jwk (where j is the sequential iteration), thus
obtaining coalesced memory access.

The strided access pattern just mentioned will result in the
correct result if the operator is commutative, although we are in

4 This paper follows the OpenCL terminology. In NVIDIAs CUDA, a work-
group is called a thread block.
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...

(a) Nonstrided
...

...
...

(b) Strided

Figure 5: Strided and Nonstrided Chunked Reduction

effect accessing the array in a transposed form. Even if the input
array is one-dimensional, we can pretend that it is a wk× n

wk
array

which is then transposed – if the input size is not divisible by wk
we will have to pad the input, but we will ignore this issue in the
present paper.

Many interesting operators are only associative, and swapping
the order of application will produce a different (wrong) result. This
is for example the case in the maximum segment sum problem,
which is discussed in section 5. In such cases, we must first trans-
pose the array in memory prior to the reduction – the strided access
in the reduction will then “undo” the first transposition and restore
the original evaluation order. Whilst transposition is not a free op-
eration, it can be implemented on the GPU to run at essentially the
speed of the memory bus.

This procedure is sketched on figure 6, where we assume that
the reduction operator f is not commutative. The redomap on
figure 6a is being turned into two kernels, the first of which is
shown on figure 6b. The second, single-workgroup kernel is not
particularly interesting, as the per-thread chunk size is always 1.
In our intermediate language, we represent a reduction kernel via a
reduceKernel construct. This construct is much like a redomap,
except that instead of a fold function operating on an accumulator
and single element, we have a function that processes an entire
chunk of the input array with an explicit sequential loop.

In Futhark, the transpose operation is by default delayed
(i.e., not made manifest in memory) – instead, the code genera-
tor will replace accesses to a transposed array with accesses to
the original array, with the indices swapped. This is exploited in
figure 6b – the sequential loop accesses to chunk[i], really ac-
cess xs’[t,i] (where t is the thread index), corresponding to
xs_tr_manifested[i,t]. This array is itself a manifested ver-
sion of xs_tr_delayed, which is a (delayed) transposed version
of the original xs. Thus, xs’[t,i]==xs[t,i], but with xs’ rep-
resented in transposed form in memory.5

The mapped part of the redomap is always produced in trans-
posed form by the reduceKernel, again to ensure coalescing. We
explicitly transpose the mapped part to restore the intended order.
If the reduction operator is commutative, and there is no mapped
part in the redomap, the transposition is not actually performed in
memory – this is for example the case when compiling particularly
simple reductions such as reduce(+, 0, as).

During the parallel part of the reduction, intermediate results
are kept in arrays stored in fast local memory on the GPU. We
use one such array for every input array. Due to the array-of-tuples
transformation mentioned in section 2, a reduction of an array of
pairs turns into a reduction of two arrays, meaning that we use two
local buffers during the reduction.

5 Futhark by default represents arrays in row-major form, so we could also
say that the transposed array is column-major.

l e t ( i n t p , [ i n t , n ] vs ) =
redomap ( f ,

fn ( i n t , i n t ) ( i n t acc , i n t x ) =>
l e t ( i n t r e s ) = f ( acc , x )
l e t ( i n t v ) = x ∗ a
( r e s , v ) ,

( 0 ) , xs )

(a) The original redomap

l e t x s _ t r _ d e l a y e d = t r a n s p o s e ( xs )
l e t x s _ t r _ m a n i f e s t e d = m a n i f e s t ( x s _ t r _ d e l a y e d )
l e t xs ’ = t r a n s p o s e ( x s _ t r _ m a n i f e s t e d )
l e t ( [ i n t ,w] g r o u p _ r e s , [ i n t , n ] v s _ t r a n s ) =

reduceKernel ( f , - - r e d u c t i o n o p e r a t o r

fn ( i n t , [ i n t , c ] ) ( i n t c , [ i n t , c ] chunk ) =>
l e t i n i t _ w s = r e p l i c a t e ( c , 0 ) in

loop ( ( acc , ws ’ ) = ( 0 , i n i t _ w s ) ) =
f o r i < c do

l e t x = chunk [ i ]
l e t ( i n t r e s ) = f ( acc , x )
l e t ( i n t v ) = x ∗ a
l e t ( [ i n t , c ] ws ’ ’ ) =

ws ’ with [ i ] < - v
in ( r e s , ws ’ ’ ) ,

( 0 ) , xs ’ )
l e t vs = t r a n s p o s e ( v s _ t r a n s )

