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Abstract

Based on the nested data parallel programming languages NESL, Proteus and
Data Parallel Haskell existing work on vectorization is analyzed and open prob-
lems regarding work complexity are established. A general solution to the prob-
lem of distributing large vectors over many parallel instances is presented using
generalized segment descriptors. A nested data parallel source language and a
flat data parallel target language are formalized along with a transformation
that transforms programs from the former to the latter. The transformation
is proved correct with respect to value preservation and asymptotic complexity
preservation by first formalizing a separate and reasonable language-based cost
model for both languages. The proof is supported by empirical results.
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1 Introduction

1.1 Nested Data Parallelism

Data parallelism is a parallel programming paradigm that facilitates easy ex-
pression of large scale concurrency. It is more declarative in nature than task
parallelism where the communication between parallel instances is explicit. In
the data parallel paradigm parallelism is achieved by operating on an entire data
set at once. The programmer specifies a computation that is applied to each
element of the data set and sometimes also how to combine the results, and the
compiler or interpreter than takes care of parallelizing the computation.

We will refer to the completely general form of data parallelism with no
restrictions on the evaluation of each element or the combination of the results
as non-uniform data parallelism because there might be no similarity in the
evaluation of two different elements. Non-uniform data parallelism is well-suited
for MIMD architectures.

Uniform data parallelism on the other hand requires a certain regularity on
the evaluation of each element. More precisely each evaluation is required to
execute the exact same instructions in the exact same order. This restriction is
useful because it enables the data parallel program to run on SIMD architectures
where parallelism is ususally much cheaper than in MIMD architectures. With
the advent of SIMD platforms such as GPGPU’s and vector instruction sets in
modern personal computers, it seems prudent to invest attention in the uniform
data parallel paradigm.

Nested data parallelism generalizes the idea of data parallelism to a recursive
definition by explicitly stating that the parallel evaluation of each element in a
data set is in itself potentially also a data parallel program, and thereby allowing
expression of programs with an arbitrary deep parallel nesting structure. This
paradigm allows the programmer to express highly parallelizable algorithms
with an irregular recursive structure in a short and concise way that reflects the
intent of the algorithm.

In a functional setting this may be expressed with the apply-to-each language
construct

[f(x) : x ∈ v]

This construct can be read as: “Apply the function f to each element of v in
parallel”. The definition of f can also contain apply-to-each constructs.

To support uniform nested data parallelism, it is necessary to transform
nested data parallel programs to equivalent flat data parallel ones first. Such a
flattening program transformation is called vectorization and was first proposed
by Guy Blelloch and realized in the programming language NESL [Blelloch and
Sabot(1990),Blelloch(1990),Blelloch(1995)]. Vectorization has later been stud-
ied and refined by others such as Jan Prins and Daniel Palmer with the language
Proteus [Prins and Palmer(1993),Riely et al.(1995)Riely, Prins, and Iyer,Palmer
et al.(1995)Palmer, Prins, and Westfold], and Gabriele Keller, Simon Peyton
Jones and Manual Chakravarty with language Data Parallel Haskell [Keller
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and Simons(1996), Peyton Jones(2008), Chakravarty et al.(2007)Chakravarty,
Leshchinskiy, Jones, Keller, and Marlow]. Vectorization has not changed fun-
damentally from the original formulation by Blelloch in the new formulations.

1.2 Naive Vectorization

The main idea of vectorization is to have a parallel vector-version of every primi-
tive operation implemented efficiently in the language, such as a component-wise
vector addition. Flat data parallelism is then achieved almost trivially. Nested
parallelism to an arbitrary depth is achieved by repeatedly flattening any input
vectors until the basic vector-version primitive can be applied to the input and
then segmenting the result accordingly afterwards. This approach is made vi-
able by the representation of nested vectors which facilitates very cheap concat
and segmentation operations.

A nested vector is represented by a flat data vector with an accompanying
segment descriptor that holds the nesting structure of the nested vector. As an
example the nested vector

v =
[
[1, 2, 3], [4], [], [5, 6]

]
will be represented by a flat data vector

d = [1, 2, 3, 4, 5, 6]

and a segment descriptor describing the length of each sub-vector

s0 = [3, 1, 0, 2]

This representation can be generalized to vectors of any nesting depth. For
example

v =
[[]

,
[
[1, 2, 3], [4], [], [5, 6]

]
,
[
[7], [], [8, 9, 10]

]]
will be represented by

d = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

and

s0 = [3, 1, 0, 2, 1, 0, 3]

s1 = [0, 4, 3]

A general property of the segment descriptors is that the sum of the elements
in a segment descriptor equals the length of the next segment descriptor (or
data vector). When applying an operation in parallel the arguments are not
necessarily of the same nesting depth. Consider as an example

[x+ 1 : x ∈ u]
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In naive vectorization this will translate to u +v [1, . . . , 1] where (+v) is the
vector-version of (+). In other words the 1 must be replicated over the length
of u.

Since apply-to-each may be nested it is possible to write something like

[[x+ y : x ∈ xs] : y ∈ ys]

which computes addition for all pairs of x and y in parallel. This will translate
to

[xs+v [y, . . . , y] : y ∈ ys]

where y is replicated over the length of xs. This will in turn translates to

[

length of ys︷ ︸︸ ︷
xs, . . . , xs ](+v)v[

length of xs︷ ︸︸ ︷
ys, . . . , ys ]v

where [·]v is the vector-version of [·] which is similar to a transpose operation
if you think of the two arguments as matrices. In order to remove (+v)v the
arguments are flattened

flatten([

length of ys︷ ︸︸ ︷
xs, . . . , xs ]) +v flatten([

length of xs︷ ︸︸ ︷
ys, . . . , ys ]v)

and the result is segmented

segmentate(flatten([

length of ys︷ ︸︸ ︷
xs, . . . , xs ]) +v flatten([

length of xs︷ ︸︸ ︷
ys, . . . , ys ]v))

However the segmentation must know how to segmentate the result. This can
be achieved by simply attaching the top-most segment descriptor of one of

the results. Lets take x = [x1, . . . , xk] and y = [y1, . . . , yk]. [

k2︷ ︸︸ ︷
xs, . . . , xs] and

[

k1︷ ︸︸ ︷
ys, . . . , ys]v will be represented by

dx = [x1, . . . , xk1 , . . . , x1, . . . , xk1 ] dy = [y1, . . . , y1, . . . , yk2 , . . . , yk2 ]

sx0 = [

k2︷ ︸︸ ︷
k1, . . . , k1] sy0 = [

k2︷ ︸︸ ︷
k1, . . . , k1]

Notice that both segment descriptors are the same. Flattening these values
simply removes the segment descriptor, so the vector-version of addition will
compute

[x1, . . . , xk1 , . . . , x1, . . . , xk1 ] +v [y1, . . . , y1, . . . , yk2 , . . . , yk2 ]

= [x1 + y1, . . . , xk1 + y1, . . . , x1 + yk2 , . . . , xk1 + yk2 ]

Segmentation will then simply attach one of the segment descriptors which
would then yield a result that is the representation of

[[x1 + y1, . . . , xk1 + y1], . . . , [x1 + yk2 , . . . , xk1 + yk2 ]]
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It is not a coincidence that the segment descriptors are equal - it will always
be the case. The reason is that anything that is not the variable bound by the
apply-to-each construct (also called the iterator variable) will be replicated to
match the iterator variable.

1.3 Ideal Cost Model

The ideal asymptotic complexity of a nested data parallel program can be ex-
pressed inductively on the constructs of the language in a natural way in terms
of a work complexity and a step complexity where the work complexity charac-
terizes the total amount of work done, and the step complexity characterizes the
depth of the computation meaning the time to evaluate a program if all paral-
lelism is realized [Blelloch(1996)]. One of the main problems in flattening nested
data parallel programs is to achieve comparable cost semantics of the flattened
programs. The original formulation of the representation of nested vectors and
flattening nested data parallel programs poses a number of problems regarding
the work complexity.

The ideal work complexity of apply-to-each should be the sum of the work
done if each element is evaluated separately. So if the work complexity of f(xi)
is denoted wi and xs = [x1, . . . , xk], then the work complexity of [f(x) : x ∈ xs]
should ideally be

∑k
i=1 wi. Every other construct in the language can then be

given a work complexity in a natural way to give a complete cost model. For the
step complexity the summation is turned into a max, so if the step complexity
of f(xi) is denoted si, then the step complexity of the apply-construct should
ideally be maxki=1 si.

1.4 Problem Formulation

1.4.1 Replication Problem

In naive vectorization replication of values have work complexity proportional
to the size of the value. This is not so much a problem for the + operation since
the cost of replicating 1 is not asymptotically greater than actually computing
u+v [1, . . . , 1]. The problem arises when an argument in the original operation
can have a size that surpasses the cost of performing the operation. Consider
indexing u in parallel over a vector of indices is. In the source language this
could be expressed as [u!i : i ∈ is] where ! is the indexing operator. We would
expect the cost of this expression to be in the order of the length of is since
u!i is expected to be a constant time operation. In the naive vectorization this
expression will translate to [u, . . . , u]!vis. Evaluating [u, . . . , u] is potentially
extremely expensive if u is big.

1.4.2 Provable Correct Cost Model

A more general problem is defining a realistic cost model for vectorized program
and to prove that it is actually correct. Ideally the cost model should reflect the
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ideal cost model for the high-level nested data parallel programs with the same
work and step complexities, but in practice this is not easy, and a completely
general vectorization with ideal cost semantics has not been presented in any
of the literature of this report. A common relaxation is to restrict programs to
a form of contained programs [Blelloch(1990)] or to relax the ideal cost seman-
tics [Riely et al.(1995)Riely, Prins, and Iyer]. The main purpose of this report
is to try to find a cost model as close to the ideal cost model as possible and a
vectorization such that the vectorized programs can be shown have asymptot-
ically the same cost as the cost model dictates. We will also address the cost
of each basic operation, as opposed to deriving general constraints on the work
complexity of vector-versions of operations based on the work complexity of the
original operation. To narrow the scope we will not consider step complexity
formally but we will keep it in mind.

2 Analysis

The existing vectorizations, cost models and solutions to the replication problem
are examined and compared for all three languages. Based on the analysis a
road map of a vectorization formulation and proof outline is sketched.

NESL, Proteus and Data Parallel Haskell all have a construct similar to the
apply-to-each construct. The main issue of vectorization is how to remove this
construct. All three language have a different approach to this. The level of
detail in the treatment of cost varies greatly between the three languages, but
they all address the replication problem.

2.1 NESL

Vectorization NESL is vectorized to an intermediate flat data parallel lan-
guage called VCODE. In the process every apply-to-each construct is trans-
formed to a VCODE expression that distributes the free variables over the new
parallel degree and operations inside the apply-to-each are replaced by vector-
version. If an operation has already been replaced by a vector-versions the
vectorization inserts VCODE expressions that flattens the arguments and seg-
mentates the result. This is in many ways equivalent to the naive vectorization.

Cost Model The NESL programming language comes with a built-in ideal
cost model. It only reflects the source language cost model, and there is no
comparison to a cost model of the flattened programs. There is a paper called
“A Provable Time and Space Efficient Implementation of NESL”, but it does
not use flattening, so it is not interesting for this project.

Replication Problem The problem is present in the current version of NESL
and the programmer is advised to hoist potentially expensive expression outside
of apply-to-each constructs and to use a special operation for parallel indexing
[Blelloch(1995), App C].
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2.2 Proteus

Vectorization Proteus does not have an intermediate target language. In-
stead the target language is a subset of the source language. Every apply-to-each
is pushed down to leaves of abstract syntax tree. For example

[f(x, y) : x ∈ v] will translate to fv([x : x ∈ v], [y : x ∈ v])

and

[fv(x, y) : x ∈ v] will translate to (fv)v([x : x ∈ v], [y : x ∈ v]).

To eliminate operations of the form (fv)v flattening of the arguments and seg-
mentation of the result is inserted as usual. In the leaves simple rules are applied
such as

[x : x ∈ xs] will translate to xs

and

[y : x ∈ xs] will translate to distribute(1, length(xs)).

This style is roughly equivalent to naive vectorization.

Cost Model Proteus is the only language where a cost model is presented
and the preservation of cost has been proved correct [Riely et al.(1995)Riely,
Prins, and Iyer]. The ideal cost semantics is concluded to require a reference-
based target language, and it is deemed impossible to implement. They present
two other cost semantics that can be shown correct with resepct to both work
and step complexity under certain circumstances. The two models are called
construct-parameters semantics and construct-result semantics. Both models
are more lenient than the ideal cost semantics and are therefore easier to imple-
ment. The construct-parameters semantics relaxes the cost of the apply-to-each
construct by charging the full size of all the values bound to free variables in
the expression. The construct-result semantics bases complexities on output
size rarther than input size, but this leads to various undesirable restrictions
on the programs. In all three cost models, the cost model is only given for
the source language, and the cost model of the target language is then implied
by constraints on the work-complexity of the vector-version of each primitive
operation. They are able to do this because the source and target language is
the same.

Replication Problem The replication problem has been solved for indexing
by using special transformation rules. Potentially expensive expressions are
hoisted out in the vectorization phase when possible [Keller and Simons(1996),
Palmer et al.(1995)Palmer, Prins, and Westfold].
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2.3 Data Parallel Haskell

Vectorization Data Parallel Haskell programs are simply Haskell programs
that make use of Haskell libraries containing parallel vector-version of familiar
Haskell functions. The apply-to-each construct and the vectorization phase is
then built into the Glasgow Haskell Compiler [Chakravarty et al.(2007)Chakravarty,
Leshchinskiy, Jones, Keller, and Marlow]. Data Parallel Haskell stands out from
the two other language by being the only language that supports higher-order
functions. This is also used when removing apply-to-each construct by desug-
aring them to a higher-order parallel function mapv. The compiler then uses
rewrite rules such as

mapv f x→ fv x

and

(fv)v x→ segmentv x (fv (concatv x)).

