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Re-Write Rules for Flattening in Fast Memory the
Parallelism of Hull-White Trinomial Pricing

COSMIN E. OANCEA, University of Copenhagen, Denmark
WOJCIECH M. PAWLAK, SimCorp, Denmark

This document sketches a formalization of the re-write rules used for optimizing the parallel GPU execution
of an implementation of the Hull-White One-Factor Short-Rate pricing model, which uses the trinomial-tree
lattice-based method for numerically solving the underlying stochastic differential equation.

The proposed code transformation is a specialization of Blelloch’s flattening transformation, which maps
irregular nested parallelism into a sequence of flat-parallel constructs, such that the work-depth asymptotics
of the original program is respected.

Our transformation applies on code with two levels of parallelism: the first level corresponding to a map
operation, and the second level corresponding to multiple parallel operations—potentially nested within
sequential loops—but which have the same length for the same iteration of the outer map.

The main difference with respect to the classical approach is that our approach does not replicate the
variables that are bound in the outer map but free in the inner parallel constructs. Instead, such variables
are found by indirectly accessing some auxiliary arrays which are reused across equal-shape arrays and
across sequential recurrences (loops). This technique reduces the footprint of scratchpad/fast memory, whose
efficient use is paramount to achieving efficient GPU execution.

Additional Key Words and Phrases: parallelism, compilers, flattening transformation, dependence analysis,
dynamic analysis, GPU, computational finance, derivative pricing.

1 INTRODUCTION
This document sketches a formalization by means of re-write rules of a specialized instance of
Blelloch’s flattening code transformation [Blelloch and Greiner 1996; Blelloch et al. 1994].
The transformation was motivated by the work [Pawlak et al. 2021] on optimizing for GPU

execution of a standard pricing algorithm, namely the Hull-White One-Factor Short-Rate (HW1F )
model [Hull and White 1994]. The latter defines the value of a financial instrument by means of a
stochastic differential equation, that represents the random changes in the interest rate over time,
which is solved numerically by means of a Trinomial Tree lattice-based numerical method [Hull
and White 1996].

In this algorithm, pricing one financial instrument has two main stages. The forward stage builds
a tree of bounded width, representing the propagation of the interest rate until the maturity of the
underlying bond is reached. 1 The backward stage then performs the instrument valuation from
maturity back to the current time. The computational structure thus consists of two sequential
time-series loops, whose counts are the height of the tree, in which each iteration performs several
semantically-parallel operations, which have the same length as the bounded width of the tree. For
example, the forward step computes each node at the current level (time step) from three nodes at
the previous level (time step) in the tree.

1 The model uses a tree of bounded width, because in practice the short-interest rate tends to revert to the mean value over
time.
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Practical use cases require pricing of a (large) portfolio of instruments, which gives raise to an
outer level of parallelism, as instruments can be priced independently of each other.
The main challenge, however, is that in realistic scenarios the width and height of the trees

is highly variant across the portfolio instruments. This gives raise to a case of irregular-nested
parallelism that is difficult to map efficiently to GPU hardware. In particular, related parallelization
approaches either assume the homogeneous case [Gerbessiotis 2004; Huang and Thulasiram 2005]
in which all trees have the same height and width, or acknowledge the problem, but do not offer a
solution [Grauer-Gray et al. 2013].

This document considers the challenging case of a heterogeneous portfolio, in which the heights
and widths of various instrument trees may differ significantly. At a very high-level, (at least) two
parallelization strategies make sense.
The first strategy follows the common wisdom that states that outer levels of parallelism are

more profitable to exploit than inner ones. As such, given a big enough portfolio, one should
sequentialize the inner parallelism and perform one instrument valuation per thread. The problem
with this approach is that the high variance of widths and heights across a portfolio instruments
introduces two levels of thread divergence on GPU. These levels correspond
(1) to the sequential time loop of variant height and
(2) to the inner width-parallel operations, which are sequentialized.
This strategy allows to optimise one level of divergence, but not both; for example, by precomputing

the widths (or heights) of the instrument’ trees, and by sorting the portfolio in decreasing order of
their widths (or heights).
The second strategy is to exploit both levels of parallelism, even when the outer parallelism is

enough to fully utilize hardware. This allows to better exploit temporal locality by maintaining
most of the intermediate arrays in the fast (shared + register) memory, and to optimize both levels
of divergence. The height-level of divergence is optimized by sorting as before. To optimize the
width-level of divergence the idea is

(1) to pack instruments into bins, such that their summed widths fits the size of the thread-block
(bin), and then

(2) to “flatten” (merge) the available two-level parallelism—the first level corresponds to the
instruments in a bin, and the second level corresponds to the width-length parallel operations
that appear in the implementation of each instrument.

The flattening step is non-trivial and is the main focus of this document: In Section 2.2, we
document it by presenting an initial simplified nested-parallel specification that uses operators
such as map and reduce. In Section 3, we give the gist of the technique by demonstrating how the
flat-parallel program is obtained, named gpu-flat.

Section 4 is the core contribution of this document that corresponds to sketching a formalization
of the proposed transformation by a set of inference (rewrite) rules, which can possibly be integrated
in the repertoire of a data-parallel compiler.
Please be advised that the material other than Section 4 has been already presented else-

where [Pawlak et al. 2021]; we recount it here for convenience, i.e., to provide the intuition for the
rewrite rules and to make this document self contained.

2 NOTATION AND NESTED-PARALLEL SPECIFICATION
This chapter introduces first a functional notation that is then used, in Section 2.2, to present
the nested-parallel structure of the pricing algorithm. In comparison to a lower-level loop-based
notation, such as CUDA, the functional notation has the advantage that it (i) enables a concise
specification of all available (nested) parallelism in terms of well-known data-parallel operators
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such as map, reduce, and scan, and (ii) allows to demonstrate at a high level the rewrite rules, that
are applied for deriving gpu-flat.

2.1 Functional Notation
We use i32 and real to denote the type of a 32-bit integer and (single- or double-precision) floating-
point numbers, respectively, [N]α to denote the type of an array, whose elements have type α ,
[a1,. . .,an] to denote an array literal, and (a,b) to denote a tuple (record) value. Function f
applied to two arguments a and b is written as f a b (without parenthesis or commas).
The notation supports the usual unary/binary operators and (normalized) let bindings, which

have the form let a = e1 let b = e2. . . in en and are similar to a block of statements followed
by a return denoted by keyword in. In-place updates to array elements are allowed and are written
as let arr[i] = x. 2 The notation supports (i) conditional if statement if c then e1 else e2
with semantics similar to the C ternary operator c? e1 : e2, and (ii) sequential loop expression:

loop ( x1 , . . . , xm ) = ( x10 , . . . , xm0 ) for i < n do e .