(b) The first of the two resulting kernels

Figure 6: Compilation of redomap to GPU kernels

5. Performance Analysis

5.1 Experimental Methodology and Hardware

Reported running times are averaged across one hundred runs
within a loop. An initial iteration is executed without timing in or-
der to avoid warmup and delayed initialization affecting the mea-
sured runtime. Running times represent core computation time.
That is, it does not account for initial device-host memory trans-
fers, GPU context creation, build time, reading/writing data from/to
files, etc. Futhark programs are compiled and run with no special
compiler flags (the default, i.e., no tuning). Thrust programs are
compiled with nvcc -O3 and -arch=sm_35 where this did not
hurt performance6, and we use the Git version of Thrust7 at com-
mit ID 00315ad, as this was substantially faster than the prein-
stalled version. Running times are measured on a a GeForce GTX
780 Ti with 3GiB of glbal memory and 2880 cores running at
1.08GHz. We use GCC 4.8.4 and CUDA 6.0 to compile C++/C and
OpenCL/CUDA code (although as mentioned above, we use a newer
version of Thrust than the one bundled with CUDA 6.0).

Our experimental setup is publicly available at the URL:

https://github.com/HIPERFIT/futhark-array16

We strongly believe in the value of reproducible results, and have
attempted to automate the reproduction of our experiments. We
have also documented common technical problems with running
the experiments.

5.2 Mini-Benchmark Description

Figure 7 shows the Futhark code of the nine simple programs we
have used for performance evaluation:

1 ReducePlus sums up the elements of an array of integers.

6 Most of the benchmarks required the -arch=sm_35 option in order to
compile succesfully, but BlackScholes and MSSP suffered significant
slowdown when this option was used. We have no explanation for this.
The reported runtimes for these two benchmarks are without the option
-arch=sm_35.
7 https://github.com/thrust/thrust
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- - 1 . ReducePlus - -

- - - - - - - - - - - - - - - - - - -

fun i n t main ( [ i n t ] a ) = reduce ( + , 0 , a )

- - 2 . ReduceMax - -

- - - - - - - - - - - - - - - - - -

fun i n t main ( [ i n t , n ] a s ) = reduceComm ( max , 0 , a s )
fun i n t max ( i n t x , i n t y ) = i f x < y then y e l s e x

- - 3 . IndexOfMax - -

- - - - - - - - - - - - - - - - - - -

fun i n t main ( [ i n t , n ] a s ) =
l e t ( _ , i )=reduceComm ( maxWithIndex , ( 0 , 0 ) , z i p ( as , i o t a ( n ) ) )
in i

fun ( i n t , i n t ) maxWithIndex ( ( i n t , i n t ) x , ( i n t , i n t ) y ) =
l e t ( xv , x i ) = x in l e t ( yv , y i ) = y
in i f xv < yv then y

e l s e i f yv < xv then x
e l s e i f x i < y i then x e l s e y

- - 4 . IndexOfMaxPack - -

- - - - - - - - - - - - - - - - - - - - - - -

fun i n t main ( [ i n t , n ] a s ) =
l e t i = reduceComm ( maxWithIndex , 0 i64 ,

map ( | , z i p ( map( < <32 i64 , map ( i64 , a s ) )
, map ( i64 , i o t a ( n ) ) ) ) )

in i n t ( i )
fun i 6 4 maxWithIndex ( i 6 4 x , i 6 4 y ) =

l e t ( xv , x i ) = ( i n t ( x >> 32 i 6 4 ) & 0xFFFFFFFF , i n t ( x ) )
l e t ( yv , y i ) = ( i n t ( y >> 32 i 6 4 ) & 0xFFFFFFFF , i n t ( y ) )
in i f xv < yv then y

e l s e i f yv < xv then x
e l s e i f x i < y i then x e l s e y

- - 5 . Reduce2x2MM - -

- - - - - - - - - - - - - - - - - - - -

fun i n t main ( [ i n t ] a ) =
loop ( s = 1) = f o r i < 42 do

l e t a ’ = map(+ s , a )
in reduce ( twoByTwoMult , 0xFF00FF00 , a ’ )

in s

fun i n t twoByTwoMult ( i n t x , i n t y ) =
l e t ( x11 , x12 , x21 , x22 ) = u n p a c k I n t ( x )
l e t ( y11 , y12 , y21 , y22 ) = u n p a c k I n t ( y )
l e t z11 = x11 ∗ y11 + x12 ∗ y21
l e t z12 = x11 ∗ y12 + x12 ∗ y22
l e t z21 = x21 ∗ y11 + x22 ∗ y21
l e t z22 = x21 ∗ y12 + x22 ∗ y22
in p a c k I n t ( z11 , z12 , z21 , z22 )

fun ( i8 , i8 , i8 , i 8 ) u n p a c k I n t ( i n t x ) =
( i 8 ( x >>> 2 4 ) , i 8 ( x >>> 1 6 ) , i 8 ( x >>> 8 ) , i 8 ( x >>> 0 ) )

fun i n t p a c k I n t ( i 8 a , i 8 b , i 8 c , i 8 d ) =
( ( i 3 2 ( a )&0xFF ) << 24) | ( ( i 3 2 ( b)&0xFF ) << 16) |
( ( i 3 2 ( c )&0xFF ) << 8) | ( ( i 3 2 ( d)&0xFF ) << 0)