Cost Model None of the literature on Data Parallel Haskell presents a formal
cost model.

Replication Problem The replication problem regarding indexing is solved
by using special deforestation (also called fusion) rules in Data Parallel Haskell
[Chakravarty et al.(2007)Chakravarty, Leshchinskiy, Jones, Keller, and Marlow].
It is unclear if the deforestation is a general solution to the problem for all
operations and user defined functions since the literature on the deforestation
of vectorized programs is limited. The solution is likely comparable to Proteus’.

2.4 Comparison and Design Choices

The main emphasis on the presentation of vectorization in this report is the
rigorousness of the proofs. As a consequence all unnecessary features and ex-
tensions of the presented languages are omited and only a small sufficient set
of primitive operations is included. We also narrow the scope by leaving out
a formal treatment of user defined functions. This seriously limits the expres-
siveness of the language, but as we show in section 4 the languages should be
extendible with mutually recursive user-defined function without harming the
work-efficiency of the vectorization.

Vectorization Higher-order functions are not included since they are difficult
to parallelize [Roman Leshchinskiy and Keller(2006)], and as a result we cannot
use the Data Parallel Haskell vectorization style. The choice between the NESL
and the Proteus style of flattening has been rarther arbitrary as they are largely
equivalent. The Proteus style is more compositional, but it requires several
phases. We will pursue the NESL style of vectorziation for its simplicity and
since it allows for optimization at the level of the apply-to-each expression,
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although we do not actually consider any such optimizations. Furthermore we
will stress the distincion between the high-level source language and the low-level
target language by separing them in two languages like NESL and VCODE.

In the source language the apply-to-each construct will be restricted to the
simplified form [e : x ∈ ix(n)] where ix(n) is a special operation that generates
a sequence of consecutive integers from 0 to n− 1.

To decrease the size of the target language, there will be no scalar values
in the language except when calculating the parallel degree. Scalar values in
the source language outside any apply-to-each will be represented by a list with
a single element. This means that the standard primitve operations are not
needed - only the vector-versions. While this design choice decreases the size of
the target language, it has the unfortunate side-effect that the representation
of values deviates slightly from the representation given in the introduction.
Since we need to be able to distinquish scalar values from flat vector, all values
will be attached an additional segment descriptor compared to the previous
representation. For example

d = [1]

is now a representation of 1 instead of [1], and

d = [1, 2, 3] s0 = [3]

is now a representation of [1, 2, 3] instead of [[1, 2, 3]]. This representation can
then be used to represent values in parallel with each other. For example

d = [1, 2, 3]

is now a representation of 1 and 2 and 3 in parallel with each other, and

d = [1, 2, 3, 4] s0 = [2, 2]

is now a representation of [1, 2] and [3, 4] in parallel. The idea that a target
value represents possibly several source language values allows replication to
be specified without introducing a new level of nesting. The replicated value is
simply the same value, but with a replication of the top-most segment descriptor.

The main advantage of this is that we can define the type of a vector-version
operation fv to be the same as the type of (fv)v. This in turn means that
the flattening of the arguments and the segmentation of the result is no longer
needed. Instead a segmentation step is required on the result of an apply-to-
each.

Cost Model Proteus has the most detailed cost treatment for vectorization.
In this report we will present a completely separate cost model for the source
and target language rather than having the target language cost model implied
by the source language cost model to spell out what the desired complexities
are, and to address every operation. Similar to the Proteus cost model, we will
relax the ideal cost semantics in order for the proof to go through.
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Replication Problem All three languages addresses the replication problem
by handling indexing explicitly. In Proteus and Data Parallel Haskell the vec-
torization phase does this automatically while it must be done manually by the
programmer in NESL.

As pointed out by Prins et al. in [Riely et al.(1995)Riely, Prins, and Iyer],
the ideal cost semantic requires a reference-based implementation of the target
language: The expression [y : x ∈ [1..n]] must create a list of n y’s, and the
ideal cost semantics dictates that it most do so in proportionally n steps. Since
the value bound to y can have any size, a reference-based target language must
be necessary.

Manual Chakravarty has presented a more reference-based representation of
nested vectors [Chakravarty(2011)]. Instead of only having the segment lengths
in the segment descriptors it is possible to also store the segment starts. In this
way it is possible that two adjacent vector elements are placed in discontiguous
segments in the flat data vector. An even further generalization is to allow
different data vectors in the same nested vector and then point to a specific
data vector in each segment. This form of describing segments is called scattered
segments.

In this report we will explore the possibilities of obtaining a work-efficient
vectorization using segment descriptors containing segment lengths and starts
but not scattered segments. We will refer to this type of segment descriptors
as generalized segment descriptors, and represented vectors containing gener-
alized segment descriptors will be referred to as generalized values. Segment
descriptors containing only lengths will be referred to as normalized segment
descriptors. The term normalized is used because when only the lengths are
present in the segment descriptors, the starts will have to be implicit, so nor-
malized values can be said to be in a canonical form. Different generalized values
on the other hand may represent the same nested vector. As an example

v = [[1], [1, 3]]

could be represented by

d = [1, 1, 3] s0 = [0, 1] l0 = [1, 2]

where s0 is the starts and l0 is the lengths. It could also be represented by

d = [1, 0, 0, 0, 1, 3] s0 = [0, 4] l0 = [1, 2]

or even

d = [1, 3] s0 = [0, 0] l0 = [1, 2]

The replication problem can then be solved by simply attaching a new segment
descriptor to the replicated value that references the same segments multiple
times. Consider the last representation of v. The following generalized value is
a representation of [v, v, v]

d = [1, 3]
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s0 = [0, 1] l0 = [1, 2]
s1 = [0, 0, 0] l1 = [2, 2, 2]

This approach clearly has a work complexity in the order of the number of
replicates required. Some care should be taken though - since generalized val-
ues may have many references to the same segment, not all architectures can
support this approach efficiently. It depends on the actual cost of concurrent
reads to the same location. This is also the case for the special handling of the
index function in Proteus as noted in [Palmer et al.(1995)Palmer, Prins, and
Westfold]. Here they propose a solution called node-extension where some data
is purposely replicated without an actual need to replicate it to reduce the num-
ber of concurrent reads. This solution could have interest for the vectorization
in this report, but we will leave it for future work.

2.5 Road Map

In section 3.2 a source language is defined. This language is the high-level
nested data parallel language. A syntax is presented that defines all source
language expressions SExp along with a denotational semantic S J·K that maps
expressions to source language values SVal. A type system `S is also given
that defines the type of all expression and values STyp. the semantic includes
a work complexity semantic. The semantics reflects the desired computations
of source language programs as the source language programs are not meant to
be evaluated without vectorizing them first.

In section 3.3 a target language is defined. Similar to the source language the
domains for expressions TExp, values TVal and types TTyp are defined along
with a semantic function T J·K and type system `T . The semantic function
will evaluate expressions to a generalized type of values. To compare them to
source language values a normalization function |·| is presented that transforms
generalized values into values with a normal form TValN.

In section 3.4 a vectorization function
〈〈
·
〉〉

is given that transform source
language expressions into target language expressions. A type transformation
<< ·>> and a value transformation

〈
·
〉

is also given. The value transformation
transforms source language values to target language values in normal form. The
relationship between the different domains and transformations can be seen in
figure 2.5. The vectorization is formally shown to preserve values and work
complexity. In the figure the preservation corresponds to taking the lower path
from SExp to TValN is the same as taking the upper path with some constant
K difference in work complexity. Furthermore K is shown to depend only on
the size of the expression.
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Figure 1: The relationship between the semantic function, type inference and
transformations. Note that work complexity and error handling is not shown in
this figure.

3 A Provable Work Efficient Vectorization

3.1 Mathematical Preliminaries

Variable Names x will range over variable names Var.

n will range over integers Z.

k, i, j, l will range over natural numbers N. i and j will be used for indices, k
will be used to denote “small” numbers (related to program size), l will be used
for “large” numbers (related to data size).

Numerals Over-line is used to represent numerals, so n will denote the nu-
meral representing the natural number n.

Finite Maps Finite maps are used both for variable environments and typing
assumption contexts. The type of a finite map is written as

f : X ⇀fin Y

Finite maps are written as

f = [x1 7→ y1, . . . , xk 7→ yk]

dom(f) is the domain of a finite map f , so if f = [x1 7→ y1, . . . , xk 7→ yk]
then dom(f) = {x1, . . . , xk}.
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Restriction If f is a domain of type X ⇀fin Y and X ′ ⊆ X then

f � X ′

will denote the restriction of f to the variables in X ′ such that

f � X ′(x) =

{
f(x) x ∈ X ′

undefined x /∈ X ′

Inclusion If f and f ′ are two finite maps of the same type then the inclusion
of f in f ′ is defined as

f ⊆ f ′ if and only if ∀x ∈ dom(f).f(x) = f ′(x)

Sets Ak will denote the sequence

k︷ ︸︸ ︷
A× · · · ×A.

A∗ will denote a finite sequence of A of arbitrary size (possibly zero), so

A∗ = ∪k∈NA
k

3.2 Source Language

3.2.1 Syntax

Expressions

SExp 3 e ::= r | x | let x⇐ e0 in e1 | o(e1, . . . , ek) | [e0 : x ∈ ix(e1)]

r ::= n | · · ·
SOp 3 o ::= veck | length | elt | conc | part | ⊕

⊕ ::= + | <= | neg | · · ·

Syntactic Sugar

Special Variables Variable names beginning with an underscore (eg. x)
are assumed to be selected such that they do not conflict with any other vari-
ables in the typing context. They are used for special variables inserted in the
desugaring or vectorization phase.

Vector Constructor

[e1, . . . , ek]
DEF≡ veck(e1, . . . , ek) (k ≥ 0)

Multiple Let-Bindings

let x1 ⇐ e1

...
xk ⇐ ek

in e0

DEF≡
let x1 ⇐ e1 in
...

...
...

let xk ⇐ ek in e0
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If-Then-Else

if e1 then e2 else e3
DEF≡ let b⇐ e1

in elt([e2 : ∈ ix( b)] ++ [e3 : ∈ ix(not( b))], 0)

General Apply-To-Each

[e0 : x1 ∈ e1, . . . ,xk ∈ ek]
DEF≡ let x1 ⇐ e1 (k ≥ 1)

...
xk ⇐ ek

in [e0[θ] : i ∈ ix(length( x1))]

where θ = [elt( x1, i)/x1, . . . , elt( xk, i)/xk] is a substitution and expression
substitution is defined in the obvious way.

This definition truncates the length of all vectors to the length of the first.
A safer (and perhaps better) way to define the general apply-to-each construct
would be to check that the length of all the iterator-bound values are the same.

Standard Library Functions

Append

e0 ++ e1
DEF≡ conc([e0, e1])

Pack

pack(e0, e1)
DEF≡ conc([[ x : ix( b)] : x ∈ e0, b ∈ e1])

3.2.2 Type System

Domains

STyp 3 τ ::= π | [τ ]

TypPrim 3 π ::= int | · · ·

Type Specialization The type of a polymorphic primitive operation o can
be specialized by providing a type substitution for all the type variables. If an
operation has the type

o : ∀α1, . . . , αk′ .β

where β is of the form τ1 ∗ . . . ∗ τk −> τ (k ≥ 0).
Then

o[τ ′1, . . . , τ
′
k′ ] : β[τ ′1/α1, . . . , τ

′
k′/αk′ ]

15



Expressions Γ will range over typing assumptions contexts Var ⇀fin STyp.

Γ `S e : τ

Γ `S n : int
(SNum-T)

Γ `S x : τ
Γ(x) = τ (SVar-T)

Γ `S e0 : τ0 Γ[x 7→ τ0] `S e1 : τ1

Γ `S let x⇐ e0 in e1 : τ1
(SLet-T)

Γ `S e1 : τ1 · · · Γ `S ek : τk

Γ `S o(e1, . . . ,ek) : τ
(o[τ ′1, . . . , τ

′
k′ ] : τ1 ∗ · · · ∗ τk −> τ)

(SOp-T)

Γ `S e1 : int Γ[x 7→ int] `S e0 : τ

Γ `S [e0 : x ∈ ix(e1)] : [τ ]
(SApp-T)

Operations

veck : ∀α.αk −> [α] for every k ≥ 0

length : ∀α.[α] −> int

elt : ∀α.[α] ∗ int −> α

conc : ∀α.[[α]] −> [α]

part : ∀α.[α] ∗ [int] −> [[α]]

All scalar operations types of the form

⊕ : π1 ∗ . . . ∗ πk −> π

In particular

+ : int ∗ int −> int

<= : int ∗ int −> int

neg : int −> int

16



Properties

Lemma 1 Typing Context Inclusion.

∀Γ,Γ′.

if Γ ⊆ Γ′ and Γ `S e : τ then Γ′ `S e : τ

Proof By simple induction on the derivations.

3.2.3 Denotational Semantics

Computations w will range over work complexities Work.

The work of an evaluation of a source or target expression is measured in
number of basic steps.

Work = N

The evaluation of expressions is encapsulated in a monad type:

M$ X = (X ×Work) + {E}

Values of type M$ X are written as

Rw x

where x ∈ X and w ∈Work and

E

for the error value.