Here, x1...m are loop-variant variables that are initialized for the first iteration with in-scope
variables x1...m0 . The loop executes iterations i from 0 to n-1, and the result of the loop-body
expression e provides the values of x1...m for the next iteration. The initialization part may be
syntactically omitted—i.e., loop (x1, . . ., xm) for i < n do e is legal—in which case the
initialization refers to in-scope variables bearing the same name (x1...m ).

Most importantly, the notation supports several key-parallel operators, whose types and seman-
tics are shown in Listing 1: iota applied to integer n creates the array with elements from 0 to n-1
(i.e., an iteration space), and replicate n v creates an array of length n whose elements are all v.
A map operation applies its function argument f to each element of the input array, resulting in
an array of same length. The function can be declared in the program or can be an anonymous
(λ) function—e.g., map (λx->x+1) arr adds one to each element of arr. Similarly, map2 applies
its function argument to corresponding elements from its two input arrays. reduce successively
applies a binary-associative operator ⊙ to all elements of its input array, where e⊙ denotes the
neutral element of ⊙. scan [Blelloch 1989] (a.k.a., parallel-prefix sum) is similar to reduce, except
that it produces an array of the same length (n) containing all prefix sums of its input array. The
inclusive scan (scaninc ) starts with the first element of the array, and the exclusive scan (scanexc )
starts with the neutral element.

Segmented scan (sgmscan) has the semantics of a scan applied to each subarray of an irregular
array of subarrays. The latter has a flat representation consisting of (i) a flag array composed
of 0s and 1s, where 1 denotes the start position of a subarray, and (ii) by a length-matching flat
array containing in order all elements of all subarrays. For example, flag = [1,0,1,0,0,0,1]
denotes an array with three rows, having two, four and one elements, respectively, and sgmscaninc
(+) 0 flag [1,2,3,4,5,6,7] results in array [1,3,3,7,12,18,7]. Segmented scan can be
implemented in terms of a scan with a modified operator [Blelloch 1989], e.g., for the inclusive one:

λ ( f1 , v1 ) ( f2 , v2 ) → i f f 2 != 0 then ( f 1 | f2 , v2 ) e l se ( f 1 | f2 , v1⊙v2 )

The last operator scatter x is vs updates in place the array x at indices contained in array is
with the values contained in array vs, except that out-of-bounds indices are ignored (not updated).
For example, in Listing 1, value b1 is not written in the result because its index -1 is out of bounds.

2 In place updates can be supported without affecting language purity by means of a uniqueness type mechanism [Henriksen
et al. 2017].
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1 i o ta : ( n : i32 ) → [ n ] i32
2 i o ta n = [ 0 , . . . , n−1]
3

4 r ep l i c a t e : ( n : i32 ) → α → [ n ]α
5 r ep l i c a t e n v = [ v , . . . , v ]
6

7 map : ∀ n.(α → γ ) → [n]α → [n]γ
8 map f [ a1 , . . . , an ] = [ f a1 , . . . , f an ]
9

10 map2 : ∀ n. (α → β → γ ) → [n]α → [n]β → [n]γ
11 map2 g [ a1 , . . . , an ] [ b1 , . . . , bn ] =
12 [ g a1 b1 , . . . , g an bn ]
13

14 reduce : ∀ n. (α → α → α ) → α → [n]α → α
15 reduce ⊙ e⊙ [ a1 , . . . , an ] = a1 ⊙ . . . ⊙ an
16

17 scan : ∀ n. (α → α → α ) → α → [n]α → [n]α
18 scaninc ⊙ e⊙ [ a1 , . . . , an ] =
19 [ a1 , a1⊙a2 , . . . , a1 ⊙ . . . ⊙an ]
20 scanexc ⊙ e⊙ [ a1 , . . . , an ] =
21 [ e⊙ , a1 , . . . , a1 ⊙ . . . ⊙an−1 ]
22

23 sgmscan : ∀ n. (α → α → α ) → α →

24 [n]i32 → [n]α → [n]α
25 sgmscaninc ⊙ e⊙
26 [ . . . , 1 , 0 , . . . , 0 , 1 , . . . ]
27 [ . . . , ak1 , ak2 , . . . , akn , ak+11 , . . . ] =
28 [ . . . , ak1 , . . . , ak1 ⊙ . . . ⊙akn , ak+11 , . . . ]
29

30 s c a t t e r : ∀ n, m.[n]α → [m] i32→ [m]α → [n]α
31 s c a t t e r [ a0 , a1 , a2 , a3 , . . . , an−1 ]
32 [ 2 , −1 , 0 , 3 ]
33 [ b0 , b1 , b2 , b3 ] =
34 [ b2 , a1 , b0 , b3 , . . . , an−1 ]

Listing 1. Data-Parallel Operators Semantics

1 l e t v a l u a t e ( i n s : I n s t rumen t ) : rea l =
2 l e t (w, h ) = f 1 ( i n s )
3 l e t Qs = r ep l i c a t e w 0 . 0
4 l e t Qs [w/ 2+1 ] = f 2 ( i n s )
5 l e t α s = r ep l i c a t e h 0 . 0
6 l e t α _ i = f 3 ( i n s )
7 l e t α s [ 0 ] = α _ i
8 l e t ( _ , α s ) =
9 loop ( Qs , α _i , α s ) for i < h−1 do

10 l e t Qs ' = map (λ j −>
11 l e t q0 = Qs [ j ]
12 l e t q1 = i f j > 0 then Qs [ j −1] e l se 1 .
13 l e t q2 = i f j < w−1 then Qs [ j +1] e l se 1 .
14 in g1 ( i , j , α _i , q0 , q1 , q2 )
15 ) ( i o ta w)
16 l e t α _v = reduce ( + ) 0 . 0 Qs '
17 l e t α _i '= g2 (α _v , i n s )
18 l e t α s [ i +1] = α _i '
19 in ( Qs ' , α _i ' , α s )
20 l e t Cs = r ep l i c a t e w 10 0 . 0
21 l e t Cs =
22 loop ( Cs ) for i i < h−1 do
23 l e t i = h − 2 − i i
24 l e t α _ i = α s [ i ]
25 in map (λ j −>
26 l e t c0 = Cs [ j ]
27 l e t c1 = i f j > 0 then Cs [ j −1] e l se 1 .
28 l e t c2 = i f j <w−1 then Cs [ j +1] e l se 1 .
29 in g3 ( i , j , α _i , c0 , c1 , c2 )
30 ) ( i o ta w)
31 in Cs [w/ 2+1 ]
32

33 l e t main ( p o r t f o l i o : [ ] I n s t rumen t ) =
34 map v a l u a t e p o r t f o l i o

Listing 2. Nested-Parallel Implementation.

