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Abstract

Exploiting the increasing amounts of computational power, that is available
on modern parallel hardware, is an ongoing research topic. The issues is
to make parallel programming more accessible, maintainable and efficient
for use in in the real world. Many solutions have been proposed, rang-
ing from library support for existing mainstream programming languages
[14] [16], while outer solutions involve entirely new programming languages.
In this thesis the Futhark programming language [12] [9] is examined in
the context of writing financial applications, that contain many compute-
intensive problems that are inherently parallel, and can therefore benefit
enormously in terms of performance, when executed in parallel [1]. One
such compute-intensive task is simulation of the financial market, in order
to price products and calculate risk factors, in particular Monte Carlo sim-
ulation. This thesis describes how a small Value-at-Risk (VaR) engine is
creating, using Futhark for Monte Carlo simulation, for pricing of finan-
cial products. Benchmarks for the resulting VaR-engine shows significant
performance improvements when executed on parallel hardware, compared
to sequential execution. Furthermore this thesis argues that while Futhark
shows promising results in terms of the complier technology, there are still
some limitation in terms of expressiveness, and the programming model as-
sociated with the language and parallelism, that requires the user to have
certain expertise and knowledge about parallel algorithms.
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Chapter 1

Introduction

Modern financial institutions use large systems for business critical applica-
tions, such as risk calculation engines for VaR (Value at Risk). These engines
run thousands of calculations that are highly compute-intensive, use large
amounts of computational resources, and require the financial institutions
to acquire and administrate large amounts of physical machines, which use
large amounts of energy in terms of actual power consumption and require
specialists to manage.

These business critical systems are built from different components,
many of which are what would be called legacy systems, in that they have
been a part of the operational system for typically several decades, and were
often built with technologies that were not designed to work efficiently on
modern hardware. For further development of these systems, other technolo-
gies have been introduced along side the old technologies, requiring compli-
cated exchange of data between different programming environments, re-
sulting in wasted resources and potential utilization of the available modern
hardware, such as GPUs (Graphical Processing Unit).

Since the early 2000s, utilizing GPUs to perform non-graphical calcula-
tions has been given more attention in research and practical use under the
term GPGPU (General-purpose computing on Graphical Processing Unit).
Since GPUs have a different architecture designed towards highly parallel
computations, in particular image generation for graphical applications, tra-
ditional algorithms and programming models do not map directly. Research
on parallel programming on GPUs in general has seen increasing interest.
There are many examples of algorithms designed to take advantage of the
architecture of GPUs, which sometimes show an increased performance by
an order of magnitude or more. Application of GPGPU, is mostly found in
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areas such as Financial programming, Machine Learning, and other scientific
areas with demanding numerical calculations.

At the Computer Science Department of the University of Copenhagen,
the research center HIPERFIT (High Performance Programming for Finan-
cial IT), which includes several areas of research, conducts research in com-
putation on highly parallel hardware. Futhark is one of the products of
the research at HIPERFIT. Futhark is a Purely Functional Data-Parallel
programming language, which compiles down to efficient code to be run on
GPUs. Futhark has a highly optimizing compiler that transforms the pro-
gram in such a way that it takes advantage of the parallel capabilities of the
hardware, while still emphasising a simple purely functional programming
model.

The motivation for this thesis is to leverage the capabilities of Futhark,
and to create a proof of concept risk calculation engine, for a business critical
area in financial institutions such as calculation of Value at Risk (VaR).
The goal is to show that the model provided by Futhark is viable in the
context of a financial institution described in the first section, such that
these institutions can use the results and eventually move towards such a
parallel model for their systems. In particular the computations of VaR
has been identified by the HIPERFIT partner SimCorp as a challenging
computation, which without the proper data-parallel processing can take
hours to compute for customers with large portfolios [5].

1.1 Problem statement

Will programming financial systems with high performance demands, ben-
efit from implementations in a language such as Futhark? How can such a
system be structured to take advantage of capabilities of Futhark in regards
to GPGPU programming and a Parallel Functional Programming model
in general? Specifically how can risk calculations such as VaR (Value at
Risk) be mapped to efficient algorithms that takes advantage of the highly
parallel modern hardware available. Efficient calculations of VaR involves
Monte Carlo methods for simulation, commonly used in finance. Monte
Carlo methods for finance in particular involves simulation of many differ-
ent scenarios or paths. The nature of such a method involves many nested
computations with an irregular structure, which classifies the problem as an
irregular nested data parallel problem, an area of research most noticeably
explored in the NESL programming language, as with a general model for
dealing with nested parallelism. Compared to NESL, Futhark has a real
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implementation on GPUs, with a restricted but often sufficient model for
dealing with nested parallelism. Is the nested parallelism support in Futhark
viable for financial computations specifically VaR, using Monte Carlo meth-
ods.

1.2 Course of action

To examine the above problem statement, a VaR engine in Futhark will be
created, capable of calculating the VaR of a small portfolio of financial prod-
ucts. To review the performance and the amount of parallelism achieved,
benchmarks will run on several platforms examining various parts of the
program, using sequential execution of the same programs as baseline. To
review the correctness of the VaR engine, test comparing simulated prices
with actual prices will be provided. The structure of the Futhark program
will be reviewed i terms of how the different constructs provided by Futhark
are sufficient for programming financial applications.

1.3 Related work

The question of how to make GPGPU programming more accessible and
maintainable for real-world scenarios is an ongoing research area, resulting
in various approaches. Futhark is one such approach by creating a new pro-
gramming language with many of the constructs found in general purpose
languages, and letting the user define the structure of the programs resem-
bling the problem domain [1]. The focus of Futhark is more towards the
technology with a highly optimizing compiler that other languages can take
advantage such as in [10] where APL is transpiled into Futhark. Another
example of targeting Futhark as a backend can be found in [2], where a DSL
for pricing financial contracts provides a declarative approach of GPGPU
programming.

1.4 Readers guide

This thesis is comprised of three chapters. The first chapter introduces the
theory behind the financial domain used including options, VaR and Monte
Carlo simulation. The second chapter introduces the concepts of parallelism
including paradigms, cost model and an introduction to the Futhark pro-
gramming language. The third chapter present a VaR engine created using
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Futhark, with a deatiled overview of design, results of experiments and test
results.
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Chapter 2

Financial Domain

The following chapter will introduce the theoretical knowledge needed in
order to create a program to calculate VaR. First options are introduced,
in particular barrier options, that will serve as the financial instrument on
which VaR calculations will be based. Hereafter an introduction to VaR is
given. Lastly Monto Carlo simulation is introduced, in the context of VaR.

2.1 Vanilla Options

An option is a financial instrument that gives the holder of the option the
right, but not the obligation to exercise the option at a given maturity
date. There are two types of what are known as vanilla options or European
options, namely call and put options. A call option gives the holder the
right to buy the underlying asset at what is known as the strike price at a
given date. A put option gives the holder the right to sell at a given strike
price on a give maturity date [13, p. 7].

2.1.1 Valuation

Valuation of vanilla options is mostly based on the Black-Scholes model,
which provides a formula that enables a fair pricing of call and put options
respectively. The Black-Scholes model is based on some key assumptions.

• Markets are efficient meaning they cannot be predicted

• Volatility of the underlying asset and interest rates are constant

• Returns are normally distributed
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The formulas for option pricing based on the Black-Scholes model, are de-
rived from the following formula

dS = µSdt+ σSdz (2.1)

assuming the price of the underlying asset S follows a Geometric Brownian
motion, where σ is the volatility of the rate of return, µ is the expected
return rate of the underlying asset, and dz is a Wiener process The following
formulas are for pricing European call (C) and put options (P ) [13, p. 313].