Bind

bind$ : M$ X → (X →M$ Y )→M$ Y

bind$ (Rwx
x) f = case f(x) of

Rwy y → Rwx+wy y
E → E

bind$ E f = E

Unit

unit$ : X →M$ X

unit$ x = R0 x

17



Tick

Tick : Work→M$ 1

Tickw = Rw ()

Let Notation

let$ x← e1 in e2
DEF≡ bind$e1 (λx.e2)

let$ x = e1 in e2
DEF≡ let$ x← unit$ e1 in e2

The let$ notation generalized to multi-line in the obvious way.

Variable Notation If x ranges over X then x$ will range over decorated
values M$ X.

Values

SVal 3 v ::= n | [v1, . . . ,vl]

Value Types `S v : τ

`S n : int
(SNat-T)

`S v1 : τ · · · `S vl : τ

`S [v1, . . . ,vl] : [τ ]
(l ≥ 0) (SVec-T)

`S ρ : Γ

`S v1 : τ1 · · · `S vk : τk

`S [x1 7→ v1, . . . , xk 7→ vk] : [x1 7→ τ1, . . . , xk 7→ τk]
(SEnv-T)

`S ρ : Γ `S v : τ

`S ρ[x 7→ v] : Γ[x 7→ τ ]
(SEnvUp-T)

Auxiliary Functions

Length and Size

# : SVal ⇀ N ‖·‖ : SVal→ N

#[v1, . . . , vl] = l

‖v‖ =

{
1 +

∑l
i=1 ‖vi‖ v = [v1, . . . , vl]

1 v = r

18



Concat

∧ : SVal× SVal ⇀ SVal

[v1, . . . , vl]
∧ [v′1, . . . , v

′
l′ ] = [v1, . . . , vl, v

′
1, . . . , v

′
l′ ]

Scan

scan+ : SVal ⇀ M$ SVal

scan+([n1, . . . , nl]) = let n′i =
∑l−1
i=1 ni ∀i ∈ {1..l + 1}

in Rl [n′1, . . . n
′
l]

Fetch

fetch : SVal×N×N ⇀ M$ SVal
fetch([v0, . . . , vl−1], n, n′) = if n ≥ 0 and n′ ≥ 0 and n+ n′ < l

then R1+n′ [vn, . . . , vn+n′−1]
else E

Expressions ρ will range over value environments Var ⇀fin SVal. The ex-
pression evaluation function has the type

S : SExp× (Var ⇀fin SVal) ⇀ M$ SVal

It is only undefined for static errors such as unbound variable reference or type
error.

O : SOp× SExp∗ ⇀ M$ SVal

S JeK ρ = v$
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S JrK ρ = R1 r

S JxK ρ = R1 ρ(x)

S Jlet x⇐ e1 in e2K ρ = let$ v1 ← S Je1K ρ
in S Je2K ρ[x 7→ v1]

S Jo(e1, . . . , ek)K ρ = let$ v1 ← S Je1K ρ
...
vk ← S JekK ρ

in O JoK (v1, . . . ,vk)

S J[e0 : x ∈ ix(e1)]K ρ = let$ n← S Je1K ρ
in if n ≥ 0

then v1 ← S Je0K ρ[x 7→ 0]
...
vn ← S Je0K ρ[x 7→ n− 1]
Rn+1 [v1, . . . , vn]

else E

Operations O JoK (v1, . . . ,vk) = v$

O JveckK (v1, . . . ,vk) = R∑k
i=1‖vi‖

[v1, . . . ,vk]

O JlengthK (v) = R1 #v

O JeltK ([v0, . . . , vl−1], n) = if 0 ≤ n ≤ l − 1
then R1 vn
else E

O JconcK ([v1, . . . ,vl]) = Rl+
∑l

i=1 #vi
v1
∧ . . . ∧ vl

O JpartK (v, [n1, . . . , nl]) = let$ [n′1, . . . , n
′
l]← scan+([n1, . . . , nl])

v′1 ← fetch(v, n′1, n1)
...
v′l ← fetch(v, n′l, nl)

in Rl [v′1, . . . , v
′
l]

O J⊕K (r1, . . . , rk) = R1 ⊕(r1, . . . , rk)
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3.2.4 Properties

Lemma 2 Type Soundness.

if Γ `S e : τ and `S ρ : Γ

then either S JeK ρ = E

or S JeK ρ = Rw v and `S v : τ

Proof By induction on e.

Type soundness tells us that the semantic function is total for well-typed
expressions and environments.

3.3 Target Language

3.3.1 Syntax

Expressions Target language expressions are divided into two syntactic cat-
egories to simplify notation: “Serious” expressions s ∈ TExps and “trivial”
expression t ∈ TExpt. Trivial expressions are expressions that have constant
time work complexity, and can never fail in a type-correct program. This allows
the evaluation function of trivial expressions to be non-monadic. Serious ex-
pressions on the other hand can be any expression including trivial expressions,
so they have a non-trivial work complexity, and can fail due to runtime errors
such as indexing out of bounds.

TExpt 3 t ::= x | attsd(t1, t2) | data(t) | seg(t) | starts(t) | lens(t)

TExps 3 s ::= t | [r] | let x⇐ s0 in s1 | p(t1, . . . , tk) | par u do s

TScalarExp 3 u ::= length(t)

TOp 3 p ::= mkseg | segsum | segfetch | pd | zipk | ixrep | iotas | ⊕v

⊕v ::= +v | <=v | negv | · · ·

Syntactic Sugar

let x1 ⇐ s1

...
xk ⇐ sk

in s0

DEF≡
let x1 ⇐ s1 in
...

...
...

let xk ⇐ sk in s0

3.3.2 Type System

Domains σ will range over types TTyp.
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σ̇ will range over generalized types TTypGen ⊂ TTyp.

σ̂ will range over normalized types TTypNorm ⊂ TTyp.

σ ::= [π] | (σ, σ)

Generalized types:

seg
DEF≡ ([int], [int])

σ̇ ::= [π] | (seg, σ̇)

Normalized types:

σ̂ ::= [π] | ([int], σ̂)

Expressions

Π will range over typing assumptions environments Var ⇀fin TTyp.

Π `U u

Π `Tt t : [π]

Π `U length(t)
(U-T)

Π `Tt t : σ

Π `Tt x : σ
Π(x) = σ (TVar-T)

Π `Tt t1 : seg Π `Tt t2 : σ

Π `Tt attsd(t1, t2) : (seg, σ)
(TAttSD-T)

Π `Tt t : (seg, σ)

Π `Tt data(t) : σ
(TData-T)

Π `Tt t : (seg, σ)

Π `Tt seg(t) : seg
(TSeg-T)

Π `Tt t : seg

Π `Tt starts(t) : [int]
(TStarts-T)
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Π `Tt t : seg

Π `Tt lens(t) : [int]
(TLens-T)

Π `Ts s : σ

Π `Tt t : σ

Π `Ts t : σ
(Trivial-T)

Π `Ts [n] : [int]
(TNumV-T)

Π `Ts s0 : σ0 Π[x 7→ σ0] `Ts s1 : σ1

Π `Ts let x⇐ s0 in s1 : σ1
(TLet-T)

Π `Ts t1 : σ1 · · · Π `Ts tk : σk

Π `Ts p(t1, . . . ,tk) : σ
(p[σ′1, . . . , σ

′
k′ ] : σ1 ∗ · · · ∗ σk −> σ)

(TOp-T)

Π `U u Π `Ts s : σ

Π `Ts par u do s : σ
(TPar-T)

Operations

mkseg : [int]−> seg

segsum : [int] ∗ [int]−> [int]

ixrep : [int]−> [int]

iotas : [int]−> [int]

zipk : ∀α.αk −> α

segfetch : ∀α.α ∗ [int] ∗ [int]−> α

All vector-versions of scalar operations have types of the form

⊕v : [π1] ∗ . . . ∗ [πk] −> [π]

In particular

+v : [int] ∗ [int]−> [int]

<=v : [int] ∗ [int]−> [int]

negv : [int]−> [int]
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Properties

Lemma 3 Type Context Inclusion.

∀Π,Π′.

if Π ⊆ Π′ and Π `Ts s : σ then Π′ `Ts s : σ

Proof By simple induction on the derivations with a separate lemma for trivial
expression types.

3.3.3 Denotational Semantics

Values The semantics of the target language will be based on the generalized
representation of values. This means that the operation segfetch can work on
the top-most segment descriptor. This is the key to handling the replication
problem in general.

c, c, ĉ will range over values TVal.

Where c will be used for flat vectors only (including the empty vector), ĉ will
be used for normalized values only and c will be used for any value (mostly
generalized values). Many operations would normally require the empty vector
to be fully constructed meaning that even though the vector is empty, it still has
the correct number of segment descriptors (although empty) as prescribed by
its type. In order to avoid having to type annotate all polymorphic operations
in the target language, we introduce a special empty vector value [], and each
primitive operation is then defined with a special case for [] (if necessary).

TVal 3 c ::= c | (c, c)
c ::= [r1, . . . , rl] | []

TValN 3 ĉ ::= c | ([int], ĉ)

Value Types `Ts c : σ

`Ts [n1, . . . ,nl] : [int]
(l > 0) (TNatV-T)

`Ts [] : σ
(Empty-T)

`Ts c1 : σ1 `Ts c2 : σ2

`Ts (c1, c2) : (σ1, σ2)
(Pair-T)
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`S φ : Π

`Ts c1 : σ1 · · · `Ts ck : σk

`T [x1 7→ c1, . . . , xk 7→ ck] : [x1 7→ σ1, . . . , xk 7→ σk]
(TEnv-T)

`T φ : Π `Ts c : σ

`T φ[x 7→ c] : Π[x 7→ σ]
(TEnvUp-T)

Auxiliary Functions

First and Second Projection

fst : TVal ⇀ TVal

fst(c) =

{
c1 (c = (c1, c2))

[] (c = [])

snd : TVal ⇀ TVal

snd(c) =

{
c2 (c = (c1, c2))

[] (c = [])

Length

# : TVal ⇀ N

#[r1, . . . , rl] = l

#((c1, c2), c) = #c1

#[] = 0

Size We only consider the size of normalized values, since the size of gener-
alized values may be arbitrary large compared to the source value they represent.

‖·‖ : TValN→ N

‖[r1, . . . , rl]‖ = 1 + l

‖(c1, c2)‖ = 1 + #c1 + ‖c2‖

‖[]‖ = 1

25



Depth

δ : TVal→ N

δ([r1, . . . , rl]) = 0

δ((c1, c2)) = 1 + δ(c2)

δ([]) = 0

Concatenation When multiple vectors need to be concatenated, the cost
of using a binary concat operator would be quadratic. It is however well-known
that it is possible to implement k-ary concatenation in linear time.

conck : TValk ⇀ M$ TVal

conck(c1, . . . , ck) = Rk+
∑k

i=1 #ci
c1
∧ · · · ∧ ck

where

∧ : TVal×TVal ⇀ TVal

[r1, . . . , rl]
∧ [r′1, . . . , r

′
l′ ] = [r1, . . . , rl, r

′
1, . . . , r

′
l′ ]

[] ∧ [] = []

[] ∧ c = c ∧ [] = c

Replication

[·]· : Z×N→ TVal

0 • r = []

l • r = [

l︷ ︸︸ ︷
r, . . . , r] (l > 0)

Index Replication

ixrepk : Nk → TVal

ixrepk(n1, . . . , nk) = n1 • 0 ∧ · · · ∧ nk • k − 1

Iotas

iotask : Nk → TVal

iotask(n1, . . . , nk) = ι(n1) ∧ · · · ∧ ι(nk)

where

ι : N→ TVal

ι(n) = [0, . . . , n− 1]
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Scan

scan+ : TVal ⇀ M$ TVal

scan+([n1, . . . , nl]) = let n′i =
∑l−1
i=1 ni ∀i ∈ {1..l + 1}

in Rl [n′1, . . . n
′
l]

scan+([]) = R1 []

Fetch

fetch : TVal×N×N ⇀ M$ TVal
fetch([r0, . . . , rl−1], n, n′) = if n ≥ 0 and n′ ≥ 0 and n+ n′ < l

then R1+n′ [rn, . . . , rn+n′−1]
else E

fetch(c, l, 0) = R1 [] (l < #c)

Partition

part : TVal×TVal ⇀ M$ TVal∗

part([r1, . . . , rl], [n1, . . . , nl′ ])

= if
∑l′

i=1 ni = l
then let$ [n′1, . . . , n

′
l′ ]← scan+([n1, . . . , nl′ ])

in Rl ([rn′
1
, . . . , rn′

2−1], . . . , [rn′
l′
, . . . , rl])

else E

part([],

l︷ ︸︸ ︷
[0, . . . , 0]) = Rl (

l︷ ︸︸ ︷
[], . . . , []) (l > 0)

Work complexity: If #c1 = l and #c2 = l′ then the work complexity of
part(c1, c2) is l + l′.

Segmented Sum

segsum : TVal×TVal ⇀ M$ TVal

segsum(c1, c2) = let$ (c′1, . . . , c
′
l)← part(c1, c2)

c′′1 ← sum(c′1)
...
c′′l ← sum(c′l)

in Rl [c′′1 , . . . , c
′′
l ]

where

sum : TVal ⇀ M$ N
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sum([n1, . . . , nl]) = Rl

l∑
i=1

ni

sum([]) = R1 0

Work complexity: If #c1 = l and #c2 = l′ then the work complexity of
segsum(c1, c2) is 2(l + l′).