2.2 Simplified Nested Data-Parallel Specification
Listing 2 sketches the (simplified) implementation of the pricing algorithm, which nevertheless
accurately captures the nested-parallel structure. The main function (at the bottom) receives a
portfolio of instruments and performs a valuation of each by an embarrassingly-parallel map
operation, that can be easily distributed across threads, GPUs or nodes.
Function valuate receives an instrument data as an argument and computes its price approxi-

mation. Computation starts by determining the width w and height h of the trinomial tree (at line 2),
and by initializing arrays Qs of size w (lines 3-4) and αs of size h (lines 5-7). The two sequential
loops of indices i and ii implement the forward and backward tree propagation.

The first loop fills in the values of an array αs: First, the map operation of length w (at lines 10-15)
computes each element across width at the current time step (height) level in the tree, i.e., Qs’[j],
by aggregating the three different values belonging to the previous time step level, i.e., Qs[j-1],
Qs[j], Qs[j+1]. Note that only the current and previous time step elements across width levels—
rather than the entire tree—are manifested in memory by means of arrays Qs’ and Qs.) The newly
created array Qs’ is then summed up—by means of the reduce operation at line 16—and provides
the value of αs[i+1]. Note that both parallel operations occur inside the outer map operation,
which is applied to the whole portfolio, thus giving raise to nested parallelism. Finally, the resulted
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values of Qs’, α_i’ and αs are bound to the loop-variant variables Qs, α_i and αs for the next
iteration.

The second loop traverses the tree backwards, from the maturity to the present date, and at each
step it computes the prices associated to the current width level by a similar map operation. The
price of the instrument today is at the root of a tree, corresponding to Cs[w/2+1] (after the loop).

3 GPU-FLAT: FLATTENING TWO-LEVEL PARALLELISM
This section demonstrates how the gpu-flat implementation is derived from the nested-parallel
code of Listing 2. While we keep the discussion here intuitive and specific to the trinomial-pricing
algorithm, Section 4 formalizes the transformation by means of a set of inference (rewrite) rules,
which can be integrated in the repertoire of a compiler.

Essentially, gpu-flat utilizes both levels of parallelism, which allows to simultaneously optimize
(i) the temporal locality and (ii) both levels of divergence. The idea is to first sort the options
in decreasing order of their heights—thus optimizing the divergence of the forward/backward
traversal loops—and then to (bin-)pack the input (instruments) into bins, such that the summed
widths of their trees do not exceed the thread-block size—we choose the maximal size 1024—which
is considered the capacity of the bin. The two parallel levels—of the instruments in a bin, and of
the inner parallelism inside valuate function—are then combined (flattened) and mapped at the
thread-block level, while the parallelism across bins is mapped on the CUDA grid.
On the one hand, this implicitly optimizes the width-level of thread divergence, because the

flatten parallelism has roughly the size of the thread-block. On the other hand, temporal locality is
also optimized because the data created by inner-parallel operations (inside valuate)—such as the
arrays Qs and Cs—is maintained in fast (scratchpad/shared) memory. 3 The downsides are that the
flattening transformation introduces instructional overhead, and shared-memory/register pressure.

3.1 Flat-Parallel Version in Fast Memory
Listing 3 shows the code that is obtained from applying the flattening transformation: the bin
array corresponds to a batch of q instruments—whose summed widths is less than the thread-block
size—and the result is an array of length q of real numbers denoting the prices of those instruments
at current time. The flat code is obtained by distributing the (outer) map operation—i.e., over the
q instruments of the bin—around each let statement of the original valuate function shown in
Listing 2. In essence, distributing the map (i) across a scalar statement results in a map of size q,
and (ii) across a parallel operation of size width results in a parallel operation of size Σq−1k=0widthk ,
which is padded to thread-block size. For brevity and clarity of exposition, our discussion ignores
the complications related to (i) padding parallel arrays to thread-block size and to (ii) using the
non-trivial offsets in the arrays of all instruments and of αs corresponding to the sub-arrays of the
current block—these are tedious but straightforward to add.

Listing 3 starts by computing the widths and heights,4 of the trees of the q instruments (line 2).
For demonstration, we assume that q=2, and the widths and heights are ws=[2,4] and hs=[4,3].
Lines 3-11 compute three helper arrays (flag, outinds and inninds ) that are used in the code
transformation. The first array flag is the flag component in the flat-representation of an irregular
array of shape ws, such as Qss. We recall that the flag arrays is required by the segmented scan
operations. An irregular array of shape [2,4] has two rows of lengths 2 and 4, respectively, and
its flag array marks with 1 the start of each subarray and has otherwise 0 elements. It follows that
3 The array αs is maintained as before in global memory—because it is not guaranteed to fit in shared memory—as well as
it is padded and transposed at block level to optimize coalescing and memory footprint, as before.
4 In practice the widths and heights are precomputed by an inspector which is sliced out of the original code. This is because,
in the preliminary steps, the instruments are first sorted after their heights in order to optimize the divergence of the
sequential loops, and then their widths, that is necessary for packing instruments into bins.
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1 l e t v a l u a t ebin ( q : i32 , b in : [ q ] In s t rumen t ) : [ q ] rea l =
2 l e t ( ws , hs ) = map f 1 b in
3 l e t Bw = scanexc ( + ) 0 ws
4 l e t l e n f lat = Bw [ q−1] + ws [ q−1]
5 l e t tmp = map2 (λ s b → i f s == 0 then −1 e l se b ) ws Bw
6 l e t f l a g = s c a t t e r ( r ep l i c a t e l e n f lat 0 ) tmp ( r ep l i c a t e q 1 )
7 l e t tmp = scaninc ( + ) 0 f l a g
8 l e t out inds = map (λ x → x−1) tmp
9 −− map (λ w → i o t a w) ws

10 l e t tmp = map (λ f→ 1− f ) f l a g
11 l e t inn inds = sgmscaninc ( + ) 0 f l a g tmp
12 −− map (λw→ r e p l i c a t e w 0 ) ws
13 l e t Qss = r ep l i c a t e l e n f lat 0 . 0
14 −− map2 (λ Qs w → Qs [w/ 2 + 1 ] = f 2 ( i n s ) ) Qss ws
15 l e t tmp_i= map2 (λ b w → b + w/2 + 1 ) Bw ws
16 l e t tmp_v= map f 2 b in
17 l e t Qss = s c a t t e r Qss tmp_i tmp_v
18 −− i n i t r e g u l a r ( t r a n s p o s e d ) hmax×q ma t r i x αssT

19 l e t hmax = reduce max 0 hs
20 l e t α _ i s = map f 3 b in
21 l e t αssT = s c a t t e r ( r ep l i c a t e ( hmax ∗ q ) 0 . 0 ) ( i o ta q ) α _ i s
22