C = S0N(d1)−Xe−rTN(d2) (2.2)

P = Xe−rTN(−d2)− S0N(−d1) (2.3)

where

d1 =
ln(S0/X) + (r − σ2/2)T

σ
√
T

d2 =
ln(S0/X) + (r − σ2/2)T

σ
√
T

= d1− σ
√
T

S0 = Asset price a start time t
X = Strike price
r = Risk-free interest rate
σ = Volatility of the relative price change for the underlying asset
T = Time to the options Maturity date in years
N(·)= Cumulative normal distribution function

The payoff for European options can be expressed as max(0, S − X) for
call options, and max(0, X − S) for put options. If we have a payoff that is
greater than zero, we say the option is in the money, and if the payoff is zero
or below the option is out of the money. In practice however, options come
with a premium that is not accounted for in the payoff functions, therefore
making a profit requires a higher payoff.

2.2 Barrier Options

Barrier options belong to a set of instruments commonly known as Exotic
options, that share the characteristic that they depend on the behaviour of
the price of the underlying asset during the option’s lifetime.
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Barrier options are different from vanilla options, in that they have an
additional parameter called the barrier, denoted Sb. The barrier acts as an
activation point, based on the underlying asset price, deciding if there is
any payoff or not. There are two types of barriers, knock-in and knock-out.
Knock-in means that the option becomes active when a certain price for
the underlying is reached, conversely knock-out means the option becomes
worthless if a certain price is reached. We also use the terms down and up
to categorize Barrier options where down means that Sb < S0, and for up
we have that Sb > S0. A down-and-out call options, is a call option that
becomes worthless when the underlying asset price goes below the barrier,
therefore it would be a knock-out option. Another example is an up-and-in
put option, which is a regular put option that only becomes active once the
barrier is hit [13, p. 579].

2.2.1 Valuation

Barrier options are path-dependent, meaning that the valuation is depen-
dent on all monitored asset prices for given a path from t0 to T , since
the asset price might hit the barrier at any point. Each type of barrier
option features its own payoff function. The payoff function for a barrier
option is defined based on the type of option (i.e., in/out, down/up and
call/put). If we consider a down-and-out call option, we have the payoff
function max(0, ST − X), where X is the strike price, and ST is the last
price on the path. Since we are dealing with a call option, we are interested
in having as high an ST as possible. Closed formulas for calculating barrier
options are also derived from the Black-Scholes model. There are 8 different
formulas, one for each type of barrier option. The following formula is used
to value a down-and-out put option.

pdo = −Se−q(T−t)(N(d3)−N(d1)− b(1−N(d6)))

+Xe−r(T−t)(N(d4)−N(d2)− a(N(d7)−N(d5))) (2.4)
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where

d1 =
log(S0/X) + (r + σ2/2)T

σ
√
T

, d2 =
log(S0/X) + (r − σ2/2)T

σ
√
T

,

d3 =
log(S0/Sb) + (r + σ2/2)T

σ
√
T

, d4 =
log(S0/Sb) + (r − σ2/2)T

σ
√
T

,

d5 =
log(S0/Sb)− (r − σ2/2)T

σ
√
T

, d6 =
log(S0/Sb)− (r + σ2/2)T

σ
√
T

,

d7 =
log(S0X/S

2
b )− (r − σ2/2)T

σ
√
T

, d8 =
log(S0X/S

2
b )− (r + σ2/2)T

σ
√
T

and where

a =

(
Sb
S0

)−1+ 2(r−q)
σ2

, b =

(
Sb
S0

)1+
2(r−q)
σ2

The above formula assumes continuous time monitoring. In practice, how-
ever, such financial instruments are monitored in discrete time, such as once
a day on the time of market closing. This discretisation will make the price
of the option cheaper, since there is a lower risk of the option hitting the
barrier. To apply discrete time monitoring, however, we need a correction
value for the valuation formulas, to approximate the lower risk. An approx-
imation has been derived in part from the Riemann zeta function [3, p. 534]
in order to correct the barrier level, resulting in the following formula

Sb = Sbe
±0.5826·σ

√
δT (2.5)

2.3 Value at Risk

2.3.1 Risk

Value at Risk (VaR) is a method for determining the overall risk exposure
of a trading book, in the context of a bank, portfolio or other financial
entities. The overall goal is to discover the largest amount of loss that can
be expected, with a certain level of confidence. More formally we define
VaR as follows

VaR is a measure of market risk. It is the maximum
loss which can occur with X% confidence over a holding
period of t days [4, p. 30]
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Assuming we have portfolio with a VaR of $100,000, where we have set a
confidence level of 95%, then there is a 5% chance that the loss on one
trading day will be greater than $100,000 [4, p. 30]. In other words, VaR
aims to provide an upper-bound on the loss on a portfolio, that can be
expected for given period of time, with a certain level of confidence.

2.3.2 Calculating VaR

Although there are different approaches for valuation of a portfolio used in
calculating VaR, they follow the same general steps [4, p. 36].

1. Value the portfolio at t0 giving the current value.

2. Revalue the portfolio at time T , given the value of the portfolio for
the time horizon the VaR calculation seeks to predict.

3. Revalue the portfolio with a number of alternate market factors, re-
sulting in a distribution of possible value changes. This enables VaR
to be expressed in terms of a confidence level.

4. Calculate the maximum that can be lost based on the confidence level
and the given time horizon.

Figure 2.1: VaR in the context of the normal distribution [4, p. 36]

In order to calculate VaR, we need a method to value the current portfo-
lio, and afterwards revalue the same portfolio with different market variables.
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There are servaral different approaches, such as the historical method, that
as the name implies use previous market changes to estimate the future
value of the portfolio. A different and more flexible method is to use Monte
Carlo simulation, where we simply simulate the market up until time T , and
value the portfolio at time T .

As an example assume a portfolio of simple assets with a value of $100,000,
and we assume that returns are normally distributed. The volatility of the
portfolio is 3% and we wish to calculate VaR with a 95% confidence level,
which is equivalent to 1.6449 standard deviations, we get the following cal-
culation

$100, 000 · 0.03 · 1.6449 = $4934, 7 (2.6)

If we wish a confidence level of 99%, which is equivalent to 2.3263, the VaR
will increase accordingly.

$100, 000 · 0.03 · 2.3263 = $6978, 9 (2.7)

2.4 Monte Carlo Simulation

In Monte Carlo simulation, we aim to approximate a given deterministic
quantity, using randomness to sample the problem space. In practice it
means that we are approximating an expected value E(X), by generation
a large amount of samples, and taking the average of the results. The
method is largely supported by the law of large numbers, a central result in
probability theory, that states that the average of a large sample size, will
be close to the actual value.