Type Predicates To simplify pattern matching notation the following
type predicates are introduced.

flat? : TVal→ B nested? : TVal→ B empty? : TVal→ B

empty? c = c is of the form []

flat? c = c is of the form [n1, . . . , nl]

pair? c = c is of the form (c1, c2)

Make Starts Make starts creates a generalized segment descriptor from
a list of segments lengths assuming the data it refers to is aligned as in a nor-
malized value.

makeStarts : TVal ⇀ M$ TVal

makeStarts(c) = let$ c′ ← scan+(c)
in R1 (c′, c)

Segmented Fetch The segfetch function fetches values from a target lan-
guage value given a list of start indices and fetching lengths, and it is primarily
used for the segfetch operation. The function can fetch from values of any
nesting depth. The operation is strictly speaking redundant and could be re-
placed by two primitive operations fetch and conck, but this would require the
vectorization phase to produce different code for flat and nested values, so this
solution allows a more simple type-insensitive vectorization. In a real imple-
mentation it would probably be easier and better to do the type checking in the
vectorization phase, but when reasoning about the vectorization this approach
is simpler. Generalized segment descriptors allows segfetch to only operate on
the top-most level of segment descriptors. Fetching from a value with huge
segments is therefore cheap (eg. replication of large vectors).

segfetch : TVal×TVal×TVal ⇀ M$ TVal

segfetch(c, c1, c2) =


sfFlat(c, c1, c2) (flat? c)

sfNested(c, c1, c2) (pair? c)

R1 [] (empty? c ∧ (c2 = [0, . . . , 0]))
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sfFlat : TVal×TVal×TVal ⇀ M$ TVal

sfFlat(c, [n1, . . . , nl], [n
′
1, . . . , n

′
l])

= let$ c′1 ← fetch(c, n1, n
′
1)

...
c′l ← fetch(c, nl, n

′
l)

in concl(c
′
1, . . . , c

′
l)

sfNested : TVal×TVal×TVal ⇀ TVal

sfNested(((c1, c2), c), c3, c4) = let$ c′1 ← sfFlat(c1, c3, c4)
c′2 ← sfFlat(c2, c3, c4)

in R1 ((c′1, c
′
2), c)

Notice that sfNested does not recurse on the structure of the argument. It
simply changes the top most segment descriptor.

Work Complexity Let [n1, . . . , nl] be the third argument to segfetch and
let l′ =

∑
ni. Then sfFlat costs 2l + 2l′ and sfNested costs 1 + 4l + 4l′. So the

work complexity of segfetch is no more than 1 + 4l + 4l′.

Segmented Zip Segmented zip is used to implement the vector constructor.
Segmented zip takes 2k arguments. The first k are values of the same nesting
depth and the last k are vectors containing segment lengths. The function
combines the values by interleaving the elements of the values according to the
given segmentation. Conceptually

segzip2([a, b, c, d], [x, y], [2, 2], [1, 1]) = [a, b, x, c, d, y]

The segzip function is only defined on normalized values. This means that
arguments will have to undergo expensive normalization before segzip can be
used. Furthermore the result type is normalized so the return value will have to
be denormalized to be used any further. Like the segfetch operation the zipk
operation could be replaced by primitive part, segsum and conck operations,
but this would require type information to be available in the vectorization
phase.

segzipk : TValNk ×TValk ⇀ M$ TValN

segzipk(ĉ1, . . . , ĉk, c1, . . . , ck) =

{
szFlatk(ĉ1, . . . , ĉk, c1, . . . , ck) (∀i.flat? ĉi ∨ empty? ĉi)

szNestedk(ĉ1, . . . , ĉk, c1, . . . , ck) (∃i.pair? ĉi)
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Note that because of the existential quantification in the second case of segzipk,
the second case will be false if k = 0. On the other hand the first case will not,
so segzip0() = sfFlat0().

szFlatk : TValNk ×TValk ⇀ M$ TValN

szFlatk(c1, . . . , ck, c
′
1, . . . , c

′
k) = let$ (c′′1,1, . . . , c

′′
1,k′)← part(c1, c

′
1) (#c′1 = k′)

...
...

...
(c′′k,1, . . . , c

′′
k,k′)← part(ck, c

′
k) (#c′k = k′)

c′′′1 ← conck(c′′1,1, . . . , c
′′
k,1)

...
...

c′′′k′ ← conck(c′′1,k′ , . . . , c
′′
k,k′)

in conck′(c
′′′
1 , . . . , c

′′′
k′)

szNestedk : TValNk ×TValk ⇀ M$ TValN

szNestedk(ĉ1, . . . , ĉk, c1, . . . , ck) = let$ c′1 = fst(ĉ1)
...
c′k = fst(ĉk)
c← szFlatk(c′1, . . . , c

′
k, c1, . . . , ck)

c′′1 ← segsum(c′1, c1)
...
c′′k ← segsum(c′k, ck)
ĉ′1 = snd(ĉ1)
...
ĉ′k = snd(ĉk)
ĉ← segzipk(ĉ′1, . . . , ĉ

′
k, c
′′
1 , . . . , c

′′
k)

in R1 (c, ĉ)

Work Complexity If #c1 = · · · = #ck = l then the work complexity of
segzipk(ĉ1, . . . , ĉk, c1, . . . , ck) can be shown, by solving a recurrence, to be no
greater than

5 ·
k∑
i=1

‖ĉi‖+K1 ·
k

max
i=1

δ(ĉi) +K2

K1 = 1 + 3l + k + k2 K2 = l + k + k2

Normalization Target language values with general segment descriptors can
be normalized to values with normalized segment descriptors. Normalization
is used for two purposes in this report. It is used to simplify the denotational
semantics of the transformation of the list constructor, and it is used in reasoning
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about value preservation for vectorized programs in general. In the first use it is
beneficial to have an associated work complexity with the normalization. In the
second use it is not, since we do not want to charge for an extra normalization
phase after each computation step. A value can be normalized including proper
work complexity by the function norm and for free by the function |·|.

norm : TVal ⇀ M$ TValN

norm([n1, . . . , nl]) = R1 [n1, . . . , nl]

norm([]) = R1 []

norm(((c1, c2), c)) = let$ ĉ← segfetch+(c, c1, c2)
in R1 (c2, ĉ)

where segfetch+ is a version of segfetch that will recurse in the nested case to
fetch the entire value. Consequently the resulting value is normalized and the
segment starts can be discarded.

segfetch+ : TVal×TVal×TVal ⇀ M$ TValN

segfetch+(c, c1, c2) =


sfFlat(c, c1, c2) (flat?c)

sfNested+(c, c1, c2) (pair?c)

R1 [] (empty?c and c2 = [0, . . . , 0])

sfNested+ : TVal×TVal×TVal ⇀ M$ TValN

sfNested+(((c1, c2), c), c3, c4) = let$ c′1 ← sfFlat(c1, c3, c4)
c′2 ← sfFlat(c2, c3, c4)
ĉ← segfetch+(c, c′1, c

′
2)

in R1 (c′2, ĉ)

Work Complexity The work complexity of norm(c) can be shown to be
no greater than

1 + 4 · ‖|c|‖+ δ(c)

‖|c|‖ can be hard to read but it should be read as “the size of the normalization
of c”.

Cost-free Normalization

|·| : TVal ⇀ TVal

The |·| function is defined in the same way as the norm function but without
monads. It will therefore be cost-free and will not be defined for erroneous input
(type error or if a segment descriptor references out of bounds).
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|:|TVal ⇀ TValN

|[n1, . . . , nl]| = [n1, . . . , nl]

|[]| = []

|((c1, c2), c)| = (c2,4c1c2(c))

where 4 is the non-monadic version of segfetch+.

|·| is also be defined for computations by the function |·|$.

|·|$ : M$ TVal ⇀ M$ TVal∣∣c$∣∣$ = let$ c← c$

in unit$ |c|∣∣c$∣∣$ means the same as c$ but where the computed value is normalized for free.
Furthermore |·| can be generalized to environments in the obvious way.

Finally normalization is also defined on types

|[π]| = [π]

|(seg, σ)| = ([int], |σ|)

Lemma 4 Normalization type preservation.

`Ts c : σ

if and only if `Ts |c| : |σ|

Proof By induction on c and definition of |·|.

Lemma 5

if

l∑
i=1

ni = #c

then 4[n1,...,nl]
scan+([n1,...,nl])

(c) = |c|

Proof By induction on c and definition of 4 and |·|.
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De-normalization The function deNorm takes a target language value
where the segment descriptors only contain lengths and return a value where
the segment descriptors contains starts and lengths by computing a plus-scan
of the lengths.

deNorm : TValN ⇀ M$ TVal

deNorm(ĉ) =



R1 ĉ flat?(ĉ)

R1 [] empty?(ĉ)

let$ c← makeStarts(c)

c′ ← deNorm(ĉ′)

in R1 (c, c′)

(ĉ = (c1, ĉ
′))

Work complexity: 1 + ‖ĉ‖+ δ(ĉ)

Expressions The current parallel degree will be given as a parameter to the
semantic function. It is invariantly greater than 0, since a parallel degree of 0
corresponds to no computation at all.

TParDeg = N+

The denotational semantics of target language expressions is divided into four
different functions - one for each syntactic category:

Ts : TExps ×TParDeg× (Var ⇀fin TVal) ⇀ M$ TVal

Tt : TExpt × (Var ⇀fin TVal) ⇀ TVal

U : TScalarExp× (Var ⇀fin TVal) ⇀ N

P : TOp×TParDeg×TExp∗t ⇀ M$ TVal

φ will range over value environments Var ⇀fin TVal.

Tt JtKφ = c

Tt JxKφ = φ(x)

Tt Jattsd(t1, t2)Kφ = (Tt J(t1)Kφ, Tt Jt2Kφ)

Tt Jdata(t)Kφ = snd(Tt JtKφ)

Tt Jseg(t)Kφ = fst(Tt JtKφ)

Tt Jstarts(t)Kφ = fst(Tt JtKφ)

Tt Jlens(t)Kφ = snd(Tt JtKφ)
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Ts JsKl φ = c$

Ts JtKl φ = R1 Tt JtKφ

Ts J[r]Kl φ = Rl l • r

Ts Jlet x⇐ s1 in s2Kl φ = let$ c1 ← Ts Js1Kl φ
in Ts Js2Kl φ[x 7→ c1]

Ts Jp(t1, . . . , tk)Kl φ = P JpKl (Tt Jt1Kφ, . . . ,Tt JtkKφ)

Ts Jpar u do sKl φ = let$ l′ = U JuKφ
in if l′ = 0

then R1 []

else Ts JsKl′ φ

U JuKφ = n

U Jlength(x)Kφ = #φ(x)

Operations P JpKl (c1, . . . ,ck) = c$

P JmksegKl (c) = makeStarts(c)

P JixrepKl ([n1, . . . , nl]) = Rl+
∑l

i=1 ni
ixrepl(n1, . . . , nl)

P JiotasKl ([n1, . . . , nl]) = Rl+
∑l

i=1 ni
iotas l(n1, . . . , nl)

P JsegsumKl (c1, c2) = segsum(c1, c2) (#c1 = l)

P J⊕vKl ([r1,1, . . . , r1,l], . . . , [rk,1, . . . , rk,l]) = Rl
[
⊕(r1,1, . . . , rk,1), . . . ,⊕(r1,l, . . . , rk,l)

]
P JzipnKl (c1, . . . , ck) = let$ ĉ1 ← norm(c1)

...
ĉk ← norm(ck)
c← Rl [1]l
ĉ← segzipk(ĉ1, . . . , ĉk, c, . . . , c)

in deNorm(ĉ)

P JsegfetchKl (c, c1, c2) = segfetch(c, c1, c2) (#c1 = #c2)
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3.3.4 Properties

Lemma 6 Type Soundness.

if Π `Ts s : σ and `T φ : Π

then either Ts JsKl φ = E

or Ts JsKl φ = Rw c and `Ts c : σ

Proof By induction on s.

Lemma 7 Restriction to free variables.

Ts JsKl φ = Ts JsKl φ � FV (s)

Proof By induction on s.

3.4 Transformation

3.4.1 Types

<< ·>>: STyp→ TTypGen << ·>>+: STyp→ TTypNorm

<<τ >>= σ̇

<<π>>= [π]

<< [τ ]>>= (seg, <<τ >>)

<<τ >>+= σ+

<<π>>+= [π]

<< [τ ]>>+= ([int], <<τ >>+)

<< ·>> is extended to environments: <<Γ>>= Π

<< [x1 7→ τ1, . . . , xk 7→ τk]>>= [x1 7→<<τ1>>, . . . , xk 7→<<τk>>]

3.4.2 Values

The transformation of values (also called the representation function) is defined
as a l-ary function. Source language parallel programs are evaluated separately
in each parallel instance while target language parallel programs are evaluated
uniformly across all parallel instances. As a consequence we will often be com-
paring multiple small source language values to one large target language vari-
able. The arbitrary arity of the representation function allows us to do so
elegantly.
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〈
·
〉
l

: SVall → TVal (l ≥ 0)〈
v1, . . . , vl

〉
l

= c

〈〉
0

= []〈
n1, . . . , nl

〉
l

= [n1, . . . , nl] (l > 0)〈
[v1

1 , . . . , v
l′1
1 ], . . . , [v1

l , . . . , v
l′l
l ]
〉
l

(l > 0)

=
(

[l1, . . . , l
′
l]),
〈
v1

1 , . . . , v
l′1
1 , . . . , v

1
l , . . . , v

l′l
l

〉∑l
i=1 ni

)
The representation function is also defined for source language computations

where it will sum up the work of each argument.〈
·
〉$
l

: (M$ SVal)l →M$ TVal (l ≥ 0)

〈
v$

1 , . . . , v
$
k

〉$
k

= c$

〈
c$1, . . . , c

$
k

〉$
k

= let$ c1 ← c$1
...

ck ← c$k
in unit$

〈
c1, . . . , ck

〉
k〈

·
〉
l

can be generalized to environments given that the same variables are
mapped to values of the same type in each state:〈

ρ1, . . . , ρl
〉
l

= φ〈
[x1 7→ v1,1, . . . , xk 7→ v1,k], . . . , [x1 7→ vl,1, . . . , xk 7→ vl,k]

〉
l

= [x1 7→
〈
v1,1, . . . , vl,1

〉
l
, . . . , xl 7→

〈
v1,k, . . . , vl,k

〉
l
]

Lifting Lifting in this context means the replication of data.