23 −− map− l o o p i n t e r c h a n g e ; l o o p c oun t padded t o hmax −1
24 l e t ( _ , _ , αssT )= loop ( Qss , α _ i s , αssT )
25 for i < hmax −1 do
26 −− map2 (λ i s αi→map ( . . . ) i s ) i nn inds α _ i s
27 l e t Qss ' = map2 (λ j o i → l e t ( b , h ) = ( Bw [ o i ] , hs [ o i ] )
28 in i f i ≥ h−1 then Qss [ b+ j ]
29 e l se l e t q0 = Qss [ b+ j ]
30 l e t q1 = i f j > 0 then Qss [ b+ j −1] e l se 1 .
31 l e t q2 = i f j <w−1 then Qss [ b+ j +1] e l se 1 .
32 in g1 ( i , j , α _ i s [ o i ] , q0 , q1 , q2 )
33 ) inn inds out inds
34 −− map ( r e d u c e ( + ) 0 ) Qss '
35 l e t scQs = sgmscaninc ( + ) 0 . 0 f l a g Qss '
36 l e t α _vs = map2 (λ b w→ scQs [ b+w−1 ] ) Bw ws
37 −− map (λα→α [ i +1]= g2 ( . . ) ) αss
38 l e t tmp_i = map2 (λ h k → i f i ≥h−1 then −1 e l se ( i + 1 ) ∗ q + k ) hs ( i o ta q )
39 l e t α _ i s ' = map2 g2 α _vs b in
40 l e t αssT = s c a t t e r αssT tmp_i α _ i s '
41 in ( Qss ' , α _ i s ' , αssT )
42 l e t Css = r ep l i c a t e l e n f lat 1 0 0 . . . . −− s e c o nd l o o p i s no t shown ( s i m i l a r )

Listing 3. Flat-Parallel Implementation.

we expect flag to be equal to [1,0,1,0,0,0]. This is computed by applying an exclusive scan on
ws, resulting in Bw=[0,2], then by computing the total number of elements lenf lat=2+4=6, and
finally, by the scatter operation at line 6 that writes 1s at the indices in Bw=[0,2] into an array
of lenf lat=6 0s; hence flag=[1,0,1,0,0,0], as expected.
The second array outinds records, for each of the width entries associated with an instrument,

the index of that instrument in the current bin. Thus, we expect outinds=[0,0,1,1,1,1]. This is
achieved by (inclusive) scanning the flag array, which results in [1,1,2,2,2,2], and by subtracting
1 from each obtained element (lines 7-8).

The final array inninds is the expansion of iota w across the q widths, hence we expect
inninds=[0,1,0,1,2,3]. This is achieved at lines 10-11 by negating the flag array, resulting in
[0,1,0,1,1,1], and applying an inclusive segmented scan on the result under the flag array flag,
i.e., scanning independently the two logical rows of two and four elements, respectively.
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Lines 12-17 in listing 3 are the flattening across q instruments of the lines 3-4 in listing 2—which
initializes Qs elements to zeroes and sets index w/2+1 to value f2(opt). The zero-initialization of Qs
is translated to a replicate of length lenf lat—i.e., the summed widths of the q instruments—and
the update at index w/2+1 is translated to a scatter on the expanded Qss in which

• the updated indices are computed at line 15 by summing the offset in Qss of each instrument,
denoted by b∈Bw , with w/2+1, where w∈ws, and

• the updated values are the result of mapping f2 on the q instruments at line 16.

The initialization of αss—the expansion of αs—is simply obtained by padding each row to the
maximal height hmax of the q instruments—hence total length is q×hmax—and by using a scatter
to overwrite the first entry in every row with the result of calling f3. This is implemented in
lines 19-21, except that αssT—the transpose of αss—is used in order to achieve coalesced access
to global memory. Next, the forward loop is padded to count hmax , the outer map of length q is
interchanged inside the loop, and the outer-map distribution continues on the loop-body statements.

Lines 27-33 correspond to flattening the map that is applied to iota w to compute array Qs’ in List-
ing 2, lines 10-15. Since the flattened code corresponds to applying the original map simultaneously
to all entries of all q instruments, it is translated to a map2 over inninds and outinds :

• inninds is precisely the expansion of (iota w) across the q instruments, hence j takes the
same values as in Listing 2;

• outinds is used to access values that are the same across the width threads assigned to process
the current instrument, but are needed by each thread—we recall that the outinds values
record the index of each instrument in each of the width entries associated with it. For
example, outinds is used to (indirectly) index into length-q arrays Bw , hs and α_is in order
to compute the start offset b into array Qss, the height h and the α value corresponding to
the current instrument, respectively.

• The body of the mapped function is protected by an if condition (i≥h-1) that checks that
the tree traversal has not already terminated for the current instrument, because the loop
count is padded to maximal value hmax . If so, then the input value of Qss is directly returned.

The code between lines 35-36 is the flattening across all q instruments of the (original) reduce at
line 16 in Listing 2, which sums up the values of array Qs’. This is implemented by first performing
an inclusive segmented scan on the expanded array Qss’, which by definition, computes the q
corresponding sums in the last entry of each logical subarray of the result scQs. Then these last
entries are extracted by a map operation of length q; the index of the last entry of the ith subarray
is Bw[i]+ws[i]-1, because Bw and ws record the offset and the size of each subarray, respectively.
Finally, lines 38-40 implement the expansion of the update to αs[i+1] at line 18 in Listing 2.

This is translated to a scatter that updates αssT at the q flat-indices belonging to row i+1 (stored
in tmp_i) with the values tmp_v obtained by applying g2 to all α_vs and batched instruments.
Note that if the loop index i is greater or equal than the logical loop count h-1 then the return
index is -1, hence the update is ignored.
Similar ideas apply for the translation of the backward loop, which is not shown. Our CUDA

implementation of gpu-flat fuses aggressively the inner-parallel operations and reuses shared
memory buffers whenever possible: e.g., Qss, Qss’, Css, Css’ use the same buffer. Arrays of size q
are typically stored in the shared memory (since they save register space), and arrays outinds and
inninds are held in registers. The shortcomings of gpu-flat are that (i) it introduces instructional
overhead—i.e., the code is more complex than the nested-parallel one, (ii) it introduces significant
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1:8 Cosmin E. Oancea and Wojciech M. Pawlak

register pressure 5 and that (iii) the parallel operations of size q underutilize the block-level
parallelism, which is typically much larger than q.

4 INFERENCE RULES FOR TWO-LEVEL FLATTENING
This section provides (the gist of) the formal inference rules that implement the two-level flattening
transformation, which is used in Section 3 to derive the gpu-flat code version. The transformation
is applied on code exhibiting exactly two-levels of parallelism, in which the outer level is a map of
length q, whose (lambda) body respects the following restrictions:

• all inner-parallel operations—such as map, reduce, scan, scatter—have the same length,
denoted w, for the same outer-map iteration, albeit w may vary across iterations;

• there exists at most one (inner) sequential loop whose count is variant to the outer map, and
such a loop is not contained in an inner parallel operation;

• most computation is carried out by the inner-parallel operations, i.e., all sequential loops
should contain inner parallelism;

• for simplicity of exposition, we assume that all inner arrays are one dimensional—this can be
achieved by a pre-processing step that flattens the array indexing.