Suppose we wish to estimate a value µ then we have

µ = E(g(X)) (2.8)

Where g is some function. Now we generate n independent random samples
X1, X2, .., Xn, and we provide the follwing Monte Carlo estimator

µ̂ =
1

n

n∑
i=1

g(Xi) (2.9)

By the law of large numbers we have that when n→∞, µ̂→ µ

2.4.1 Low-discrepancy sequences

One of the core problems with Monte Carlo simulations is convergence, in
regards to how many simulations needs to be performed before it results
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(a) Random numbers (b) Sobol sequence

Figure 2.2: Comparison of 200 points generated from random numbers and
sobol sequences

in an estimation close to the expected value. It has high importance also
in regards to performance, if the number of paths needed to be simulated
can be reduced. The standard naive approach is to use pseudo-random
numbers for sampling, but this approach often requires a high number of
simulations, since pseudo-random numbers tends to create local clusters,
and therefore cover a smaller area of the distribution. An alternative ap-
proach is to use a low-discrepancy sequence. Low-discrepancy sequences
has the property of having values that are almost perfectly distributed in a
grid-like pattern, without clustering or having duplicate values. Figure 2.2
clearly shows how 200 points generated from a low-discrepancy sequence
are more evenly distributed. They are not random in nature, and will
produce the same values if the same sequence is requested. Several low-
discrepancy sequences exist such as Halton and Sobol. but the focus in this
thesis will be entirely on Sobol sequences. Both Sobol and Halton are based
on the generalization of the Van der Corput one-dimensional sequence. The
idea behind Van der Corput is illustrated in the following [3, p. 382].

We represent the number n in the base b

n = (...d3d2d1d0)b (2.10)

We then represent the base b version of n in decimal, by prefixing ”0.” and
preserving the base representation

h = (0.d0d1d2d3...)b (2.11)
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The formal equation for finding the n’th number in a Van der Corput se-
quence is given by

V (n, b) =

m∑
k=0

dkb
−(k+1) (2.12)

As an example, if we wish to find the number 2 in a Van der Corput sequence
in base 2 (i.e. binary), we have the binary representation for 2 (...0010)2,
and the reversed decimal representation (0.0100...)2, and, using formula 2.12
we have V (2, 2) = 0 · 2−1 + 1 · 2−2 = 0.25.

Sobol sequences

A Sobol sequence is similar to a Halton sequence and based on the Van
der Corput sequence, but with the key difference of only using base 2 as
its integer expansion, which has the effects of making the Sobol sequence
more regular in higher dimensions, and also performing better on computers
because of their binary structure.

A Sobol sequence is generated using so called direction numbers, which
is a set of numbers less than 1.

First we consider the representation of the integer n in a Sobol sequence,
which is similar to that of the Van der Corput sequence, but strictly in base
2(i.e. binary) [3, p. 390].

n = (...b3b2b1b0)2 (2.13)

Retrieving the n’th Sobol number is done by computing the bitwise exclusive
OR with a direction number corresponding to each index in the binary
representation.

x(n) = b1v1 ⊕ b2v2 ⊕ ... (2.14)

The direction numbers need to be chosen properly in order for a low-discrepancy
sequence to be generated correctly. All direction number are initialized with
odd integers such that 0 < mi < 2i, i = 1...b. Generating the direction num-
bers, involves exploiting the properties of primitive polynomials, meaning
polynomials that cannot be reduced further, and the fact that they have
binary coefficients.

P = xd + a1x
d−1 + . . .+ ad−1x+ 1 (2.15)

where an example of such a polynomial could be

x3 + x+ 1
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The direction numbers are generated using the following formula.

mi = 2a1mi−1⊕ 22a2mi−2⊕ . . .⊕ 2d−1ad−1mi−d+1⊕ 2dmi−d⊕mi−d (2.16)

where m1 . . .md are numbers chosen arbitrarily to initialize the recurrence
given they are odd and mi < 2i. Direction numbers can also be expressed
as the following binary fraction.

vi =
mi

2i
(2.17)

After generating the direction numbers, a Sobol sequence can be generated.
An optimization using a Gray Code representation of n, is often used. The
benefit of using a Gray Code representation is that the generation of a
Sobol sequence becomes simpler in that given the n’th Sobol number in a
sequence xn, we have that xn+1 = xn ⊕ vc, where c is defined as the index
of the rightmost zero bit bc in the binary representation of n [3, p. 393].

2.5 VaR using Monto Carlo simulation

Estimation of VaR as outlined in Section 2.3.2 can relatively simply be ap-
plied using Monto Carlo simulation. However, since the aim of the VaR
engine is to enable estimation of VaR on a portfolio containing barrier op-
tions, there are some additional concerns to address. The first step is to value
the portfolio at time t. We Denote the value of the portfolio as V (S(t), t),
where S is a vector of risk factors such as interest rates or asset prices. As
part of the simulation the risk factors are changed after time steps of δt ,
and the portfolio is priced again with the new risk factor after a shock has
been applied giving us

δSi ≡ Si(t+ δt)− Si(t), i = 1, ..., n. (2.18)

Where Si denotes the current value of risk factor at time t + δt such that
Si = Si(t), i = 1, ..., n, and δi denoting the shock such that δi = δSi [3, p.
601]. In this thesis we will focus on asset prices as the only risk factor that
will change for each simulation of the portfolio value. For VaR we wish to
calculate the value of the portfolio at δt time steps ,where δt could be one
day or twenty days in the future. We will generate n number of market
scenarios based on the asset price S0, giving us n number of paths going
from t to t + δt. For each path we will take the last price and use this
a the asset price for further pricing, again using Monte Carlo simulation,
where the change in asset price acts as the shock. Since we are working
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with path dependent options, in particular barrier options, we have to look
at the entire path including the path from t to t+ δt, and not only the path
from t to t+ T . This is because the price might hit the barrier at any given
point on the path, therefore if the barrier is hit between t and t+ δt it has
already become worthless or active. The following list summarises the steps
involved.

1. Value the portfolio at time t giving us V (S, t)

2. Simulate paths for S from t to t+ δt

3. For each simulated path ending at t+ δt, use the asset price at t+ δt,
and again simulating paths using Monto Carlo simulation from t+ δt
to t+ T , but pricing the entire path from t to t+ T returning Si.

4. From each result in Si, calculate the loss Li using

Li = V (Si, t+ δt)− V (S, t) (2.19)

5. Sort Li and return the value at the index corresponding to the required
percentile, giving the VaR
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Chapter 3

Parallelism

The following section presents an introduction to parallelism and parallel
programming in general. A cost model for how to reason about parallel
algorithms is introduced in detail. This is follow by a brief introduction to
GPUs, since it is the only parallel hardware target in this thesis. Lastly a de-
tailed introduction to the Futhark programming language is given, including
an overview of language constructs and tools.

3.1 Parallel Programming

Parallel programming is the concept of performing at set of computations
simultaneously, such that a program performs a given computation using
multiple computing resources, in contrast to sequential programming where
execution is done on a single computational resource. If broken down into
steps, a parallel program execution has the following steps

1. Break the data into equally sized chunks, typically one chunk per
computational unit.

2. Execute the program concurrently one each computational unit

3. Collect the results with a given reduction

4. Return the result to the main thread of execution

Parallelism is often confused with Concurrency, since the concepts are re-
lated. Concurrency is the coordination of multiple processes. By a process
we mean some unit of a program, such as a function. Another aspect of
concurrency is communication between the processes to coordinate program
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(a) Task-parallelism (b) data-parallelism

Figure 3.1: Illustration of task-parallelism vs data-parallelism

execution. It is important to note that a concurrent program does not need
multiple CPUs, since concurrency is purely about program structure, there-
fore execution of a concurrent program on a single CPU will interleave the
execution, such that longer running processes will be handled by secondary
threads, where the main program can continue on the main thread of exe-
cution.

Parallel programming is by definition deterministic, in that a parallel
computation will result in the same output on every execution, also if the
program is executed sequentially on one CPU. This aspect is in contrast
to concurrency that by definition is non-deterministic, since we cannot nec-
essarily expect the same result, or any result at all on each execution. A
typical example of non-determinism in the context of concurrency is calling
a web-service, since we cannot expect it to return a result on every request,
since the web service might not respond.