Values

lift[n1,...,nk]([r1, . . . , rk]) = n1 • r1
∧ · · · ∧ nk • rk (∀i.ni ≥ 0)

liftc(((c1, c2), c)) = ((liftc(c1), liftc(c2)), c)
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Finite Maps

liftXc (f)(x) =

{
liftc(f(x)) x ∈ X
f(x) x /∈ X

Expressions

lift{x1,...,xk}
x (s) = let x1 = [1]

x2 = ixrep(x)
x1 ⇐ segfetch(x1, x2, x1)

...
xk ⇐ segfetch(xk, x2, x1)

in s

Lemma 8 Lifting expression type preservation

If Π `Ts s : σ and Π(x) = [int] and X ⊆ dom(Π) and x /∈ X

then Π `Ts liftXx (s) : σ

Proof By definition of lift and `Ts and Lemma 3.

3.4.3 Expressions〈〈
·
〉〉

: SExp→ TExps〈〈
e
〉〉

= s

〈〈
r
〉〉

= [r]〈〈
x
〉〉

= x

〈〈
let x⇐ e0 in e1

〉〉
= let x⇐

〈〈
e0

〉〉
in
〈〈
e1

〉〉
〈〈
o(e1, . . . , ek)

〉〉
= let x1 ⇐

〈〈
e1

〉〉
...

xk ⇐
〈〈
ek
〉〉

in O
〈〈
o
〉〉

( x1, . . . , xk)

〈〈
[e0 : x ∈ ix(e1)]

〉〉
= let x1 ⇐

〈〈
e1

〉〉
x⇐ iotas( x1)
x2 ⇐mkseg( x1)

x3 ⇐ par length(x) do lift
FV (e0)\{x}
x1 (

〈〈
e0

〉〉
)

in attsd( x2, x3)
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Operations

O
〈〈
·
〉〉

: SOp×Vark ⇀ TExps

O
〈〈
o
〉〉

(x1, . . . , xk) = t

O
〈〈
⊕
〉〉

(x1, . . . , xk) = ⊕v(x1, . . . , xk)

O
〈〈
length

〉〉
(x) = lens(seg(x))

O
〈〈
elt
〉〉

(x1, x2) = let x1 ⇐ x2 + starts(seg(x1))
x2 ⇐ [1]

in segfetch(data(x1), x1, x2)

O
〈〈
veck

〉〉
(x1, . . . , xk) = let x1 ⇐ [k]

x2 ⇐mkseg( x1)
x3 ⇐ zipk(x1, . . . , xk)

in attsd( x2, x3)

O
〈〈
conc

〉〉
(x) = let x1 ⇐ segsum(lens(seg(x)), lens(seg(data(x))))

x2 ⇐mkseg( x1)
x3 ⇐ segfetch(data(data(x)), starts(seg(data(x))), lens(seg(data(x))))

in attsd( x2, x3)

O
〈〈
part

〉〉
(x1, x2) = let x1 ⇐mkseg(data(x2))

x2 ⇐ attsd( x1,data(x1))
in attsd(seg(x2), x2)

3.5 Transformation Properties

Lemma 9 Operation Type Preservation

∀o.∀τ ′1..τ ′k′ .

if o[τ ′1, . . . , τ
′
k′ ] : τ1 ∗ · · · ∗ τk −> τ

then ∀ Π.
T

Π[ x1 7→<<τ1>>, . . . , xk 7→<<τk>>] `Ts O
〈〈
o
〉〉

( x1, . . . , xk) : <<τ >>

Proof By cases of o

• Case o = ⊕:

We have ⊕ : π1 ∗ · · · ∗ πk −> π

<<π>>= [π]

<<π1>>= [π1] · · · <<πk>>= [πk]

O
〈〈
⊕
〉〉

( x1, . . . , xk) = ⊕v( x1, . . . , xk)

⊕v : [π1] ∗ · · · ∗ [πk] −> [π]
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Let Π′ = Π[ x1 7→ [π1].. xk 7→ [πk]]. Then by (TOp-T)

T =
Π′ `Ts x1 : [π1] · · · Π′ `Ts xk : [πk]

Π′ `Ts ⊕v( x1, . . . , xk) : [π]
(⊕v : [π1] ∗ · · · ∗ [πk]−> [π])

as required.

• Case o = length:

We have length[τ ′] : [τ ′] −> int, so k = 1, τ1 = [τ ′] and τ = int.

<< int>>= [int]

<< [τ ′]>>= (seg, <<τ >>′)〈〈
length

〉〉
( x1) = lens(seg( x1))

By (TSeg-T) and (TStarts-T) we have

T =

Π[ x 7→ (seg, <<τ >>′)] `Ts x1 : (seg, <<τ >>′)

Π[ x 7→ (seg, <<τ >>′)] `Ts seg( x1) : seg

Π[ x 7→ (seg, <<τ >>′)] `Ts starts(seg( x1)) : [int]

• Case o = veck:

We have veck[τ ′] : τ ′
k −> [τ ′]

<< [τ ′]>>= (seg, <<τ ′>>)

O
〈〈
veck

〉〉
( x1, . . . , xk) = let x′1 ⇐ [k]

x′2 ⇐mkseg( x′1)
x′3 ⇐ zipk( x1, . . . , xk)

in attsd( x′2, x
′
3)

Let Π′ = Π[ x1 7→<<τ ′>> .. xk 7→<<τ ′>>]. By (TLet-T) and (TNumV-
T) we have.

T =
Π′ `Ts [k] : [int]

T ′
Π′[ x′1 7→ [int]] `Ts s′ : (seg, <<τ ′>>)

Π′ `Ts let x′1 ⇐ [k] in s′ : (seg, <<τ ′>>)

Let Π′′ = Π′[ x′1 7→ [int]]. By (TLet-T), (TVar-T) and (TOp-T) with
mkseg : [int]−> seg we have

T ′ =

Π′′ `Ts x′1 : [int]

Π′′ `Ts mkseg( x′1) : seg

T ′′
Π′′[ x′2 7→ seg] `Ts s′′ : (seg, <<τ ′>>)

Π′′ `Ts let x′2 ⇐mkseg( x′1) in s′′ : (seg, <<τ ′>>)
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Let Π′′′ = Π′′[ x′2 7→ seg]. By (TVar-T), (TOp-T) with zipk[<< τ ′ >>
] :<<τ ′>>k −> <<τ ′>> and (TLet-T) we have

T ′′ =

Π′′′ `Ts x1 : <<τ ′>> · · · Π′′′ `Ts xk : <<τ ′>>

Π′′′ `Ts zipk( x1, . . . , xk) : <<τ ′>>

T ′′′
Π′′′[ x′3 7→<<τ ′>>] `Ts s′′′ : (seg, <<τ ′>>)

Π′′′ `Ts let x′2 ⇐ zipk( x1, . . . , xk) in s′′ : (seg, <<τ ′>>)

Let Π′′′′ = Π′′′[ x′3 7→<<τ ′>>]

T ′′′ =
Π′′′′ `Ts x′2 : seg Π′′′′ `Ts x′3 : <<τ ′>>

Π′′′′ `Ts attsd( x′2, x
′
3) : (seg, <<τ ′>>)

• Cases o = elt, o = conc and o = part are similar.

�

Lemma 10 Expression Type Preservation.

∀e.∀Γ.

if Γ `S e : τ

then <<Γ>>`Ts
〈〈
e
〉〉

: <<τ >>

Proof By induction on the syntax of e:

• Case e = r: By definition
〈〈
e
〉〉

= [r], and by (TNumV-T) we have

Π `Ts [r] : [int]

, so in particular <<Γ>>`Ts
〈〈
e
〉〉

: [int].

By (SNum-T) we have that Γ `S r : int, so τ = int. We also have
<< int>>= [int] as required.

• Case e = x: By definition of
〈〈
·
〉〉

we have that
〈〈
e
〉〉

= x, and by (TVar-T)
we have that <<Γ>>`Ts x : <<Γ>> (x).

By definition of << ·>> we have <<Γ>> (x) =<<Γ(x)>>, so <<Γ>>`Ts〈〈
e
〉〉

: <<Γ(x)>>.

By (SVar-T) we have that Γ `S e : Γ(x), so τ = Γ(x) and << Γ>>`Ts〈〈
e
〉〉

: <<τ >>.

• Case e = let x⇐ e0 in e1:

By (SLet-T) we must have a derivation of

S0

Γ `S e0 : τ0

S1

Γ[x 7→ τ0] `S e1 : τ

Γ `S let x⇐ e0 in e1 : τ
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By I.H on S0 we have that

T0

<<Γ>>`Ts
〈〈
e0

〉〉
: <<τ0>>

By I.H on S1 we have that << Γ[x 7→ τ0]>>`Ts
〈〈
e1

〉〉
: << τ >>, and by

definition of << ·>> we have that <<Γ[x 7→ τ0]>>=<<Γ>> [x 7→<<τ0>>],
so

T1

<<Γ>> [x 7→<<τ0>>] `Ts
〈〈
e1

〉〉
: <<τ >>

By (TLet-T) we have

T0

<<Γ>> `Ts
〈〈
e0

〉〉
: <<τ0>>

T1

<<Γ>>[x 7→<<τ0>>] `Ts
〈〈
e1

〉〉
: <<τ >>

<<Γ>> `Ts let x⇐
〈〈
e0

〉〉
in
〈〈
e1

〉〉
: <<τ >>

By definition of
〈〈
·
〉〉

we have that
〈〈
e
〉〉

= let x ⇐
〈〈
e0

〉〉
in
〈〈
e1

〉〉
, so

<<Γ>>`Ts
〈〈
e
〉〉

: <<τ >>.

• Case e = o(e1, . . . , ek):

By (SOp-T) we have

S1

Γ `S e1 : τ1 · · ·
Sk

Γ `S ek : τk

Γ `S o(e1, . . . , ek) : τ
(o[τ ′1, . . . , τ

′
k] : τ1 ∗ · · · ∗ τkτ)

We have〈〈
o(e1, . . . , ek)

〉〉
= let x1 ⇐

〈〈
e1

〉〉
...

xk ⇐
〈〈
ek
〉〉

in O
〈〈
o
〉〉

( x1, . . . , xk)

Let Γ′ = Γ[ x1 7→ τ1, . . . , xk 7→ τk].

Since xi is chosen s.t. the variable does not conflict with any variables
in Γ we have Γ ⊆ Γ′ and from lemma 1 on S1 · · · Sk we must have the
derivations:

S ′1
Γ′ `S e1 : τ1 · · ·

S ′k
Γ′ `S ek : τk

By IH on S ′i for i ∈ {1..k} we have

Ti
<<Γ′>>`Ts

〈〈
ei
〉〉

: <<τi>>
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By Lemma 9 (operation type preservation) we have

T ′
<<Γ′>>`Ts O

〈〈
o
〉〉

( x1, . . . , xk) : <<τ >>

By repeated use of (TLet-T) and lemma 3 we get

Tk
<<Γ′>>`Ts

〈〈
ek
〉〉

: <<τk>>
T ′

<<Γ′>>`Ts O
〈〈
o
〉〉

( x1, . . . , xk) : <<τ >>

<<Γ′>>`Ts let xk ⇐
〈〈
ek
〉〉

in O
〈〈
o
〉〉

( x1, . . . , xk) : <<τ >>

• Case e = [e0 : x ∈ ix(e1)]:

By (SApp-T) we must have a derivation of

S1

Γ `S e1 : int
S0

Γ[x 7→ int] `S e0 : τ ′

Γ `S [e0 : x ∈ ix(e1)] : [τ ′]

so τ = [τ ′] and <<τ >>= (seg, <<τ ′>>).

By IH on S1 we have

T1

<<Γ>>`Ts e1 : [int]

By IH on S0 we have

T0

<<Γ[x 7→ int]>>`Ts e0 : <<τ ′>>

The vectorized expression is〈〈
[e0 : x ∈ ix(e1)]

〉〉
= let x1 ⇐

〈〈
e1

〉〉
x⇐ iotas( x1)
x2 ⇐mkseg( x1)

x3 ⇐ par length(x) do lift
FV (e0)\{x}
x1 (

〈〈
e0

〉〉
)

in attsd( x2, x3)

For the let-binded expressions we have the types

T1

<<Γ>>`Ts e1 : [int]

<<Γ>> [ x1 7→ [int]] `S x1 : [int]

<<Γ>> [ x1 7→ [int]] `S iotas( x1) : [int]
(iotas : [int]−> [int])

<<Γ>> [ x1 7→ [int], x 7→ [int]] `S x1 : [int]

<<Γ>> [ x1 7→ [int], x 7→ [int]] `S mkseg( x1) : seg
(mkseg : [int]−>seg)
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Let Π =<<Γ>> [ x1 7→ [int], x 7→ [int], x2 7→ seg]

By lemma 3 on T0 and by lemma 8 with Π we have

T ′0
Π `Ts lift

FV (e0)\{x}
x1 (

〈〈
e0

〉〉
) : <<τ ′>>

So

Π `Ts x : [int]

Π `U length(x)

T ′0
Π `Ts lift

FV (e0)\{x}
x1 (

〈〈
e0

〉〉
) : <<τ ′>>

Π `Ts par length(x) do lift
FV (e0)\{x}
x1 (

〈〈
e0

〉〉
) : <<τ ′>>

Π[ x3 7→<<τ ′>>] `Ts x2 : seg · · · Π[ x3 7→<<τ ′>>] `Ts x3 : <<τ ′>>

Π[ x3 7→<<τ ′>>] `Ts attsd( x2, x3) : (seg, <<τ ′>>)

By repeated use of the (TLet-T) rule we finally get

<<Γ>>`Ts
〈〈
e
〉〉

: (seg, <<τ ′>>)

as required.