- - 6 . MSSP ( maximum segment sum problem ) - -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

fun i n t main ( [ i n t , n ] xs ) =
l e t ( x , _ , _ , _ ) =

reduce ( redOp , ( 0 , 0 , 0 , 0 ) , map ( mapOp , xs ) ) in

x
fun ( i n t , i n t , i n t , i n t ) redOp ( ( i n t , i n t , i n t , i n t ) x ,

( i n t , i n t , i n t , i n t ) y ) =
l e t ( mssx , misx , mcsx , t s x ) = x in

l e t ( mssy , misy , mcsy , t s y ) = y in

( max ( mssx , max ( mssy , mcsx + misy ) )
, max ( misx , t s x +misy ) , max ( mcsy , mcsx+ t s y ) , t s x + t s y )

fun ( i n t , i n t , i n t , i n t ) mapOp ( i n t x ) =
( max ( x , 0 ) , max ( x , 0 ) , max ( x , 0 ) , x )

- - 7 . ScanPlus - -

- - - - - - - - - - - - - - - - -

fun [ i n t ] main ( [ i n t ] a ) = scan ( + , 0 , a )

- - 8 . RedomapNT : r e s e m b l e s f u s i o n ’ s r u n n i n g example - -

- - 9 . B lack S c h o l e s : n o t shown - -

Figure 7: Mini-Benchmark used for evaluating the Redomap con-
struct. RedomapNT has a structure similar to the one in Figure 3.

2 ReduceMax computes the maximum of an integral array.

3 IndexOfMax computes the index of the maximal element of
an integral array. The difference with the previous benchmarks
is that the reduce operator is defined over index-value tuples,
rather than basic-type scalars.

4 IndexOfMaxPack uses a 64-bit integer to pack together the
index and the value into a scalar.

5 Reduce2x2MM consists of a loop of count 42, in which the loop-
variant integral scalar s is added to each element of an input
array, and then the array is reduced with the 2-by-2-matrix-
multiplication operator, where a 32-bit integer is assumed to
pack the four byte-size elements of the matrix. The result of the
reduce becomes the value of s for the next iteration. Since
the reduce operator is not associative, the Thrust version is
implemented as a transform_inclusive_scan, which fuses
together the map and the scan and selects the last element of
the scanned array.

6 MSSP is the maximum-segment-sum problem: it looks for the
segment of consecutive array elements whose element-wise
sum is the largest across all possible segments, and returns the
sum. The reduce operator is not commutative and operates
on four-integer tuples, hence the Thrust implementation uses
a transform_inclusive_scan.

7 ScanPlus is a prefix-sum computation on an array of integers.

8 RedomapNT is a code whose structure resembles the one in Fig-
ure 3, except that the mapped functions are more computation-
ally expensive, e.g., involve division and exp. We note that
Thrust does not support an operator that can express the fully-
fused code, as in Futhark.

9 BlackScholes [20] implements a simple pricing engine for
European options, and can be represented by one redomap in
which the mapped arrays are consumed by the reduce (i.e., no
arrays are returned).

5.3 Mini-Benchmark Evaluation

Figure 8 shows the running time (in miliseconds) of the Futhark
and Thrust code of the eight mini programs, when the input arrays
have sizes: 102, 5·104, 105, 5·105, 106, 5·106, and 107. Important
observations are:

• ReducePlus and ReduceMax operates on 32-bit-integer scalars
and exhibit very similar behavior: Futhark is about 3× faster on
sizes up to one million, and the gap narrows after that, e.g., only
1.55× faster on the largest dataset. IndexOfMaxPack operates
on 64-bit integers and shows a similar trend: Futhark is about
1.3× faster on the largest array size.

• IndexOfMax operates on two-integer tuples which seems to
significantly affect Thrust’s performance: on arrays of size fifty
thousand, Futhark is about 4× faster, and the speedup reaches
about 14× for the largest size. This is likely due to genericity-
related constraints, such as using an array of tuple represen-
tation (we use Thrust’s zip-iterator). ThurstOpt denotes the
version of the code that uses Thrusts built-in, hence optimized,
max_element operator, but this is still 2× slower than Futhark.

• MSSP performs a reduction with a non-commutative operator on
a four-integer tuple. We have implemented this as a scan in
Thrust. On smaller sizes, Thrust version is slightly faster, but
Futhark is about 2.5× faster on the largest dataset.