Within the domain of parallel programming, there are two main paradigms,
task-parallelism and data-parallelism that are defined as follows.

• Task-parallelism - simultaneous execution of multiple parts of a pro-
gram typically a function, on multiple datasets, on multiple computa-
tional units.

• Data-parallelism - simultaneous execution of a single part of a pro-
gram on multiple computational units, with each unit processing a
separate part of the data.

The different paradigms vary in the applications in which they are ap-
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plied where Task-parallelism is typically applied in a scenario where we have
multiple different tasks, say task1, task2, · · · , taskn, that we wish to process
in parallel. All these tasks might take different datasets as parameters,
and produce different datasets as results. Data-parallelism is typically ap-
plied in applications with high data-processing demands, such as scientific
computing or other domains where there are a large amounts of numerical
calculations.

3.1.1 Cost model

When analysing the theoretical efficiency of a parallel algorithm, we use the
measures work and span and the number of processors. When reasoning
about the running time of parallel algorithms, we assume an ideal parallel
computer with P processors. We denote the total running time of a parallel
algorithm on P processors as Tp. Work is the total running time for the
execution of the parallel algorithm on a single processor denoted by T1.
Span is the length of the longest execution path, also called the critical path
of the parallel algorithm denoted by T∞. Work and span provides a way to
reason about the lower-bound of the running time of a parallel algorithm
executed on P processors. On an ideal computer with P processors, we can
only perform P work per processor, that is we can perform at most P · Tp
work. Because we have total work of T1 on one processor, we must have
P ·Tp ≥ T1, and then by dividing with P we get what is called the work law
in 3.1.

Tp ≥ T1/P (3.1)

An ideal computer with P processors cannot be faster than an ideal com-
puter with an infinite number of processors. Therefore the running time Tp
is bounded by T∞. This is called the span law.

Tp ≥ T∞ (3.2)

For measuring the actual speed-up of a parallel algorithm, we have the ratio
T1/Tp of the running time on one processor, and the running time on P pro-
cessors. The speed-up is bound by the number of processors available such
that T1/Tp ≤ P , meaning we cannot achieve a theoretical speed-up greater
than the number of processors available on an ideal parallel computer. If
we look at a simple example such as the map function that maps over a
sequence of size n and applies a function f to each value x. We assume here
the programming language providing map is purely functional, and no side
effects can occur. To make a parallel version of map we would split the input
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into P equally sized chunks, and execute each chunk on each processor, since
we do not have any data dependencies. Assuming f has O(1) running time,
the work of the algorithm would be O(n) since we would map through a se-
quence of length n on one processor. The span however would be O(1) since
the algorithm only splits the sequence once, making the length of the longest
execution path 1. Therefore we have the speed-up T1/Tp = θ(P ), thus we
have linear speed-up [6]. However, theoretically possible, linear speed-up as
the number processor increase is rarely achievable, because of the overhead
associated with orchestrating execution on multiple cores.

3.1.2 GPUs

GPUs (Graphical Processing Units), have since the 90s becomes more and
more commonplace in PCs, because of the increase in applications with
high graphical processing demands, in particular video games, and are now
available in almost all personal computing devices from mobile phone to
tablets and low-end laptops. Over the last couple of decades the processing
power of GPU has increased and their inherit architecture of a highly parallel
piece of hardware, have made them very well suited for parallel programming
applications, beyond those found in the graphical processing domain, giving
rise to the term general-purpose GPU programming (GPGPU) [9, p.10].

A Program on a GPU is called a kernel, and is launched by the host
system, which is the a CPU-controlled computer in the conventional sense.
A kernel contains some amount of threads, that are independent where each
thread executes the same sequential program. Since each thread performs
the same sequential program, the number of threads is the quantity that
determines the amount of parallelism expressed in the program. The limiting
factor of execution speed however is memory access, therefore access patterns
are very important. Modern GPUs have several hierarchies of memory

• Registers - Small memory local to each thread for holding scalars
and small arrays

• Local memory - Small memory shared among a group of threads.

• Global memory - Large GiB sizes memory accessible for all thread
groups

The nature of the program whether it being a memory- or computational-
bound problem is therefore critical in the amount a speed-up achievable by
solving the problem in parallel [9, p.60].
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Programmering interface

Writing programs to target parallel hardware also referred to as accelera-
tors, are commonly achieved using specialized frameworks, that impose a
specific programming model. There are two such framework that are most
commonly used, namely CUDA and OpenCL. CUDA is a proprietary frame-
work, developed by the GPU manufacturer Nvidia, targeting their line of
products. CUDA is specific to Nvidia hardware and various software re-
quirements. OpenCL is an open standard for a programming interface for
executing programs not only on GPUs, but also on other heterogeneous
computing platforms. In contrast to CUDA , OpenCL supported on more
hardware and by more compilers, however, OpenCL still requires driver
support. They both have in common that they provide a C like imperative
programming language, on top of regular C/C++, that is hard to program.

3.2 Futhark

There are various issues regarding provided the programming interfaces such
as CUDA and OpenCL, that are a large source of complexity which makes it
challenging to write programs that take advantage of the available parallel
hardware.

• Programming languages - As mentioned, imperative C like pro-
gramming languages are required to write parallel programs. This of
course has the same problems associated with imperative programming
in a sequential context, but with the added complexity of expressing
the problem in a way that can be maintained, be data-race and bug
free, while also performing well on the targeted hardware.

• Hardware - Parallel hardware has very different characteristics. There-
fore the programmer needs a certain amount of expertise and knowl-
edge about the hardware.

• Parallel algorithms - Algorithm design has to be done from the
perspective of the parallel cost model. This means many standard al-
gorithms has to be rewritten in order to be efficient and take advantage
of the hardware.

The Futhark programming language [12] [9] aims to tackle these challenges
by providing a different model of programming, than the ones provided by
OpenCL and CUDA at a programmer level. This is done by providing
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the programmer with high level constructs to express parallel programs,
while an optimizing compiler maps the final executable down to an efficient
representation for parallel hardware. Futhark is a purely functional array
programming language, based mainly on the syntax and concepts of the
Standard ML programming language. Futhark provides all basic constructs
for expressing programming problems, such as value declarations, functions
and records, but also special parallel programming constructs, that will
presented in Section 3.2.1. The feature set does restrict Futhark to work
as a special purpose language that is highly optimized at targeted for high
performance parallel programming tasks.

3.2.1 Parallel programming constructs

Futhark supports data-parallelism, explicit in the constructs provided, but
with sequential semantics enabling programs to be understood entirely as
a sequential series of steps. This is not unique to Futhark, but an overall
property of being a purely functional programming language, which enables
transformations of the resulting executed code to make it operationally par-
allel [9]. As mentioned Futhark provides a set of second-order array combi-
nators (SOACs), which gives the programmer high level functions for pro-
gramming with arrays. The most commonly used SOAC is map which is
available in most functional programming languages, that takes an array
and applies a pure function to each element, producing a new array. It is
trivial to see how map can be run in parallel over multiple execution units, by
splitting an array into a number of chunks corresponding to the number of
CPUs, for example. Futhark also provides other core SOACs such as filter
selection and reduce for reduction. It is important to note however, that
some SOAC has certain constraints in order to guarantee parallel execution
in a deterministic manner, such as reduce, which requires the reduction
function to be associative, and a neutral element need to be supplied. This
falls upon the programmer to insure that constraints are met, since the
properties are not proved by the compiler. Futhark has also support for
nested parallelism, where a parallel function executed in parallel itself can
contains parallel code such as a map. This nesting is achieved through a flat-
tering algorithm, that in essence transforms a nested parallel program into
a flat data-parallel problem. Flattering has been pioneered by the NESL
programming language in particular.
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3.2.2 Code transformations