�

Lemma 11 Value Type Preservation.

if
S1

`S v1 : τ · · · and · · ·
Sl

`S vl : τ (l ≥ 0)

then
T

`Ts
〈
v1, . . . , vl

〉
l
: <<τ >>+

Proof By induction on τ :

• Case τ = π:

Sub-case π = int

We must have

Si =
`S ni : int

so vi = ni.

We have

<< int>>= [int]
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– Sub-sub-case l > 0:〈
n1, . . . , nl

〉
l

= [n1, . . . , nl]

By (TNumV-T):

`Ts [n1, . . . , nl] : [int]

– Sub-sub-case l = 0:〈
n1, . . . , nl

〉
l

= []

By (Empty-T):

`Ts [] : [int]

Case τ = [τ ′]: By (SVec-T) we have

Si =

Si,1
`S vi,1 : τ ′ · · ·

Si,l′i
`S vi,l′i : τ ′

`S [vi,1, . . . ,vi,l′i ] : [τ ′]

so vi = [vi,1, . . . , vi,l′i ]

We have

<< [τ ′]>>+= ([int], <<τ ′>>+)

Let l′ =
∑l
i=1 l

′
i.

• – Sub-case l′ = 0

〈 l︷ ︸︸ ︷
[], . . . , []

〉
= ([

l︷ ︸︸ ︷
0, . . . , 0],

〈〉
0
)

`Ts [0, . . . , 0] : [int] `Ts [] : <<τ >>+

`Ts (([0, . . . , 0], []) : ([int], <<τ >>+)

as required.

– Sub-case l′ > 0

We have〈
v1, . . . , vl

〉
=

〈
[v1,1, . . . , v1,l1 ], . . . , [vl,1, . . . , vl,ll ]

〉
l

=
(
[l1, . . . , ll],

〈
v1,1, . . . , v1,l1 , . . . , vl,1, . . . , vl,ll

〉
l′

)
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By IH on Si,j we have

T ′
`Ts

〈
v1,1, . . . , vl,l′l

〉
l′

: <<τ ′>>+

`Ts [l1, . . . , li] : [int]

T ′
`Ts

〈
v1,1, . . . , v1,l1 , . . . , vl,1, . . . , vl,ll

〉
l′

: <<τ >>+

`Ts
(
[l1, . . . , ll],

〈
v1,1, . . . , v1,l1 , . . . , vl,1, . . . , vl,ll

〉
l′

)
: ([int], <<τ >>+)

as required.

�

3.5.1 Congruence

For K ∈ N define a relation (.K) ⊆M$ TVal×M$ TVal by

c$1 .K c$2 if and only if

c$1 = E and c$2 = E

or

c$1 = Rw1
c1 and c$2 = Rw2

c2

and c1 = c2 and w1 ≤ K · w2

When K equals 1 the subscript will not be written.

Lemma 12 Lifting value and work preservation.

if φ(x) = ixrepl(n1, . . . , nl) and ∀i.ni ≥ 0 and l′ =

l∑
i=1

ni > 0

then Ts

q
liftXx (t)

y
l
φ

. let$ ← Tickl+2l′+|X|(1+4l+4l′)

in Ts JtKl′ lift
X
[n1,...,nl]

(φ)

Proof By definition of Ts J·K , lift and segfetch.

Lemma 13 Operation work and value preservation.

if |c1| =
〈
v1

1 , . . . , v
l
1

〉
l
· · · |ck| =

〈
v1
k, . . . , v

l
k

〉
l

and
S1,1

`S v1
1 : τ1 · · ·

Sl,k
`S vlk : τk

and o[τ ′1, . . . , τ
′
k′ ] : τ1 ∗ · · · ∗ τk −> τ

then ∀φ.
∣∣Ts

q
O
〈〈
o
〉〉

( x1, . . . , xk)
y
l
φ[ x1 7→ c1, . . . , xk 7→ ck]

∣∣$
.K

〈
O JoK (v1

1 , . . . ,v
1
k), . . . ,O JoK (vl1, . . . ,v

l
k)
〉$
l
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Proof By lemma 2 (type soundness) we have an evaluation of

O JoK (v1
1 , . . . ,v

1
k) · · · O JoK (vl1, . . . ,v

l
k)

By lemma 11 on S1,1 · · · Sl,k we have

`Ts
〈
v1

1 , . . . , v
l
1

〉
l
: <<τ1>>

+ · · · `Ts
〈
v1
k, . . . , v

l
k

〉
l
: <<τk>>

+

and also

`Ts |c1| : <<τ1>>+ · · · `Ts |ck| : <<τk>>+

Therefore by lemma 4 we have

`Ts c1 : <<τ1>> · · · `Ts ck : <<τk>>

By lemma 9 on o[τ ′1, . . . , τ
′
k′ ] : τ1 ∗ · · · ∗ τk −> τ we have

Π[ x1 7→<<τ1>>, . . . , xk 7→<<τk>>] `Ts O
〈〈
o
〉〉

( x1, . . . , xk) : <<τ >>

Therefore by `Ts c1 : << τ1 >> · · · `Ts ck : << τk >> and lemma 6 (type
soundness) we have an evaluation of

Ts

q
O
〈〈
o
〉〉

( x1, . . . , xk)
y
l
φ[ x1 7→ c1, . . . , xk 7→ ck]

The rest of the proof proceeds by cases of o.

• Case o = ⊕:

We have the type ⊕ : π1 ∗ . . . ∗ πk −> π

So we must have a derivation of

Si,j =
`S rij : πj

so vij = rij and τj = πj for all i ∈ {1..l} and j ∈ {1..k}.
We therefore have

|cj | =
〈
v1
j , . . . , v

l
j

〉
l

= [r1
j , . . . , r

l
k]

so cj = [r1
j , . . . , r

l
k]

We have the evaluations

O J⊕K (ri1, . . . , r
i
k) = R1 ⊕(ri1, . . . , r

i
k)

We have the vectorization

O
〈〈
⊕
〉〉

( x1, . . . , xk) = ⊕v( x1, . . . , xk)

We have the vectorized evaluation

Ts J⊕v( x1, . . . , xk)Kl φ[ x1 7→ c1, . . . , xk 7→ ck]

= Rl
[
⊕ (r1

1, . . . , r
1
k), . . . ,⊕(rl1, . . . , r

l
k)
]

Clearly we have congruence for any K ≥ 1.
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• Case o = length:
We have the type

length[τ ′] : [τ ′] −> int

so k = 1 and τ1 = [τ ′] From `S vi1 : [τ ′]. We must have the derivation for
all i ∈ {1..l}:

Si,1 =
`S v′i1 : τ ′ · · · `S v′ili : τ ′

`S [v′i1 , . . . ,v
′i
li

] : [τ ′]

so vi1 = [v′i1 , . . . ,v
′i
li

].

From the definition of
〈
·
〉

we have〈
v1

1 , . . . , v
l
1

〉
l

=
〈
[v′11 , . . . ,v

′1
l1 ], . . . , [v′l1 , . . . ,v

′l
ll

]
〉
l

= ([l1, . . . , ll],
〈
...
〉
l′

)

so |c1| = ([l1, . . . , ll],
〈
...
〉
l′

).

From the definition of |·| we have

([l1, . . . , ll],
〈
...
〉
l′

) = |((..., [l1, . . . , ll]), ...)|

so c1 = ((..., [l1, . . . , ll]), ...). By definition of fst and snd we have

snd(fst(c1)) = [l1, . . . , ll]

We have the evaluation

O JlengthK (vi1) = R1 #vi1 = R1 li

We have the vectorization

O
〈〈
length

〉〉
( x1) = lens(seg( x1))

We have a vectorized evaluation

Ts Jlens(seg( x1))K φ[ x1 7→ c1] = R1 snd(fst(c1)) = R1 [l1, . . . , ll]

We have value preservation by

|[l1, . . . , ll]| = [l1, . . . , ll]

=
〈
l1, . . . , ll

〉
l

and work preservation by

1 ≤ K ·
l∑
i=1

1

= K · l

for any K ≥ 1
l . Since l ≥ 1 we can simply take K = 1.
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• Case o = conc:

We have the type

conc[τ ′] : [[τ ′]] −> [τ ′]

• Case o = part:

We have the type

part[τ ′] : [τ ′] ∗ [int] −> [[τ ′]]

• Case o = elt:

We have the type

elt[τ ′] : [τ ′] ∗ int −> τ ′

so k = 2 and τ1 = [τ ′], τ2 = int and τ = τ ′.

Therefore we must have the derivation of

Si,1 =
`S v′i1 : τ ′ · · · `S v′ili : τ ′

`S [v′i1 , . . . ,v
′i
li

] : [τ ′]

and

Si,2 =
`S ni : int

for all i ∈ {1..l}. So vi1 = [v′i1 , . . . ,v
′i
li

] and vi2 = ni.

From the definition of
〈
·
〉

we have〈
v1

1 , . . . , v
l
1

〉
l

=
〈
[v′11 , . . . ,v

′1
l1 ], . . . , [v′l1 , . . . ,v

′l
ll

]
〉
l

= ([l1, . . . , ll],
〈
v′11 , . . . , v

′l
ll

〉
l′

)

so |c1| = ([l1, . . . , ll],
〈
v′11 , . . . , v

′l
ll

〉
l′

), and

c1 = ([n′1, . . . , n
′
l], [l1, . . . , ll], c

′
1)

for some unknown starts [n′1, . . . , n
′
l] and value c′1.

Also

c2 = [n1, . . . , nl]

We have the evaluations

O JeltK ([v′i1 , . . . , v
′i
li

], ni) = if 0 ≤ ni ≤ li − 1
then R1 v

′i
ni−1

else E
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We have the vectorization

O
〈〈
elt
〉〉

( x1, x2) = let x′1 ⇐ x2 + starts(seg( x1))
x′2 ⇐ [1]

in segfetch(data( x1), x′1, x
′
2)

We have the vectorized evaluation

Ts Jelt( x1, x2)K= φ[ x1 7→ c1, x2 7→ c2] let$ c′1 ← x2 + starts(seg( x1))
c′2 ← [1]

in segfetch(data( x1), c′1, c
′
2)

where

Ts J x2 + starts(seg( x1))Kl φ[ x1 7→ c1, x2 7→ c2] = Rl [n1 + n′1, . . . , nl + n′l]
Ts J[1]Kl φ[ x1 7→ c1, x2 7→ c2] = Rl l • 1
Ts Jsegfetch(data( x1), c′1, c

′
2)Kl φ[ x1 7→ c1, x2 7→ c2] = Rw c

where c = segfetch(c1, [n1 + n′1, . . . , nl + n′l], l • 1) and w ≤ 1 + 8l (from

the work complexity of segfetch and
∑l
i=1 1 = l).

We therefore have that the total work in vectorized evaluation is no more
than 1 + 10l. Assuming l ≥ 0 we have work preservation for any K ≥ 11.

Value preservation is not proved.

• Case o = veck:

We have the type

veck[τ ′] : τ ′
k −> [τ ′] for every k ≥ 0

�

Theorem 14 Work and value Preservation.

∀e.∃K.∀Γ.∀τ.∀l > 0.∀ρ1..ρl.

if
S

Γ `S e : τ and
S1

`S ρ1 : Γ · · ·
Sl

`S ρl : Γ

then ∀φ. s.t. |φ � dom(Γ)| =
〈
ρ1, . . . , ρl

〉
l

we have
∣∣Ts

q〈〈
e
〉〉y

l
φ
∣∣$ .K 〈S JeK ρ1, . . . ,S JeK ρl

〉$
l
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Proof By lemma 2 on Γ `S e : τ and `S ρ1 : Γ · · · `S ρl : Γ we have an
evaluation of

S JeK ρ1 · · · S JeK ρl

By lemma 10 on Γ `S e : τ we have

<<Γ>>`Ts
〈〈
e
〉〉

: <<τ >>

By lemma 11 on `S ρ1 : Γ · · · `S ρl : Γ we have

<<Γ>>+`Ts
〈
ρ1, . . . , ρl

〉
l
:

So by lemma 3 and lemma 4 on |φ � dom(Γ)| =
〈
ρ1, . . . , ρl

〉
l

we have

`T φ � dom(Γ) : <<Γ>>

Thus by lemma 6 we have an evaluation of

Ts

q〈〈
e
〉〉y

l
φ

The rest of the proof proceeds by induction on the syntax of e:

• Case e = r:

We have the evaluations

S JrK ρ1 = R1 r

...