• Reduce2by2MM also performs a reduction with non-commutative
operator, but on integer scalars. Also, the array being reduced is
invariant to the 42-iteration outer loop, which permits Futhark
to amortise the cost of the manifested transposition that is re-
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Figure 8: Running Times for Thrust and Futhark on GPGPU. X-Axis is the Array Size; Y-Axis is the runtime (in miliseconds). Thrust/
ThrustOpt are “natural/tuned” versions of Thrust; NoRedonap/Futhark are Futhark-generated code where redomap fusion is off/on.

quired when executing non-commutative reductions. Futhark is
about 8.8× faster on an array of size fifty thousand and speedup
decreases to only 3.6× on the largest size. This suggests that
Thrust’s inefficiencies are related to a larger extent with the use
of tuples rather than to the use of scan.

• In fact, ScanPlus shows that Thrust’s scan operator is up to
2.4× faster than Futhark’s. This is because Futhark’s scan is
implemented in a manner similar to redomap (i.e., efficiently
sequentializes the computation at the cost of transposing both
the input and result arrays (to preserve coalesced accesses)).
The overhead introduced the transposition is however too high,
as it reaches two thirds of the total scan runtime.

• On RedomapNT the Futhark compiler has fused all operators
into one redomap, without duplicating any computation. Since
Thrust does not support an operator capable of expressing this,
the Thrust optimized version corresponds to the code being
fused in two kernels: semantically a redomap that “consumes”
the input arrays and another map that duplicates some of the
computation performed in redomap. Thrust unoptimized ver-
sion corresponds to the unfused code. We observe that Futhark
is about 2.3× faster than the unoptimized Thrust and only 1.2×
slower than the optimized Thrust code. This is due to some
redundant-copy inefficiencies in our translation, but even so,
Futhark would still win if the map computations would be heav-
ier (as it is typically the case in real-world applications).

• On Black-Scholes, the unoptimized and optimized Thrust
versions correspond to unfused and fully fused code. The lat-
ter is possible since the reduce consumes the mapped arrays,
and is implemented in Thrust by the transform_reduce and
transform_iterator operators. Futhark is about 5× faster
on the largest dataset, which seems to indicate that the Thrust’s
code manifests some of the intermediary arrays (i.e., it is mem-
ory bound rather than compute bound as in Futhark).

Finally, the code version denoted NoRedomap is produced
by the Futhark compiler when the redomap fusion is disabled.
Redomap fusion has significant impact (∼ 4×) in the cases of
indexOfMaxPack, MSSP and Reduce2by2MM, and smaller impact
for RedomapNT and Black-Scholes.

6. Related Work

One strand of related work is embedded domain-specific languages
targeting GPGPU execution, such as Nikola [19], Accelerate [20],
Obsidian [6], and SPL [10]. Such embedded solutions often suf-
fer significant limitations imposed by the host language, for exam-
ple they do not support nested parallelism. Perhaps more related
to Futhark is the work on SAC [11, 12], which is a standalone
functional language that, like Futhark, also seeks a common ground
with imperative approaches, but, unlike Futhark, does not support
tuple types and operators such as filter and scan in the inter-
mediate representation. The with-loops of SAC can fulfill the same
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role as redomap [13], although the fusion algorithm in which they
are used is very different: in SAC, producer-consumer and horizon-
tal fusion is combined in a general framework of with-loop fusion.

Another strand of related work is concerned with automatic par-
allelization of imperative code. Solution include (i) static depen-
dency analyses by polyhedral analysis [14, 25], and (ii) dynamic
extraction of parallelism, for example by means of thread-level
speculation [7, 24]. The latter, however, have not been found suit-
able for GPGPU execution.

Finally, a rich body of work has studied interoperability solu-
tions between array languages, for example, (i) for inter-operating
across computer-algebra systems [5, 23] or (ii) for efficient integra-
tion of option pricing in banks’ IT infrastructure [22], or (iii) for
integrating a contract-specification language [2] with dynamical
graphical user interface [9]. Since Futhark is intended as an ac-
celerator language, work is in progress to extend the compiler with
various backends and friendly foreign function interfaces for vari-
ous mainstream languages, such as Python, Java, C++, etc, as well
as using Futhark in conjunction with TAIL [8] as an intermediate
language for an APL compiler.

7. Conclusions

This paper has presented a new data-parallel core language con-
struct, redomap, that can be used to perform both horizontal and
producer-consumer fusion in a variety of complex cases, and which
enables efficient mapping to parallel hardware.

Furthermore, we have validated our fully-automatic compiler on
a range of microbenchmarks that perform both simple and nontriv-
ial reductions, several with non-commutative operators. We show
that we obtain performance comparable to or exceeding that of
the Thrust library in most cases involving reductions, thus empir-
ically demonstrating the potential for efficient compilation of the
redomap construct.

We have also shown the value of supporting reductions with
non-commutative operators, as well as demonstrated that such re-
ductions can be compiled efficiently on modern GPU hardware.
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