As mentioned, Futhark can perform certain optimisations on the resulting
code. The primary of such transformation is fusion. Assume we have a
Futhark program using two map operations on an input array shown in
Listing 1. It has been shown that applying one map as input to a second
map is equivalent to applying the two mapping functions to a single map, or
more formally

map f ◦map g = map (f ◦ g) (3.3)

In Listing 1, a conceptual example of fusion of two map operations is shown.
Since Futhark is purely functional, it can take advantage of such equivalences

1 -- add n and square each element

2 let func(arr: []i32, n: i32) =

3 let adds = map (\x -> x + n) arr

4 let sqs = map (\x -> x**2) adds

5 in sqs

6

7 -- manual fused version

8 let func_fus(arr: []i32, x: i32) = map (\x -> (x + n)**2) arr

Listing 1: Conceptual example of fusion

and uses fusion in such cases. In imperative languages, such transformations
would require non-trivial analysis by the compiler, or have the programmer
signal to the compiler that a certain part of the program is free of side ef-
fects, typically through annotations. Again this is an area where Futhark
removes complexity away from the programmer and hides it through tech-
nical solutions, that are made possible by the features of the language.

3.2.3 Modules

In order to support maintainability, Futhark provides a module [7] mecha-
nism, reminiscent of what is found in most programming languages, in order
to organize source code. The modules system in Futhark also provides the
language with a mechanism in which generic code can be expressed. In
Listing 2 a module type for a monoid is defined.
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1 module type Monoid = {

2 type t

3 val add : t -> t -> t

4 val zero : t

5 }

Listing 2: Module type declaration [17]

Other modules can now take another module that implements the monoid
module as parameter, which are called a parametric module. In Listing 3, a
module Sum is defined, that requires the parameter to be an implementation
of the Monoid module.

1 module Sum(M: Monoid) = {

2 let sum (a: []M.t): M.t = reduce M.add M.zero a

3 }

Listing 3: Parametric module declaration [17]

Similar mechanism are found in other languages, however, they often
result in extra runtime overhead. Modules in Futhark are compiled away in
the resulting program, an therefore incurs no runtime overhead.

3.2.4 Compilers and tools

Compilers

Futhark features two main compiler, futhark-c and futhark-opencl. futhark-c
is the C backend, that produces a binary executable, that run on a single
CPU, on a single thread. futhark-opencl is the backend targeting the
OpenCL framework, that produces a binary that runs on the parallel hard-
ware components of the system. The compilers are used through a simple
command-line interface such as

$ futhark-c program.fut

./program

$ futhark-opencl

./program.fut -d GeForce
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Note that it might be necessary to provide to flag -d telling the program
which device to use, since there might be several on a single machine.

Tools

As well as the compiler backends, Futhark comes bundled with a toolchain
supporting testing, test data generation, and benchmarking, amount other
things [8]. This makes for a simple , but efficient environment to develop
small experimental applications.
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Chapter 4

VaR engine using Futhark

The following section presents an implementation of a small VaR engine,
written in Futhark. A description of the method and implementation of
the market simulation needed to price the underlying asset is presented.
A detailed description of the structure and implementation of the Monte
Carlo simulations is presented. This is followed by a presentation of the
actual VaR calculation itself, using Monte Carlo simulation. Lastly sections
on experiments and testing of the various parts of the engine is presented.

4.1 Financial programming in Futhark

Many domains have performance as a key concern to solve the problems
in that particular domain, whether it is performance in terms of resource
utilisation in constrained environments, or performance in terms of through-
put(results/time). Financial programming is a numerically heavy domain,
where simulating market movements, estimating risk, and pricing products,
are just some of the very common applications that demands programs that
can deliver high throughput and fast answers. Many problems found in fi-
nancial programming are a matter of performing a single calculation, on a
set of parameters, and on hundreds of thousands or even millions of prod-
ucts, which makes these types of problems inherently parallel. Futhark is
therefore a good candidate for writing Financial applications.

When starting a project in any programming language, one has be to
aware of the constraints, and Futhark is no exception. Futhark is designed
to support high level parallel programming, using a purely functional pro-
gramming model, therefore we not only have the constraint of being purely
functional, but also from the parallel programming point of view. Common
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features such as Sum types, polymorphic functions and side-effects are not
supported, even though other purely functional languages such as Haskell
supports these features. Although not support many common features,
Futhark still provides plenty of constructs to enable the sorts of applica-
tions it targets to optimize for. Looking at the task of calculating VaR for
a portfolio, we want some way to represent the products, such as barrier
options. We could use an array and have a convention on which field is at
what index in the array, but that would be both tedious and error prone. In-
stead Futhark provides a record construct, reminiscent of structures found
in almost all programming languages, used to organise associated data into
a named type. A record in Futhark is declared using { fields, .. },
but in most cases we want to associate a name with a record, therefore we
use the type keyword following a name and then the actual declaration of
{ fields, .. } such as in Listing 4.

1 type Option = {

2 S : f64, -- asset price

3 X : f64, -- strike price

4 v : f64, -- volitility

5 r : f64, -- risk-free interest rate

6 T : f64, -- time to expire

7 ds : i32, -- days

8 Sb : f64, -- barrier

9 ot : i32 -- option type

10 }

Listing 4: Representation of a ’generic’ option in Futhark

The type keyword is used to associate a name with a type, such as
type Int = i32, but also essential for defining other abstraction such as
functions. Such an abstraction used in the context of option pricing, can be
seen in the payoff functions for each barrier option type shown in Listing
8, where we define a payoff-function as taking the strike price, the barrier
and a path, to calculate the payoff. Using function abstraction in this way,

type payoff_function = (X: f64) -> (Sb: f64) -> (path: []f64) -> f64

Listing 5: Payoff function abstraction
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combined with high-order functions also supported by Futhark, lets us ex-
tract many parts of the application into small reusable components, and
simply parameterizing larger parts of the application, to achieve a modular
structure at the function level.

4.1.1 Market Simulation

In order to perform valuations of barrier options, we need to simulate the
price movement of the underlying assets. We will limit the application in
this thesis to stocks as the underlying asset. The price movement of an asset,
such as a stock, typically follows a pattern of increases and decreases in the
price of a time horizon T . A common method of simulating stock prices
is using what is known as Geometric Brownian Motion (GBM). GBM is
a stochastic process that takes the logarithm of the random sample value,
where the results follow a Brownian motion. A Brownian motion, also called
a Wiener process denotes by W , has certain properties that are useful in
path generation, where in each time interval the motion has an independent
increase such that

Wt+s −Wt N(0, 1) (4.1)

meaning the increments follow a normal distribution. As mentioned, GBM
is a stochastic-process, that derives from a differential equation, meaning an
equation representing some rate of change, in this case a stock [3, p. 292].
The differential equation is defined as

dSt = µStdt+ σStdWt (4.2)

where St is the stochastic process, µ denotes a drift component, σ denotes
the volatility component and Wt is a Brownian motion. By solving the
differential equation with the Itô lemma, we get

St+δt = e(r−
1
2
σ2)·δt+σ·(

√
δt)·ε (4.3)

that provides the formula for generating sample paths.
There will be two methods of generation the GBM, one using pseudo-

random numbers and the second using Sobol sequences. Two GBM genera-
tion methods will provide a baseline for measuring convergence, performance
and speed-up on parallel hardware.