We also assume that the lengths of the parallel operations for each of the q iterations of the outer
map, have been pre-computed by slicing out the computation of w into a simpler map construct.
Figure 4 shows the code for computing the helper arrays, discussed in Section 3, where q denotes
the number of outer-map iterations packed in the current bin, and shp denotes the parallel lengths
in the current bin. We assume that this code has been already inserted, at the beginning of the
translation. (To note, the code allows empty parallel lengths, i.e., elements of shp are allowed to be
zero.) We briefly recount the rationale for each helper variable:

• lenf lat is the sum of the inner-parallel lengths of the q packed outer-map iterations, i.e., the
size of the flat-parallel operation;

• Bshp is an array of length q, which records the start index in the flat-parallel array represen-
tation of each of the q logical sub-arrays (segments);

• inninds is an array of length lenf lat that records the inner iteration space of each inner-
parallel construct. For example, in figure 4, the first sub-array has length 3, therefore the first
three elements of inninds are 0,1,2; the last sub-array has length 2, therefore the last two
elements of inninds are 0,1.

• outinds is an array of length lenf lat , which records the index of the outer-map iterations for
each of the inner-parallel elements. For example, the first sub-array has length 3, therefore
the first three elements of outinds are 0,0,0; the third sub-array has length 2, therefore the
last two elements of outinds are 2,2. The rationale is that scalar variables that are variant
to the outer map are expanded in the transformed code to length-q arrays, and accesses to
these scalars from inner map operations is translated by using outinds to indirectly index
into these expanded arrays.

• flag is the flag array (also of length lenf lat ) that is used by segmented scan, and which
records with an one the start of each sub-array and has zero elements otherwise.

4.1 The Translation Context Σ
The context of the translation—denoted Σ and summarized in Figure 1—is represented by a record
containing the following fields:

5 Nvidia nvcc compiler reports that 74− 76 registers per thread are used by default and a speedup of up to 1.66× is achieved
by limiting the number of registers to 32.
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1 l e t he l p e r ( q : i n t ) ( shp : [ q ] i n t ) :
2 ( i n t , [ q ] i n t , [ ] i n t , [ ] i n t , [ ] i n t ) =
3 −− Assume shp = [ 3 , 1 , 2 ]
4 l e t i n d s = scanexc ( + ) 0 shp
5 l e t Bshp = map2 (λ s k→ i f ( s <= 0 )
6 then −1 e l se k
7 ) shp i nd s
8 l e t l e n f lat = Bshp [ q−1] + shp [ q−1]
9 −− Bshp : i 3 2 = [ 0 , 3 , 4 ] , l e n f lat = 6

10 l e t f l a g = s c a t t e r ( r ep l i c a t e l e n 0 )
11 Bshp ( r ep l i c a t e q 1 )
12 −− f l a g : [ l e n f lat ] i 3 2 = [ 1 , 0 , 0 , 1 , 1 , 0 ]
13

14 l e t inn inds = sgmscanexc ( + ) 0 f l a g
15 ( r ep l i c a t e l e n f lat 1 )
16 −− i nn inds : [ l e n f lat ] i 3 2 = [ 0 , 1 , 2 , 0 , 0 , 1 ]
17 l e t tmps = scaninc ( + ) 0 f l a g
18 l e t out inds = map ( −1) tmps
19 −− ou t inds : [ l e n f lat ] i 3 2 = [ 0 , 0 , 0 , 1 , 2 , 2 ]
20

21 in ( l e n f lat , Bshp , inn inds , out inds , f l a g )

Listing 4. Helper Function for Flattening

Vo ,Vt : set of variable names of the original

and target program, respectively.

Σ = < H ,V
map
inv ,A

par
var ,Svar ,A

seq
var ,L >

H =< w, q, i, o, shp, lenf lat ,

Bshp , inninds , outinds , flags >

H ∈ Vo ×Vt × . . . ×Vt

V
map
inv ∈ Set(Vo/t )

A
par
var ∈ Vo 7→ Vt

Svar ∈ Vo 7→ Vt

A
seq
var ∈ Vo 7→ Vt ×Vt

L = < j, no , ntmax > ∈ Vo/t ×Vo ×Vt

Fig. 1. The Structure of the Transformation Context Σ.

• H is a record containing helper variables for translation:
w is the original-program scalar variable w containing the length of the inner-parallel opera-
tion;

q is the number of outer-map iterations packed in the current bin;
i,o are the scalar variables used by the translation as formal arguments of the lambda body of

a flat map, and that take values from inninds and outinds , respectively.
The other variables—shp, lenf lat , Bshp , outinds , inninds and flag —have been discussed
before, and are assumed available in the translation process.

• V
map
inv represents the set of original program variables that are invariant to the outer map

(free variables). The translation directly reuses these names and may also insert variables of
the transformed program in this set.

• A
par
var is a finite map that binds each (inner) parallel array—of symbolic length w—in the

original code to their corresponding expansion (across q iterations) in the transformed code;
these array are stored in fast (shared) memory.

• A
seq
var is a finite map that binds each sequential array—i.e., that are computed sequentially

and are assumed to be of length other than w—in the original code to their expansion in the
transformed code. In this case, the array expansion is performed by padding to the maximal
size of the q subarray, and the expanded arrays are stored in global memory. The lookup
returns the expanded array name together with its maximal (padded) row/segment length.

• Svar is a finite map that binds each scalar variable in the original program that is variant
within the outer map to its corresponding expanded-array variable in the translation.

• L is a record containing the information of the sequential loop that has irregular count across
the q-packed iterations of the outer map:
– field j denotes the original-loop index, whose name is reused in the translation;
– field no denotes the original-program variable storing the loop count. The lookup nst =
Svar (n

o) must succeed inside such a loop, and the result nst is the array expansion of the
scalar no in the translated program;
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– field ntmax denotes the transformed-program variable recording the maximal count across
the q packed iterations of the outer map—i.e., ntmax = reduce max 0 nst ;

Whenever the translation encounters such a loop, this information is updated; otherwise,
outside such loops, filed no is set to a dummy value that fails the Svar lookup.

The translation process assumes that the initial context have the fields H and V
map
inv already

filled, while the other are unset. The translation requires that the input program is normalized to
A-normal form: let bindings can be seen as a block of statements followed by a sequence of result
variables, where the statement can be:

• unary/binary operations in the form of three-address code;
• a parallel operation, whose lambda body is also normalized;
• sequential loops whose body is also normalized and the loop initializers are variables.