S JrK ρk = R1 r

We have the vectorization〈〈
r
〉〉

= [r]

We have the vectorized evaluation

Ts J[r]Kl φ = Rl [

l︷ ︸︸ ︷
r, . . . , r]

We have value preservation by∣∣∣∣∣∣[
l︷ ︸︸ ︷

r, . . . , r]

∣∣∣∣∣∣ = [

l︷ ︸︸ ︷
r, . . . , r]

=
〈
r, . . . , r

〉
l

We have work preservation by

l ≤ K ·
l∑
i=1

1

= K · l

for any K ≥ 1.
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• Case e = x:
From type soundness we have x ∈ dom(Γ)
We have the evaluations

S JxK ρ1 = R1 ρ1(x)

...

S JxK ρl = R1 ρl(x)

We have the vectorization〈〈
x
〉〉

= x

We have the vectorized evaluation

Ts JxKl φ = R1 φ(x)

We have value preservation by

|φ(x)| = |φ| (x)

x∈dom(Γ)
= |φ � dom(Γ)| (x)

=
〈
ρ1, . . . , ρl

〉
l
(x)

=
〈
ρ1(x), . . . , ρl(x)

〉
l

=
〈
v1, . . . , vl

〉
l

We have work preservation by

1 ≤ K ·
l∑
i=1

1

= K · l

for any K ≥ 1.

• Case e = let x⇐ e1 in e2:

By (TLet-T) we must have a derivation of

S ′1
Γ `S e1 : τ1

S ′2
Γ[x 7→ τ1] `S e2 : τ2

Γ `S let x⇐ e1 in e2 : τ2

We have the evaluations

S JeK ρi = let$ vi1 ← S Je1K ρi
in S Je2K ρi[x 7→ vi1]
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for all i ∈ {1..l}. We have the vectorization〈〈
let x⇐ e1 in e2

〉〉
= let x⇐

〈〈
e1

〉〉
in
〈〈
e2

〉〉
We have the vectorized evaluation

Ts

q
let x⇐

〈〈
e1

〉〉
in
〈〈
e2

〉〉y
l
φ = let$ c1 ← Ts

q〈〈
e1

〉〉y
l
φ

in Ts

q〈〈
e2

〉〉y
l
φ[x 7→ c1]

By IH on S ′1 with S1 · · · Sl we have∣∣Ts

q〈〈
e1

〉〉y
l
φ
∣∣$ .K1

〈
S Je1K ρ1, . . . ,S Je1K ρl

〉$
l

(1)

so |c1| =
〈
v1

1 , . . . , v
l
1

〉
l
.

By lemma 2 on S ′1 with `S ρi : Γ we have

`S vi1 : τ1 or S Je1K ρi = E

for all i ∈ {1..l}.
If there exists an i such that S Je1K ρi = E, then〈

S Je1K ρ1, . . . ,S Je1K ρl
〉$
l

= E

and by (1) we have

Ts

q〈〈
e1

〉〉y
l
φ = E

so

Ts

q〈〈
e
〉〉y

l
φ = E

Furthermore

S JeK ρi = E

so 〈
S JeK ρ1, . . . ,S JeK ρl

〉$
l

= E

so we have congruence for any K.

Otherwise by (SEnvUp-T) we have the derivations of

S ′′i =
`S ρi : Γ `S vi1 : τ1

`S ρi[x 7→ vi1] : Γ[x 7→ τ1]

By IH on S ′2 with S ′′1 · · · S ′′l we have

∀φ′. s.t. |φ′ � dom(Γ[x 7→ τ1])| =
〈
ρ1[x 7→ v1

1 ], . . . , ρl[x 7→ vl1]
〉
l
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∣∣Ts

q〈〈
e2

〉〉y
l
φ′
∣∣$ .K2

〈
S Je2K ρ1[x 7→ v1

1 ], . . . ,S Je2K ρl[x 7→ vl1]
〉$
l

(2)

We see that φ[x 7→ c0] satisfies this condition by

|φ[x 7→ c0] � dom(Γ[x 7→ τ1])| = |φ � dom(Γ[x 7→ τ1])[x 7→ c0]|
= |φ � dom(Γ[x 7→ τ1])| [x 7→ |c0|]
= |φ � dom(Γ)| [x 7→ |c0|]
=

〈
ρ1, . . . , ρl

〉
l
[x 7→ |c0|]

=
〈
ρ1, . . . , ρl

〉
l
[x 7→

〈
v1

1 , . . . , v
l
1

〉
l
]

=
〈
ρ1[x 7→ v1

1 ], . . . , ρl[x 7→ vl1]
〉
l

so we take φ′ = φ[x 7→ c0].

We have value preservation from (1) and we have work preservation from
(1) and (2) for any K ≥ max(K1,K2).

• Case e = o(e1, . . . , ek): We must have the type

S ′1
Γ `S e1 : τ1 · · ·

S ′k
Γ `S ek : τk

Γ `S o(e1, . . . ,ek) : τ
(o[τ ′1, . . . , τ

′
k′ ] : τ1 ∗ · · · ∗ τk −> τ)

We have the evaluations

S Jo(e1, . . . , ek)K ρi = let$ vi1 ← S Je1K ρi
...
vik ← S JekK ρi

in O JoK (vi1, . . . ,v
i
k)

for all i ∈ {1..l}. We have the Vectorization〈〈
o(e1, . . . , ek)

〉〉
= let x1 ⇐

〈〈
e1

〉〉
...

xk ⇐
〈〈
ek
〉〉

in O
〈〈
o
〉〉

( x1, . . . , xk)

We have the vectorized evaluation

Ts

q〈〈
o(e1, . . . , ek)

〉〉y
l
φ = let$ c1 ← Ts

q〈〈
e1

〉〉y
l
φ

...
ck ← Ts

q〈〈
ek
〉〉y

l
φ

in Ts

q
O
〈〈
o
〉〉

( x1, . . . , xk)
y
l
φ[ x1 7→ c1, . . . , xk 7→ ck]

By IH on S ′i with S1 · · · Sk we have∣∣Ts

q〈〈
ei
〉〉y

l
φ
∣∣$ .Ki

〈
S JeiK ρ1, . . . ,S JeiK ρl

〉$
l

(1)
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By lemma 2 on S ′1 · · · S ′k with `S ρi : Γ we have

`S vi1 : τ1 or S Je1K ρi = E

...

`S vik : τk or S JekK ρi = E

for all i ∈ {1..l}.
Similar to the previous case, we can easily show congruence if there exists
an i ∈ {1..l} and a j ∈ {1..k} such that S JejK ρi = E.

Otherwise we can use lemma 13 on (1) and S ′1 · · · S ′k and o[τ ′1, . . . , τ
′
k′ ] :

τ1 ∗ · · · ∗ τk −> τ to get

Ts

q
O
〈〈
o
〉〉

( x1, . . . , xk)
y
l
[ x1 7→ c1, . . . , xk 7→ ck]

$
(2)

.K′
〈
O JoK (v1

1 , . . . ,v
1
k), . . . ,O JoK (vl1, . . . ,v

l
k)
〉$
l

We have value preservation from (2).

We have work preservation from (1) and (2) for anyK ≥ max(K ′,K1, . . . ,Kk)

• Case e = [e0 : x ∈ ix(e1)]: By (SApp-T) we must have a derivation of

S =

S ′1
Γ `S e1 : int

S ′0
Γ[x 7→ int] `S e0 : τ ′

Γ `S [e0 : x ∈ ix(e1)] : [τ ′]

So τ = [τ ′].

We have the evaluations

S J[e0 : x ∈ ix(e1)]K ρi = let$ ni ← S Je1K ρi
in if ni ≥ 0

then vi1 ← S Je0K ρi[x 7→ 0]
...
vin ← S Je0K ρi[x 7→ ni − 1]
Rni+1 [vi1, . . . , v

i
n]

else E

for i ∈ {1..l}.
We have the vectorization〈〈

[e0 : x ∈ ix(e1)]
〉〉

= let x1 ⇐
〈〈
e1

〉〉
x⇐ iotas( x1)
x2 ⇐mkseg( x1)

x3 ⇐ par length(x) do lift
FV (e0)\{x}
x1 (

〈〈
e0

〉〉
)

in attsd( x2, x3)
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We have the vectorized evaluation

Ts

q〈〈
[e0 : x ∈ ix(e1)]

〉〉y
l
φ =

let$ c1 ← Ts

q〈〈
e1

〉〉y
l
φ

cx ← Ts Jiotas( x1)Kl φ[ x1 7→ c1]
c2 ← Ts Jmkseg( x1)Kl φ[ x1 7→ c1, x 7→ cx]

c3 ← Ts

r
par length(x) do lift

FV (e0)\{x}
x1 (

〈〈
e0

〉〉
)
z

l
φ[ x1 7→ c1, x 7→ cx, x2 7→ c2]

in Ts Jattsd( x2, x3)Kl φ[ x1 7→ c1, x 7→ cx, x2 7→ c2, x3 7→ c3]

– Sub-case
〈
S JeK ρ1, . . . ,S JeK ρl

〉$
l

= E: In this case one of the follow-
ing 3 conditions must be true by the evaluations of e. In all cases
the vectorized evaluation fails as well. The point of failure is given
informally:

1. ∃i ∈ {1..l}.S Je1K ρi = E: Here
〈〈
e1

〉〉
will fail by IH on S ′1.

2. ∃i ∈ {1..l}.ni < 0: Here iotas( x1) will fail.

3. ∃i ∈ {1..l}.∃j ∈ {0..ni − 1}.S Je0K ρi[x 7→ j] = E: Here
〈〈
e0

〉〉
will

fail by IH on S ′0.

In all cases Ts

q〈〈
[e0 : x ∈ ix(e1)]

〉〉y
l
φ = E, so∣∣Ts

q〈〈
e
〉〉y

l
φ
∣∣$ .K 〈S JeK ρ1, . . . ,S JeK ρl

〉$
l

for any K.

– Sub-case
〈
S JeK ρ1, . . . ,S JeK ρl

〉$
l

= Rw c: Conversely to the last case
all of these conditions must be met:

1. ∀i ∈ {1..l}.S Je1K ρi = Rwi
1
ni

2. ∀i ∈ {1..l}.ni ≥ 0

3. ∀i ∈ {1..l}.∀j ∈ {0..ni − 1}.S Je0K ρi[x 7→ j] = Rwi,j
0
vij

Furthermore the following must be true by the evaluations of

e and the definition of
〈
·
〉$

4. w =
∑
wi1 +

∑
wi,j0 +

∑
(ni + 1)

By IH on S ′1 with S1 · · · Sl we have∣∣Ts

q〈〈
e1

〉〉y
l
φ
∣∣$ .K1

〈
S Je1K ρ1, . . . ,S Je1K ρl

〉$
l

(5)

From (1) and (5) we have Ts

q〈〈
e1

〉〉y
l
φ = Rw′

1
[n1, . . . , nl] for some

w′1 ≤ K1 ·
∑l
i=1 w

i
1, and c1 = [n1, . . . , nl].

Let l′ =
∑l
i=1 ni. We have

Ts Jiotas( x1)Kl φ[ x1 7→ c1]
(2)
= Rl+l′ iotas(c1)

so cx = iotas(c1), also let w′x = l + l′.

Ts Jmkseg( x1)Kl φ[ x1 7→ c1, x 7→ cx] = R1+l (scan+(c1), c1)
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so c2 = (scan+(c1), c1), w′2 = 1 + l.

Assume l′ > 0 (this sub-case also holds for l′ = 0 but it will not be
shown) we then have:

Ts

r
par length(x) do liftFV (e0)\{x}

x1
(
〈〈
e0

〉〉
)
z

l
φ[ x1 7→ c1, x 7→ cx, x2 7→ c2]

= let l′′ = U Jlength(x)Kφ[ x1 7→ c1, x 7→ cx, x2 7→ c2]

in Ts

r
lift

FV (e0)\{x}
x1 (

〈〈
e0

〉〉
)
z

l′′
φ[ x1 7→ c1, x 7→ cx, x2 7→ c2]

l′′ is evaluated to

U Jlength(x)Kφ[ x1 7→ c1, x 7→ cx, x2 7→ c2] = #(cx)

= #(iotas(c1))

= l′

So l′′ = l′.