GBM Pseudo random number

Futhark has build-in support for generation of random numbers using the
standard library. Random numbers are generated using a rng_engine,
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where there are several to choose from. For path generation with pseudo-
random numbers, we will use the standard Linear congruential generator
(LCG), even though LCG is not the most efficient or modern approach,
the behaviour and implementation is simple [3, p.256]. Since generation of
random numbers is inherently sequential, Futhark also generates random
numbers in a sequential fashion. Since LCG is initialized with the same
seed, it will return the same sequence of numbers.

1 let sample_path(o: Option, seed: i32, n: i32, m: i32) =

2 let rng = minstd_rand.rng_from_seed [seed]

3 let col_rngs = minstd_rand.split_rng n rng

4 let dt = o.T / f64.i32(m)

5 let d1 = (o.r - 0.5 * o.v**2) * dt

6 let d2 = o.v * f64.sqrt(dt)

7 let mat = map (\r ->

8 let row_col_rngs = minstd_rand.split_rng m r

9 let row = map (\x ->

10 let (_, v) = normal_dist.rand {mean = 0.0, stddev = 1.0} x

11 let w = f64.exp(v * d2 + d1)

12 in w) row_col_rngs

13 let sc = scan (*) 1.0 row

14 let rs = map (*o.S) sc

15 in rs) col_rngs

16 in mat

Listing 6: Function for sample paths using pseudo random numbers in
Futhark

We cannot execute pseudo-random number generation directly in paral-
lel using SOACs such as map, since each function f would be applied using
the same rng_engine, thus applying the same random number sequence
to the input. Futhark instead supplies a split_rng function for splitting
a rng_engine into n rng_engine, each at a different state, and each gen-
erating a different sequence as shown in Listing 6 lines 3 and 8. Every
rng_engine needs to be initialised with a distribution, where, in this case,
a normal_distribution is used. To sample a path, we use a sequence of
normally distributed random numbers, and apply equation 4.3, and thereby
return a sequence of increments, representing the price changes for the un-
derlying asset as shown in Listing 6. Afterwards, we need to apply S0 to get
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the simulated path. We use the scan SOAC provided by Futhark, in this
case an inclusive scan, to apply the S0 at to each increment in the generated
path shown in Listing 6 line 13. The result of a use of the path sampling
function can be seen in Figure 4.1, where a GBM has been generated using
a option with S0 = 50, and a time horizon of 100 days.

Figure 4.1: GBM generated using pseudo random numbers in Futhark

4.1.2 Monte Carlo simulations

In Listing 7 an implementation of a Monte Carlo simulation runner for the
VaR simulation is shown, taking an option, a seed for the random number
generation, number of paths to generate, number steps in each path, and
a fixed future array of number. The fixed future array is used, since we
simulate the new paths from time t + δt to t + T , and therefore the fixed
future array contains the path from t to t + δt for the barrier option. As
described in section 2.5, we have to price the entire path, since we might
have hit the barrier a any point on the path. As shown in Listing 7 line 20,
we concat the simulated path on to the fixed future before calculating the
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payoff.

1 let mc_runner_var (o : Option,

2 seed : i32,

3 num_paths : i32,

4 num_steps : i32,

5 fixed_future: []f64) =

6 let df = f64.exp(-o.r * o.T)

7 let rng = minstd_rand.rng_from_seed [seed]

8 let col_rngs = minstd_rand.split_rng num_paths rng

9 let dt = o.T / f64.i32(num_steps)

10 let d1 = (o.r - 0.5 * o.v**2) * dt

11 let d2 = o.v * f64.sqrt(dt)

12 let mat = map (\r ->

13 let row_col_rngs = minstd_rand.split_rng num_steps r

14 let row = map (\x ->

15 let (_, v) = normal_dist.rand {mean = 0.0, stddev = 1.0} x

16 let w = f64.exp(v * d2 + d1)

17 in w) row_col_rngs

18 let sc = scan (*) 1.0 row

19 let rs = map (*o.S) sc

20 let fix = concat fixed_future rs

21 let pay = barrier_payoff(o, fix, df)

22 in pay) col_rngs

23 in mean(mat)

Listing 7: Monte-Carlo runner function

Since we have several different types of barrier options, where each has
its own payoff function, we need to have a way of dispatching the parame-
ters to the correct payoff function. In Listing 8 is shown the function that
dispatches the parameters to the correct payoff function. Each option has
an option type tag ot, represented by an integer. There is defined such a
tag for each barrier option type. The reason for this design, is that Futhark
does not support various polymorphic constructs found in other functional
programming languages, such as sum types and pattern matching, found in
a language such as Haskell. This is an area where Futhark lacks in expressive
power.
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1 let barrier_payoff (o: Option, path: []f64, df: f64) =

2 if o.ot == DI_CALL then (payoff_di_call o.X o.Sb path) * df

3 else if o.ot == DO_CALL then (payoff_do_call o.X o.Sb path) * df

4 else if o.ot == DI_PUT then (payoff_di_put o.X o.Sb path) * df

5 else if o.ot == DO_PUT then (payoff_do_put o.X o.Sb path) * df

6 else if o.ot == UI_CALL then (payoff_ui_call o.X o.Sb path) * df

7 else if o.ot == UO_CALL then (payoff_uo_call o.X o.Sb path) * df

8 else if o.ot == UI_PUT then (payoff_ui_put o.X o.Sb path) * df

9 else if o.ot == UO_PUT then (payoff_uo_put o.X o.Sb path) * df

10 else 0.0

Listing 8: Dispatching payoff function

4.1.3 Sobol

Futhark has built-in library support for working with Sobol sequences in an
efficient manner. The Sobol module provides several function for working
with Sobol sequences shown in Listing 9, but the most frequently used is the
sobol function [11]. The Sobol module also support creation of user-defined
reduction functions by implementing the Reduce module.

1 module type sobol = {

2 val D : i32

3 val sobol : (n: i32) -> [n][D]f64

4 val independent : i32 -> [D]u32

5 }

Listing 9: Sobol module

We will focus on the sobol function. To use the Sobol module we have
to specify the dimensionality of the sequences we wish to generate with the
parameter D, and also choosing one of the modules containing precomputed
direction numbers, based on the needed dimensionality in our application.
In Listing 10 the instantiation of all the needed Sobol modules are shown.
We specify an instantiation for each number of paths we wish to simulate
for, i.e. we need a Sobol sequence of 50 numbers, when we wish to simulate
paths with 50 days each. For the direction numbers we provide the module
that contains 1000 direction numbers, since we need to simulate paths with
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up to 500 days in each. This is a limitation of Futharks modules system,
since we cannot instantiate the Sobol module at runtime.