For readability and clarity of exposition:
• The resulted program is not normalized and variables are not necessarily uniquely named.
• The translation rules use the fields of record Σ.H freely—i.e., omitting the Σ.H prefix.
• The discussion ignores the complications related to padding and to the non-trivial offsets at
which the sequential arrays of the current bin are located inside flat (global-memory) arrays
that extends across all bins; these details are tedious but straightforward to add.

4.2 Formalizing the Translation By Inference Rules
The core inference (rewrite) rules of our translation are formalized in figures 2 and 3. The rules
allow inferences of the form

• Σ ⊢out e ⇒ e ′, which are read “in context Σ, the source expression e appearing outside
the lambda function of an inner-parallel map operation can be translated into the target
expression e ′.”

• Σ ⊢inn e ⇒ e ′, which are read “in context Σ, the source expression e appearing inside
the lambda function of an inner-parallel map operation can be translated into the target
expression e ′.” In this case, the variablesH .o andH .i are assumed available in the declaration
of the enclosing map lambda function, and are taking values from H .outinds and H .inninds .

In an inference rule, the part below the line specifies the translation (the conclusion), i.e., this source
expression is translated to this target expression. The part above the line contains the premises
necessary for the translation to fire, including (i) generation of fresh names, (ii) lookup operations
into finite maps (that need to succeed for the rule to fire), (iii) recursive application of inference
rules, (iv) creation of new contexts, and (v) abbreviating sub-expression so that they fit in the space
of the conclusion.

We discuss the inference rules ⊢out from Figure 2:
G0 refers to a binary operation ⊙ between two scalar variables, in which one vo1 is invariant

to the outer map and the other vo2 is variant. The array-expanded translation of the latter,
vst2, is obtained after a successful lookup in Σ.Svar . The bound expression is translated to
a map that applies ⊙ to the invariant vo1 and each element of vst2. The result is stored in
fresh variable vst , a new context Σ′ is created by extending Σ.Vvar with the new binding
vo 7→ vst , and the let-body expression eo is recursively translated in the new context Σ′. If
both operands are invariant, then the original binding is left unmodified. If both are variant,
map2 is used to combine elements from both expanded arrays.

G1 refers to translating an array-indexing expression Qo[indo], where indo is outer-map variant
and Qo is a parallel array. The expanded arrays of the translation Qst and indst are looked up,
and the indexing expression is translated to a map that takes values k∈{0,. . .,q-1} and in

Technical Report, Vol. 1, No. 1, Article 1. Publication date: May 2021.



Re-Write Rules for Flattening in Fast Memory the Parallelism of Hull-White Trinomial Pricing1:11

Specialized-Flattening Rules for code outside inner-map constructs Σ ⊢out e
o ⇒ et

vo1 ∈ Σ.V
map
inv , vo2 < Σ.V

map
inv , vst2 = Σ.Svar (v

o
2 ), vst fresh name,

Σ′ = Σ with {Svar = Σ.Svar ∪ {vo 7→ vst }} Σ′ ⊢out e
o ⇒ et

Σ ⊢out let vo = vo1 ⊙ vo2 in e
o ⇒ let vst = map (λvt2 → vo1 ⊙ vt2) vs

t
2 in e

t
(G0)

Qst = Σ.A
par
var (Q

o), indst = Σ.Svar (ind
o) (i.e., both lookups succeed),

k,vst fresh name, etmap = map (λ k → Qst [Bshp [k] + inds
t [k]]) (iota q),

Σ′ = Σ with {Svar = Σ.Svar ∪ {vo 7→ vst }}, Σ′ ⊢out e
o ⇒ et

Σ ⊢out let vo = Qo[ ind
o ] in eo ⇒ let vst = etmap in et

(G1)

Qst = Σ.A
par
var (Q

o), indst = Σ.Svar (ind
o), vst = Σ.Svar (v

o), Σ′ ⊢out e
o ⇒ et ,

j = Σ.L.j, nst = Σ.Svar (Σ.L.n
o), (i.e., inside a loop), kt fresh name,

etinds = map2 (λ k → if j < nst [k] then indst [k] + Bshp [k] else -1) (iota q)

Σ ⊢out let Qo[ ind
o ] = vo in eo ⇒ let Qst = scatter Qst etinds vs

t in et
(G2)

n = Σ.H .w, vo < V
map
inv , vs

t = Σ.Svar (v
o), etr ep = map(λo → vst [o]) outinds

Qst fresh name, Σ′ = Σ with {A
par
var = Σ.A

par
var ∪ {Qo 7→ Qst }}, Σ′ ⊢out e

o ⇒ et

Σ ⊢out let Qo = replicate n vo in eo ⇒ let Qst = etr ep in et
(G3)

mo < Σ.V
map
inv , mo , Σ.H .w, mst = Σ.Svar (m

o), vo < Σ.V
map
inv , vst = Σ.Svar (v

o),

Σ′ = Σ with {V
map
inv = Σ.V

map
inv ∪ {mmax }, A

seq
var = Σ.A

seq
var ∪ {Xo 7→ (Xst , mmax )}}

k,mmax fresh names, etr ed = reduce max 0 mst , Σ′ ⊢out e
o ⇒ et ,

etmap = map (λk → vst [k/mmax ]) (iota (q*mmax ))

Σ ⊢out let X o = replicate mo vo in eo ⇒ let mmax = etr ed in let Xst = etmap in et
(G4)

Σ.H .w = length Qo , Qst = Σ.A
par
var (Q

o), vst , Qsscn fresh name,
Σ′ = Σ with {Svar = Σ.Svar ∪ {vo 7→ vst }}, Σ′ ⊢out e

o ⇒ et ,
e
sдm
scn = segscan (⊙) 0⊙ flag Qst ,

e
pck
map = map2 (λ b s → if s == 0 then 0⊙ else Qsscn[b + s − 1]) Bshp shp

Σ ⊢out let vo = reduce (⊙) 0⊙ Qo in eo ⇒ let Qsscn = e
sqm
scn in let vst = e

pck
map in et

(G5)

Σ.H .w = length Qo , Qst = Σ.A
par
var (Q

o), Xst fresh name,
Σ′ = Σ with {A

par
var = Σ.A

par
var ∪ {Xo 7→ Xst }}, Σ′ ⊢out e

o ⇒ et ,
e
sдm
scn = segscan (⊙) 0⊙ flag Qst

Σ ⊢out let X o = scan (⊙) 0⊙ Qo in eo ⇒ let Xst = e
sqm
scn in et

(G6)

Σ.H .w = length Qo , Qst = Σ.A
par
var (Q

o), flgstQ = Σ.A
par
var (flgs

o
Q ),

Xst , fresh name, Σ′ = Σ with {A
par
var = Σ.A

par
var ∪ {Xo 7→ Xst }},

e
sдm
scn = segscan (⊙) 0⊙ flgstQ Qst , Σ′ ⊢out e

o ⇒ et

Σ ⊢out let X o = segscan (⊙) 0⊙ flgoQ Qo in eo ⇒ let Xst = e
sqm
scn in et

(G7)

Fig. 2. Flattening rules for the code outside inner-parallel constructs (assumed to have all the same length).
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which Qst is indexed by indst[k] to which we add Bshp[k]—the start offset of each parallel
sub-array. Finally, the context is extended with the result array, and the let-body expression is
recursively translated (into et ). Indexing a sequential array is similar: the translation and its
row-padded size are looked up (Yst , mmax ) = Σ.A

seq
var (Y

o) and the indexing operation inside
the map becomes: Yst[mmax*k + indst[k]].