By lemma 12 on φ[ x1 7→ c1, x 7→ cx, x2 7→ c2]( x1) = [n1, . . . , nl],
(2) and the assumption l′ > 0 we have

Ts

r
liftFV (e0)\{x}

x1
(
〈〈
e0

〉〉
)
z

l′
φ[ x1 7→ c1, x 7→ cx, x2 7→ c2]

. let$ ← Tickl+2l′+4k(1+l+l′)

in Ts

q〈〈
e0

〉〉y
l′
lift

FV (e0)\{x}
c1 (φ[ x1 7→ c1, x 7→ cx, x2 7→ c2])

(6)

By (SEnvUp-T) for all i ∈ {1..l} for all j ∈ {0..ni − 1} we have

S ′i,j =

Si
`S ρi : Γ `S j : int

`S ρi[x 7→ j] : Γ[x 7→ int]

By IH on S ′0 and S ′i,j with l′ we have

∀φ′ s.t. |φ′ � dom(Γ[x 7→ int])|

=
〈
ρ1[x 7→ 0], . . . , ρ1[x 7→ n1−1], . . . , ρl[x 7→ 0], . . . , ρl[x 7→ nl−1]

〉
l′

we have∣∣Ts

q〈〈
e0

〉〉y
l′
φ′
∣∣$ .K0〈

S Je0K ρ1[x 7→ 0], . . . ,S Je0K ρ1[x 7→ n1 − 1],

. . . ,S Je0K ρl[x 7→ 0], . . . ,S Je0K ρl[x 7→ nl − 1]
〉$
l′

(7)
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Take φ′ = lift
dom(φ)\{x}
c1 (φ[x 7→ cx]). It satisfies the condition by

|φ′ � dom(Γ[x 7→ int])|
unfold φ′

=
∣∣∣liftdom(φ)\{x}

[n1,...,nl]
(φ[x 7→ cx]) � dom(Γ[x 7→ int])

∣∣∣
x/∈dom(φ)\{x}

=
∣∣∣liftdom(φ)\{x}

[n1,...,nl]
(φ)[x 7→ cx] � dom(Γ[x 7→ int])

∣∣∣
x∈dom(Γ[x 7→int])

=
∣∣∣liftdom(φ)

[n1,...,nl]
(φ � dom(Γ))[x 7→ cx]

∣∣∣
cx is flat

=
∣∣∣liftdom(φ)

[n1,...,nl]
(φ � dom(Γ))

∣∣∣ [x 7→ cx]

φ�dom(Γ)=
〈
ρ1,...,ρl

〉
l
,(2)

=
〈 n1︷ ︸︸ ︷
ρ1, . . . , ρ1, . . . ,

nl︷ ︸︸ ︷
ρl, . . . , ρl

〉
l′

[x 7→ cx]

=
〈
ρ1[x 7→ 0], . . . , ρ1[x 7→ n1 − 1], . . . , ρl[x 7→ 0], . . . , ρl[x 7→ nl − 1]

〉
l′

From (3) and (7) we have

Ts

q〈〈
e0

〉〉y
l′
φ′ = Rw′

0
c0 (8)

for some w′0 ≤
∑l
i=1

∑l′i
j=1 w

i,j
0 and |c0| =

〈
v1

0 , . . . , v
1
n1−1, . . . , v

l
0, . . . , v

l
nl−1

〉
l′

.

So by lemma 7, because x1 and x2 is selected to be non-free in
〈〈
e0

〉〉
and because FV (e0) = FV (

〈〈
e0

〉〉
) we also have

Ts

q〈〈
e0

〉〉y
l′
liftFV (e0)\{x}

c1 (φ[ x1 7→ c1, x 7→ cx, x2 7→ c2]) = Rw′
0
c0

So by (6) we have

Ts

r
liftFV (e0)\{x}

x1
(
〈〈
e0

〉〉
)
z

l′
φ[ x1 7→ c1, x 7→ cx, x2 7→ c2] = Rw′′

0
c0

for some w′′0 ≤ w′0.

And by the vectorized evaluation of par length(x) do lift
FV (e0)\{x}
x1 (

〈〈
e0

〉〉
)

we have

Ts

r
par length(x) do liftFV (e0)\{x}

x1
(
〈〈
e0

〉〉
)
z

l
φ[ x1 7→ c1, x 7→ cx, x2 7→ c2] = Rw′′

0
c0

We then have

Ts Jattsd( x2, x3)Kl φ[ x1 7→ c1, x 7→ cx, x2 7→ c2, x3 7→ c0] = R1 (c2, c0)

so

Ts

q〈〈
[e0 : x ∈ ix(e1)]

〉〉y
l
φ = Rw′ (c2, c0)

and w′ ≤ w1 + (l+ l′) + (1 + l) + (l+ 2l′ + 4k(1 + l+ l′)) +w′′0 where
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k = |FV (e0)\{x}|. Therefore the value is preserved by

|c| = |(c2, c0)|
= |((scan+(c1), c1), c0)|

def . of |·|
= (c1,4scan+(c1)

c1 (c0))

Lemma 5
= (c1, |c0|)

unfold c1
= ([n1, . . . , nl], |c0|)
(8)
= ([n1, . . . , nl],

〈
v1

0 , . . . , v
1
n1−1, . . . , v

l
0, . . . , v

l
nl−1

〉
l′

)

(3)
=

〈
S JeK ρ1, . . . ,S JeK ρl

〉
l

The work is preserved by

w′ ≤ w′1 + (l + l′) + (1 + l) + (l + 2l′ + 4k(1 + l + l′)) + w′′0

≤ 1 + 3l + 3l′ + 4k(1 + l + l′) + w′1 + w′0

≤ 1 + 3l + 3l′ + 4k(1 + l + l′) +K1 ·
∑

wi1 +K0 ·
∑

wi,j0

≤(∗) K ′′ · l +K ′′ · l′ +K1 ·
∑

wi1 +K0 ·
∑

wi,j0

≤ K · (
∑

wi1 +
∑

wi,j0 + l′ + l)

(
K = max(K0,K1,

12k + 7

2
)

)
(4)
= K · w

(∗): 1 + 3l + 3l′ + 4k(1 + l + l′) ≤ K ′′ · l + K ′′ · l′ has the solution
K ′′ ≥ 12k+7

2 .

�

The Constant K Based on the proof of theorem 14, it is possible to define
the constant K as a function of the expression.

K : SExp→ N
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K(d) = 1

K(x) = 1

K(let x⇐ e1 in e2) = max(K(e1),K(e2))

K(o(e1, . . . , ek)) = max(K(e1), . . . ,K(ek),K(o))

K([e0 : x ∈ e1]) = max

(
K(e0),K(e1),

12FV (e0) + 7

2

)
K(veck) = Kvec

K(length) = 1

K(elt) = 11

K(conc) = Kconc

K(part) = Kpart

K(⊕) = 1

Note that Kvec, Kconc and Kpart have not been shown formally yet, but they
are strongly believed to be constants.

4 Implementation

An interpreter for the source an target language has been implemented in
Haskell. Apart from values, the interpreter also computes the work complexity
as defined by the semantic functions. A parser for the source language has also
been implemented, and finally the flattening transformation has been imple-
mented.

The implementations of the interpreters are not ideal - they do not obey the
cost models presented in this paper. This it not because it is not possible, it is
simply because a cost-correct implementation is out of the scope of this report.

The implementation serves to support the value and work preservation proof
as well as to demonstrate actual values of the constant K. Furthermore the
implementation is also used as an informal argument why the vectorization
is still work-efficient after including mutual recursive user-defined function by
demonstrating work-efficiency on the Quicksort algorithm.

5 Evaluation

5.1 Replication Problem

Generalized segment descriptors has proven to be a useful tool to achieve the-
oretical better work complexities. The cost of replication of values required by
the vectorization allows a reference-based cost model of the target language,
which in turn allows a better cost model for the source language. Although we
do have special transformation rules for each primitive operation, our solution
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is still more general than the predominant solution of treating indexing as a
special case, since we still replicate all arguments indiscriminately.

In each apply-to-each construct, the work complexity of replication is now
in order of the parallel degree times the number of free variables in the body of
the apply-to-each.

The downside of our solution of the replication problem is that we increase
the amount of read contention.

5.2 Provable Correct Cost Model

Our source language cost model is close to the ideal cost model with the excep-
tion of vector constructor, and our vectorization has been proved to preserved
work complexity within a factor K that depends on the number of free variables.

This K could be made truly constant by incorporating the cost of replication
in the source language cost model by charging for the replication in every apply-
to-each. This would yield a slightly worse source language cost model where
apply-to-each has and additional cost of the sum of the lengths of the free
variables.

This cost model is still better than the construct-parameters cost model for
Proteus where the apply-to-each charges and additional cost of the sum of the
sizes of the free variables, because the size of a value is always greater than or
equal to its length.

On the other hand our cost model is hard to compare to the construct-result
cost model of Proteus where the apply-to-each charges an additional cost of the
size of the evaluated expression. Whether the length of the values bound to
the free variables or the size of the evaluated expression is greatest depends on
the expression. But our vectorization does not pose restrictions on programs as
does Proteus with construct-result semantics.

In conclusion our cost model is novel in that it provides better work com-
plexities (with the exception of vector construction) than any existing provable
and implementable cost model for programs without restrictions.

5.3 Implementation Results

The following figure shows the work complexity of Quicksort evaluated by the
cost model for the source language and for the target language as presented in
this report.
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The next figure shows the ratio between the work complexity of the two
languages. This would correspond to the constant K.

The target language is clearly more expensive than the source language, but
not asymptotically, which is exactly the desired results. The value of K seems
to be large for very small input sizes, which is acceptable, but tend to stabilize
around 2.8 for the Quicksort algorithm. A 2.8 times higher work-complexity
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may seem significant, but if the program is in turn able to run on 1000 parallel
processes the actual wall-clock time may indeed by much smaller. Whether this
is true or not depends on if the step complexity can be preserved and if the
target language cost model is actually implementable. The answer to both of
these questions are left for future work.

6 Conclusion

6.1 Future Work

There are still many unexplored aspects of this vectorization.

• Scattered Segments: To reduce the work complexity of the vector construc-
tor to match the ideal semantics, we would generalize segment descriptors
even further by allowing them to point to different data vectors.

• Step Complexity: Including the step complexity in the cost model will
reveal how parallelizable the vectorization is. It is expected that only
contained programs are depth preserving.

• Divergence: In order to formalize user-defined recursive functions, we
would need to treat divergence, possibly using a formulation with CPOS
or similar.

• Cost-correct implementation and empirical comparison to the existing so-
lutions.

• Analysis of how much the problem of concurrent reads dominates the work
complexity, and possibly a heuristic solution hereof.

We have presented a nested data parallel language, a flat data parallel lan-
guage and a flattening transformation from the former to the latter. We have
given a reasonable work complexity cost model for both languages, with the
exception of the cost of the vector constructor in the source language, and we
have proved that the flattening transformation preserves value and work. The
work is preserved within a factor of K for some K that may depend on the size
of the source language expression.

The cost model for the source language is ideal (except for vector construc-
tion) and the formally correct vectorization is therefore novel.

The formulation of the languages and the vectorization has been derived
by studying and comparing existing vectorizations in NESL, Proteus and Data
Parallel Haskell and the success of the work-efficiency can be largely attributed
to the introduction of the key concept of generalized segment descriptors.
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Appendix A: All lemmas and theorems

Lemma 1 Typing Context Inclusion (source).

∀Γ,Γ′.

if Γ ⊆ Γ′ and Γ `S e : τ then Γ′ `S e : τ

Lemma 2 Type Soundness (source).

if Γ `S e : τ and `S ρ : Γ

then either S JeK ρ = E

or S JeK ρ = Rw v and `S v : τ

Lemma 3 Type Context Inclusion (target).

∀Π,Π′.

if Π ⊆ Π′ and Π `Ts s : σ then Π′ `Ts s : σ

Lemma 4 Normalization type preservation.

`Ts c : σ

if and only if `Ts |c| : |σ|
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Lemma 5

if

l∑
i=1

ni = #c

then 4[n1,...,nl]
scan+([n1,...,nl])

(c) = |c|

Lemma 6 Type Soundness (target.

if Π `Ts s : σ and `T φ : Π

then either Ts JsKl φ = E

or Ts JsKl φ = Rw c and `Ts c : σ

Lemma 7 Restriction to free variables.

Ts JsKl φ = Ts JsKl φ � FV (s)

Lemma 8 Lifting expression type preservation.

If Π `Ts s : σ and Π(x) = [int] and X ⊆ dom(Π) and x /∈ X

then Π `Ts liftXx (s) : σ

Lemma 9 Operation Type Preservation.

∀o.∀τ ′1..τ ′k′ .

if o[τ ′1, . . . , τ
′
k′ ] : τ1 ∗ · · · ∗ τk −> τ

then ∀ Π.
T

Π[ x1 7→<<τ1>>, . . . , xk 7→<<τk>>] `Ts O
〈〈
o
〉〉

( x1, . . . , xk) : <<τ >>

Lemma 10 Expression Type Preservation.

∀e.∀Γ.

if Γ `S e : τ

then <<Γ>>`Ts
〈〈
e
〉〉

: <<τ >>

Lemma 11 Value Type Preservation.

if
S1

`S v1 : τ · · · and · · ·
Sl

`S vl : τ (l ≥ 0)

then
T

`Ts
〈
v1, . . . , vl

〉
l
: <<τ >>+
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Lemma 12 Lifting value and work preservation.

if φ(x) = ixrepl(n1, . . . , nl) and ∀i.ni ≥ 0 and l′ =

l∑
i=1

ni > 0

then Ts

q
liftXx (t)

y
l
φ

. let$ ← Tickl+2l′+|X|(1+4l+4l′)

in Ts JtKl′ lift
X
[n1,...,nl]

(φ)

Lemma 13 Operation work and value preservation.

if |c1| =
〈
v1

1 , . . . , v
l
1

〉
l
· · · |ck| =

〈
v1
k, . . . , v

l
k

〉
l

and `S v1
1 : τ1 · · · `S vlk : τk

and o[τ ′1, . . . , τ
′
k′ ] : τ1 ∗ · · · ∗ τk −> τ

then ∀φ.
∣∣Ts

q
O
〈〈
o
〉〉

( x1, . . . , xk)
y
l
φ[ x1 7→ c1, . . . , xk 7→ ck]

∣∣$
.K

〈
O JoK (v1

1 , . . . ,v
1
k), . . . ,O JoK (vl1, . . . ,v

l
k)
〉$
l

Theorem 14 Work and value Preservation.

∀e.∃K.∀Γ.∀τ.∀l > 0.∀ρ1..ρl.

if
S

Γ `S e : τ and
S1

`S ρ1 : Γ · · ·
Sl

`S ρl : Γ

then ∀φ. s.t. |φ � dom(Γ)| =
〈
ρ1, . . . , ρl

〉
l

we have
∣∣Ts

q〈〈
e
〉〉y

l
φ
∣∣$ .K 〈S JeK ρ1, . . . ,S JeK ρl

〉$
l
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