1 module Sobol_20 = Sobol sobol_dir { let D = 20 }

2 module Sobol_50 = Sobol sobol_dir { let D = 50 }

3 module Sobol_252 = Sobol sobol_dir { let D = 252 }

4 module Sobol_365 = Sobol sobol_dir { let D = 356 }

5 module Sobol_500 = Sobol sobol_dir { let D = 500 }

Listing 10: Sobol module instantiation for the VaR engine

4.2 VaR calculation in Futhark

Shown in Listing 11 is the function calculating VaR. A detail to note is
that the loop construct in Futhark is used. loop is a functional way to
approximate the semantics of an imperative for loop, since some algorithms
are more conveniently expressed in an imperative style. When using loop,
the programmer is telling the Futhark compiler that each iteration of loop,
should be executed sequentially, however the code inside the body can con-
tain arbitrary parallelism. loop is also the only construct in Futhark where
recursion can be expressed, since recursion is not directly supported by the
language. loop is also commonly used in Futhark for outer-loops, where the
assumption is that the amount of parallelism in the body will be enough
too keep the hardware busy with computations. In Listing 11 in lines 8-7,
we first value the portfolio at time t to t + δt. Afterwards in lines 9-19 we
do the simulations on the new market risk factors. In lines 10-16 we pre-
pare the input for the mc_runner_var. We calculate T − t + δt on line 10,
which is how many days for mc_runner_var to simulate. We then on line
13 find the new S0 for the option, which is last value of the current path
being simulated. S is also what we use as the fixed_future, since it is the
path from t to t + δt. Afterwards we simply sort the resulting array, and
use the calculated cut_off that represents the percentile of the confidence
level, which in this case is a confidence level of 95%, and then we can return
the estimated VaR.
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1 let var(o : Option,

2 seed : i32,

3 var_sims : i32,

4 var_days : i32,

5 num_paths: i32) =

6 let df = f64.exp(-o.r * o.T)

7 let S = sample_path(o, seed, var_sims, var_days)

8 let V = mean(map (\i -> (payoff_di_call o.X o.Sb i) * df) S)

9 let Si = loop Si = (replicate var_sims 0.0) for i in 0...(var_sims-1) do

10 let dt = o.ds - var_days

11 let dT = (r64(dt)/252.0)

12 let x = S[i]

13 let s = x[var_days - 1]

14 let opt = { S=s, X=o.X, v=o.v,

15 r=o.r, T=dT, Sb = o.Sb,

16 ot = o.ot , ds = dt}

17 let v = mc_runner_var(opt, seed, num_paths, dt, S[i])

18 let vi = V - v

19 in Si with [i] <- vi

20 let ordered = merge_sort (f64.<=) Si

21 let cut_off = var_sims / 100 * 95 - 1

22 in ordered[cut_off]

Listing 11: VaR computation function

A similar version for calculating VaR is also made for using Sobol se-
quences for pricing, that has the same basic structure.

4.3 Experiments

The following section will present experiments conducted on two platforms in
different configurations, benchmarking several areas of the VaR-engine. The
aim is to show the difference in execution speed between the sequential and
parallel versions of the program, verifying that some amount of parallelism
has been achieved. The sequential execution is done using the futhark-c

backend, where the resulting program is running on a single core, on a single
thread. The sequential execution will serve as the baseline for the perfor-
mance comparison. The sequential baseline will be compared against the
program compiled with the futhark-opencl backend, where the resulting
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program will be run on graphics cards on each platform. The experiments
has been conducted on the following systems

• MacBook Pro (laptop) 2,3-GHz quad-core Intel Core i7-processor, 16
GB 1600-MHz DDR3 RAM, NVIDIA GeForce GT 750M with 2 GB
GDDR5 RAM

• Acer Predator G3-710 (desktop), 2.7GHz Intel Core i5-6400 processor,
8GB DDR4 RAM, NVIDIA GeForce GTX 970 4GB RAM

The benchmarks for the VaR engine has been split in two, since the two
methods, pseudo random numbers and Sobol sequences, does not require
the same amount of work. Both benchmarks are performed by pricing a
portfolio of 1 barrier option, where the initial price a time t is priced using
10000 simulated paths, and where each new market risk factor has been
priced with 10000 paths simulated. The maturity of the options is 50 days,
and the VaR horizon is 20 days.

4.3.1 Acer Predator G3-710 core i5

In Tables 4.1 and 4.2 are shown the benchmarks performed using pseudo
random numbers on the Acer Predator G3-710 platform, using the i5 pro-
cessor as the baseline, compared to the GTX 970 Nvidia graphics card.

Version Runtime Speedup ´
Intel i5 2.7 GHz (baseline) 482.66s X1.0
NVIDIA GeForce GTX 970 8.62s X55.99

Table 4.1: VaR on portfolio of 1 barrier options using pseudo random num-
bers with i5 as baseline

Looking at the results in Table 4.1, we see that the calculation of VaR
using pseudo random number is 55.99 times faster than the same program
executed on a single i5 processor. We can conclude from the benchmark that
even if futhark-c compiled the program in such a way where it can utilize all
of the available cores, which in this particular case is 4, the futhark-opencl
version of the program would still run considerably faster. Table 4.2 shows
the benchmarks performed now using Sobol sequences on the Acer Predator
G3-710 platform, using the i5 processor as the baseline, compared to the
GTX 970 Nvidia graphics card.
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Version Runtime Speedup ´
Intel i5 2.7 GHz (baseline) Sobol 347.42s X1.0

NVIDIA GeForce GTX 970 Sobol 8.48s X40.95

Table 4.2: VaR on portfolio of 1 barrier options using Sobol sequences with
i5 as baseline

Looking at the results in Table 4.2, we again see a considerable speedup.
The GTX 970 graphics card is 40.95 times faster in this case.

4.3.2 MacBook Pro i7

In Tables 4.3 and 4.4, the benchmarks of the running two version of the
VaR engine on the MacBook Pro with an i7 processor. Also, the GTX 970
performance from the Acer Predator G3-710 benchmarks is also included
for extra comparison.

Version Runtime Speedup ´
Intel i7 2,3 GHz (baseline) 173.43s X1.0

NVIDIA GeForce GT 750M 59.02s X2.94
NVIDIA GeForce GTX 970 8.62s X20.12

Table 4.3: VaR on portfolio of 1 barrier options using Sobol sequences with
i7 as baseline

In Table 4.3 we have a similar result comparing the i7 processor on
a laptop to the graphics card found on the desktop. In this case the
futhark-opencl version is 20.12 faster. The result is expected since the
i7 is a more powerful processor. If we look at the on-board graphics cards
on the laptop, the NVIDIA GeForce GT 750M, the performance increase is
still considerable, by being 2.94 faster.

Version Runtime Speedup ´
Intel i7 2,3 GHz (baseline) 153.21s X1.0

NVIDIA GeForce GT 750M 89.74s X1.71
NVIDIA GeForce GTX 970 8.48s X18.06

Table 4.4: VaR on portfolio of 1 barrier options using Sobol sequences with
i7 as baseline
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Looking at the results in Table 4.4, we again see a considerable speedup.
In this case the GTX 970 graphics card is 18.95 times faster.

4.3.3 Path generation benchmarks

In the following Tables 4.5, 4.6 and 4.7, benchmarks of path generation per-
formance on the Acer Predator G3-710 core i5 are displayed. Each bench-
marks generated paths for an increasing number of options. The benchmarks
in Tables 4.5 and 4.6 generates paths with 50 days each, where the bench-
mark in Table 4.5 generates 10000 paths, the benchmarks in table Table 4.6
generates 100000 paths. The last benchmark shown in Table 4.7 generates
10000 paths for each option, with a length of 50 days. For each benchmark
we see large speedups when the benchmark is executed on the graphics card,
where for 100000 paths generated, shown in Table 4.6, we see the execution
being 85 times faster. When we increase the number of days in a path the
performance declines as shown in Table 4.7.

n futhark-c futhark-opencl speedup

10 828.45ms 17.19ms X48.19

20 1568.11ms 36.98ms X42.40

30 3456.62ms 55.56ms X62.21

40 3997.03ms 72.67ms X55.00

50 4271.66ms 95.80ms X44.59

Table 4.5: Performance comparison for generation of 10000 paths, with 50
days, for each option

n futhark-c futhark-opencl speedup

10 8361.11ms 99.24ms X84.25

20 15679.42ms 185.58ms X84.49

30 23521.30ms 275.53ms X85.37

40 31252.11ms 365.85ms X85.42

50 39262.53ms 454.82ms X86.33

Table 4.6: Performance comparison for generation of 100000 paths, with 50
days, for each option
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n futhark-c futhark-opencl speedup