G2 refers to an in-place update to an element of a parallel array Qo[indo], where the index is
variant. The update occurs inside a loop of index j and variant count no , which is translated
to array nst—i.e., please note that the rule fires only if the lookup Σ.Svar (Σ.L.n

o) succeeds.
This case is translated by a scatter operation in which the to-be-updated indices into Qst are
computed similarly to G1, except that they are guarded by condition if j < nst[k]. If this
condition does not hold, then the current sub-array has logically finished the execution of the
loop, and index -1 is returned instead, which prompts the scatter to ignore the updates to
such sub-arrays. For updating in-place a sequential array, the indexing is computed similarly
to G1, i.e., mmax*k + indst[k], and the guard is also inserted.

G3 refers to a replicate-based initialization of a parallel array—i.e., the length of the original
array is w—where the replicated variable vo is variant, and has the array-expanded translation
vst . This is translated by a map in which the corresponding value for the elements of a
sub-array is taken by indirectly accessing vst with the sub-array indices stored in helper
array outinds , i.e., vst[o], where o ∈ outinds . Finally, the context is extended with the result
array (Qo 7→Qst ), and the let-body expression eo is recursively translated to et .

G4 is similar to G3 except that the replicate initializes a sequential array, i.e., of length mo

different than w. The translation of mo is the array mst , and its maximal element mmax is
computed by a reduce. The result array Xst is padded to have logically q rows of length
mmax , and the corresponding values of sub-array elements are selected from vst by using the
regular indexing k / mmax where k ∈ {0,. . ., q*mmax-1}.

G5 refers to flattening a reduce operation—on the original parallel array Qo of size w—nested
inside the outer map. This is translated by (i) performing a segmented scan on the translated
array Qst , and (ii) by selecting the last element of each sub-array (segment) by means of a
map (see epckmap ). The index of the last element is b+s-1, where b∈ Bshp represents the start
position of each sub-array, and s∈ shp represents the length of each sub-array. The Bshp ,
shp, and flag array (for segmented scan) are taken from Σ.H .

G6 refers to flattening a scan operation on an original parallel array Qo of size w. This is translated
(by definition) to a segmented scan where the flag array is taken from Σ.H .

G7 refers to a segmented scan on an original parallel array Qo of size w. This is translated to a
segmented scan, where the flag array is the translation of the original flag array—i.e., flgstQ
= Σ.A

par
var(flgs

o
Q)—because the original flag array is necessarily a parallel array (length w).

We now discuss the inference rules ⊢out from Figure 3:
G8 refers to an inner-map operation, necessarily of length w, which is applied directly to parallel

arrays. The rule normalizes/rewrites the input map into one that is applied to one array: the
iteration space, which is given by iota w = [0,. . .,w-1]. Then, essentially it relies on rule
G9 to perform the translation.

G9 refers to a map operation applied (only) to iota w, that occurs inside a sequential loop
of index j and variant loop count no , which is translated to array nst . The original map
is translated to a map2 operating on helper arrays inninds and outinds , and the original
lambda expression eok is translated by the ⊢inn inference rules to etk . These rules require that
H .i and H .o are available. To this extent H .i is set to the original formal argument of
the lambda k—which takes values from iota w, hence it preserves semantics since in the
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Specialized-Flattening Rules for code outside inner map constructs Σ ⊢out e
o ⇒ et

Σ.H .w = length Ao , k fresh name,
Σ ⊢out let Qo = map (λk → let a = A[k] in eoa) (iota w) in eolet ⇒ etall

Σ ⊢out let Qo = map (λa → eoa) A
o in eolet ⇒ etall

(G8)

Σ′ = Σ with {H .i = k}, Σ′ ⊢inn eok ⇒ etk , nst = Σ.Svar (Σ.L.n
o), j = Σ.L.j,

etmap = map2 (λk o → if j < nst [o] then etk else dummy) inninds outinds ,

Qst fresh name, Σ′′ = Σ with {A
par
var = Σ.A

par
var ∪ {Qo 7→ Qst }}, Σ′′ ⊢out e

o ⇒ et

Σ ⊢out let Qo = map (λk → eok ) (iota w) in eo ⇒ let Qst = etmap in et
(G9)

Σ.H .w = length Qo , Qst0 = Σ.A
par
var (Q

o
0 ), nst = Σ.Svar (n

o),

Qst , nmax fresh names, Σ′ = Σ with {A
par
var = Σ.A

par
var ∪ {Qo 7→ Qst }}

Σ′′ = Σ′ with {L = <j, no , nmax>, V
map
inv = Σ.V

map
inv ∪ {nmax }}

etr ed = reduce max 0 nst , Σ′′ ⊢out e
o
body ⇒ et0, et0 = let Qstr = e

t
r in Qstr

etinds = map2 (λ o i → if j < nst [o] then i else -1) outinds (iota lenf lat )
etbody = let Qstr = e

t
r in scatter Qst etinds Qs

t
r

Σ ⊢out loop (Qo) = (Qo0 ) for j < no do eobody ⇒

let nmax = etr ed in loop (Qst ) = (Qst0) for j < nmax do etbody

(G10)

Specialized-Flattening Rules for code inside inner-map constructs Σ ⊢inn eo ⇒ et

vo has scalar type, etk =

{
vst [o], if vst = Σ.Svar (v

o)

vo , otherwise

Σ ⊢inn vo ⇒ etk
(G11)

Qst = Σ.A
par
var (Q

o), Σ ⊢inn voind ⇒ etind

Σ ⊢inn Qo[ voind ] ⇒ Qst [ Bshp [o] + e
t
ind ]

(G12)

(Xt , hmax ) = Σ.A
seq
var (X

o), Σ ⊢inn voind ⇒ etind

Σ ⊢inn Xo[ voind ] ⇒ Xt [ hmax ∗ o + etind ]
(G13)

Fig. 3. Flattening rules for the code outside (G8-G10) and inside (G11-13) inner-map constructs.

translation it feeds from inninds—andH .o is used as the second formal argument of map2’s
lambda, feeding as expected from outinds . Finally, an if guard is inserted to return a dummy
value for the sub-arrays that have logically finished executing their loops (similar to G2).