10 3.96s 0.06s X66.00

20 7.98s 0.11s X72.55

30 11.87s 0.15s X79.13

40 15.82s 0.21s X75.33

50 19.77s 0.27s X73.22

Table 4.7: Performance comparison for generation of 10000 paths, with 252
days, for each option

4.4 Testing

To verify the Monto Carlo simulations are pricing the options correctly,
we can compare sample options priced using the Monto Carlo simulations,
against the same options priced through the analytical formula. The simu-
lations are inherently approximations, therefore we cannot expect the exact
results same as the ones calculated from the analytical version. However we
known by the Law of large numbers that as n → ∞, µ̂ → µ, therefore we
expect that the results of the Monte carlo simulations will converge with the
analytical formulas, when the number of simulations n increases. A visual
example of the convergence can be seen in figure 4.2 where the number of
simulations are increased along the x-axis, going from 1000 to 100000 with
steps of 1000. As figure 4.2 show, the sobol generated sequence is faster to
converge compared to the one generated using random number that still has
high fluctuations even as the number of paths approach 100000.
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Figure 4.2: Convergence of dont-and-out-put option pricing, actual price in
blue, random numbers in orange and sobol sequence in green

To test the accuracy of the barrier option pricing, several experiments
have been conducted, adjusting the parameters that specifies the length of
paths, number of iteration, type of option and if pseudo random numbers
or sobol sequences were used. In table 4.8 and 4.9 are shown the calculated
value of the option using the analytical formula, along with a the simulated
price for 100000 and 1000000 paths, and the root-mean-squared deviation,
for all option types, with a time horizon of 50 days. The accuracy can vary,
particularly between types of options.
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Days = 50, Simulations = 100

Option Actual
Paths = 100000 Paths = 1000000

Simulated Error Simulated Error

down-and-out-call 0.000403 0.000383 0.000116 0.000375 0.000049

down-and-in-call 3.157109 3.152943 0.013901 3.153575 0.005054

down-and-out-put 0.690228 0.694567 0.008928 0.694044 0.004351

down-and-in-put 1.484998 1.481998 0.008758 1.481430 0.004363

up-and-out-call 2.139341 1.815430 0.324239 1.816818 0.322536

up-and-in-call 1.018171 1.337897 0.319804 1.337132 0.318970

up-and-out-put 0.009832 0.003354 0.006487 0.003290 0.006542

up-and-in-put 2.165394 2.173211 0.012385 2.172185 0.007117

Table 4.8: Simulation error for each options type, using pseudo random
numbers for pricing

Days = 50, Simulations = 100

Option Actual
Paths = 100000 Paths = 1000000

Simulated Error Simulated Error

down-and-out-call 0.000403 0.000423 0.000020 0.000417 0.000014

down-and-in-call 3.157109 3.127064 0.030045 3.132564 0.024545

down-and-out-put 0.690228 0.669478 0.020750 0.673738 0.016490

down-and-in-put 1.484998 1.485021 0.000023 1.484345 0.000653

up-and-out-call 2.139341 1.787560 0.351781 1.786439 0.352902

up-and-in-call 1.018171 1.339927 0.321756 1.346542 0.328371

up-and-out-put 0.009832 0.002796 0.007036 0.003170 0.006661

up-and-in-put 2.165394 2.151703 0.013691 2.154912 0.010482

Table 4.9: Simulation error for each option type, using sobol sequence for
pricing

41



4.5 Discussion

In previous sections a review of the performance and programming model
in the context of financial programming, using the Futhark programming
language has been provided. The problem of data-parallel programs that
Futhark aim to provide solutions for, is nothing new, and there are many
existing solutions. For the mainstream programming languages such as Java
and C#, there exist library support for data-parallel programming, where
both are using the functional style facilities found in those languages [16] [14].
The approach of these languages is to provide the data-parallel constructs,
that can be used when needed for certain computationally expensive areas of
the application, but still in an imperative environment. In both cases it is up
to the user to make sure, that the parts of the program using these facilities,
use them in an efficient manner, since the compiler cannot make assump-
tion of properties such as purity, in order to perform certain optimizations.
Other purely functional programming languages such as Haskell has rich
library support both for data-parallel programming, but also concurrency
in a purely functional model [15]. For data-parallel programming on GPUs
in particular, a library for Haskell called Accelerate exists, providing a DSL
for array programming, that is translated in to code, that is executed on
the GPUs. This is similar to Futhark, but having an entire compiler that
optimises for parallel execution on GPUs has proven to provide promising
results, such as in [9, p. 150], presenting benchmarks of programs written
in both languages, where Futhark shows significant speedups in some cases.
Futhark fits well in the area it targets, namely small but highly compute-
intensive part of an application, possibly invoked from another language,
where most of the application is programmed in. The functional model fits
well with the target domains, such as financial programming, where express-
ing models for financial computations is straightforward, while still provid-
ing enough constructs to support modularity and maintainability. However,
Futhark still lacks in expressiveness in certain areas, in particular a poly-
morphism construct such as sum types, and a way to instantiate parametric
modules at runtime. In term of developments environment, one can not
expect much from a research language, however, Futhark already provides
a useful set of tools, that aids in development. Debugging is more difficult,
since there cannot be any side effects, therefore we cant just print out the
state of our program to fix bugs.
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4.6 Conclusion

The aim of this thesis was to explorer the Futhark programming language,
in the financial programming domain. The task was to create a small fi-
nancial application, in particular a program that can calculate the VaR for
a limited set of relatively advanced derivatives. Afterwards examination of
the program structure, performance and correctness was performed. The
results showed a considerable amount of performance was achieved using a
programming language that targets parallel hardware.

As highlighted Futhark enforces a strict purely functional programming
model, enabling the highly optimising compiler to have certain assumption.
The programming model did limit the expressiveness of the programming
language slightly, while still provided construct enough, to make application
development possible and scalable in terms of maintainability. Even though
Futhark has many common programming constructs, there is still room for
improvement in regards to expressiveness, in particular when it comes to
polymorphism.

Futhark is of course still a research language, therefore lack of highly
sophisticated tools is expected, but are required in real-world scenarios.
However Futhark still provides many useful tools, such as benchmarking,
testing and integration with other languages, python in particular [8].

Performance is the major concern Futhark aim to aid developers in
achieving, with parallel execution of compute-intensive parts of an appli-
cation. The highly optimizing compiler produces programs that are able to
take advantage of parallel hardware, such a GPUs, without the user having
knowledge of all the intrinsics of that particular piece of hardware. However,
certain knowledge and expertise is still needed to design efficient parallel al-
gorithms, that takes advantage of the available hardware.
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Appendix A

Appendix

A.0.1 Source code

The source code for the thesis is contained in zip file, provided with the
thesis.

A.0.2 Benchmarks

Benchmarks for path generation, conducted on the MacBook Pro i7, 10000
and 100000 paths have been generated.

n futhark-c futhark-opencl

10 2716726.00us 474974.00us

20 5538029.00us 817448.00us

30 8076611.00us 1211053.00us

40 10710204.00us 1621415.00us

50 13519063.00us 2034338.00us

Table A.1: 10000 paths generated

n futhark-c futhark-opencl

10 266627.00us 110860.00us

20 535896.00us 241015.00us

30 804436.00us 406549.00us

40 1074067.00us 481142.00us

50 1333906.00us 706491.00us
caption100000 paths generated
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