G10 refers to the treatment of a loop whose count no is variant to the outer map. The (original)
loop-variant variable is assumed to be a parallel array Qo whose size is assumed invariant
to the loop. The count of the translated loop is padded to nmax : the maximal value of nst ,
which is the array-expansion translation of scalar no . A fresh variable is created for the
translation of Qo , denoted Qst , and the context is updated with the new binding Qo 7→ Qst

and the loop information. The body of the original loop eobody is recursively translated in the
newly created context Σ′′ and its result is assumed to be variable Qstr . This variable contains
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the correct loop result for the sub-arrays that have not yet finished the loop execution, but
contains dummy results for the ones that have already finished execution—see for example
rule G9. The latter values are stored in Qst , and an extra step is necessary to put together the
correct values for all subarrays. Themap2 operation computes the indices of all elements
belonging to loop-active sub-arrays and -1 for the rest. These indices are fed to a scatter
operation which updates Qst at the positive indices to the values of Qstr (and preserves the
other values). The scatter operation adds negligible overhead in practice because it can be
fused in most cases with the parallel computation of Qstr and with the computation of indices,
hence neither needs to be manifested in memory. The case when the loop-variant variable is
a scalar requires a similar scatter. The case when the loop variant symbols is a sequential
array, the scatter operation is not necessary, because such array can only be updated in place,
and rule G2 already ensures that loop-inactive sub-arrays are not updated.

We finally discuss the inference rules ⊢inn from Figure 3, which assume that the code of interest
is inside the lambda-expression of an inner map operation:
G11 refers to the translation of a scalar variable vo . If the scalar is variant to the outer map—i.e.,

lookup vst = Σ.Svar(v
o) succeeds—than the translation is vst[o], where o takes values

from outinds in the enclosing map. Otherwise, vo is used as it is because it is either invariant
to the outer map or it is a variable local to the lambda body of the inner map.

G12 refers to indexing into an original parallel array, where the index is stored in scalar vari-
able voind . This is translated by selecting from the translated array the element at index
Bshp[o]+ind

t , where indt is the translation of voind by rule G11, and Bshp[o] stores the start
offset of the current sub-array—both Bshp and o are taken from Σ.H .

G13 refers to indexing into a sequential array Xo at index voind . The translation Xst and the
maximal row length hmax are obtained by a lookup in Σ.A

seq
var , and the start offset of the

current sub-array is computed by hmax ∗ o.

5 COMPILER RELATEDWORK AND CONCLUSIONS
Our implementation draws inspiration from a number of compiler techniques. The gpu-flat version
builds on the flattening transformation [Blelloch 1990; Blelloch and Greiner 1996; Blelloch et al.
1994], which maps irregular nested parallelism into a sequence of flat-parallel ones, and has been
also implemented for GPU execution [Bergstrom and Reppy 2012].

There are two key differences here: The first one is that flattening pushes all sequential recurrences
outside the parallel code, and it introduces many prefix-sum operations that are executed in global
memory and thus limit performance gains. Instead, we bin-pack inner parallelism at Cuda-block
level so that temporarily locality can be efficiently exploited by maintaining and reusing arrays
in/from shared (scratchpad) memory.

The second difference is more subtle and refers to the fact that the traditional flattening transfor-
mation replicates variables that bound in the outer map operation but are free in the inner parallel
constructs. This may lead to memory explosion, which might prevent the use of shared memory,
which is a scarce resource. In comparison, our procedure does not expand such variables, but instead
indirectly accesses them by means of auxiliary arrays, such as outinds , inninds , Bw in Listing 3.
The latter can be seen as part of the shape representation of an irregular array of arrays, which is
reused between similarly-shaped arrays, such as Qss and Css. Furthermore, such auxiliary arrays
are invariant to the sequential loop, hence they are created once and the overhead is amortized
across the execution of many loop iterations.
The pricing algorithm that motivated our flattening approach is part of a class of applications,

whose best parallelization strategy goes against the common-wisdom of always sequentializing
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the parallelism in excess of what the hardware can support, because this reduces the per-thread
memory footprint and allows to better exploit locality of reference. Another example that benefits
from a similar optimization strategy has been studied in the remote-sensing field, where GPU
acceleration enabled to apply at continental scale an algorithm that analyses satellite data to detect
landscape changes such as deforestation [Gieseke et al. 2020]—but there, the flattening step is
straightforward.

Our techniques for optimizing the two-level divergence were inspired by data reordering transfor-
mations aimed at improving locality of reference by dynamically (and systematically) reorganizing
the array elements in the order in which they are accessed in loop iterations [Ding and Kennedy
1999; Strout et al. 2003, 2018]. Such transformation typically use an inspector-executor model,
which has also been used (i) to compute sufficient conditions for loop parallelization [Oancea
and Rauchwerger 2013, 2015; Rus et al. 2003] or (ii) to restructure a partially-parallel loop into
a sequence of parallel waves [Rauchwerger et al. 1995]. In the context of software thread-level
speculation [Dang et al. 2002; Rauchwerger and Padua 1999]—which is another technique that
extracts partial loop parallelism at runtime—similar work was aimed at optimizing at runtime the
layout of the speculative storage [Oancea and Mycroft 2008], or at optimizing communication
overheads by optimistic execution of remote calls [Oancea et al. 2005] in a distributed-component
framework [Chicha et al. 2004; Oancea and Watt 2005]. Finally, other work optimizes locality by a
memory-centric approach that prefers executions of work-items from the current memory partition
and delays the others [Oancea et al. 2009].

However, we are not aware of any compiler framework that is able to derive the gpu-flat version
of the code. For example the code transformations of the polyhedral Pluto compiler [Bondhugula
et al. 2008; Verdoolaege et al. 2013] prioritize optimization of locality of references over the degree of
parallelism, but it does not support the flattening transformation (based on scans). The data-parallel
language Futhark [Elsman et al. 2018; Henriksen et al. 2020, 2017] supports flattening, but only of
regular parallelism, i.e., the parallel sizes of inner operations cannot vary across different iterations
of an outer map. Flattening of irregular can be performed manually in Futhark, but it results in code
that maintains all intermediate arrays in global memory, and is significantly slower than gpu-flat.
While Futhark’s incremental-flattening transformation [Henriksen et al. 2019] can create code
versions that utilize shared memory, it does so only when all inner-parallel constructs have the
same size, and this is not the case of gpu-flat, which has some parallel operation of size lenf lat
and others of size q.6

The work presented in this document may provide useful insights into how to integrate such a
technique into the repertoire of a compiler.
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