

F ACULTY O F S C I EN CE
U N I V E R S I T Y O F C O P E N H A G E N

Master’s Thesis
Frederik M. Madsen

A streaming model for nested data parallelism

Supervisor: Andrzej Filinski

March 2013

Abstract

Efficient parallel algorithms are often written with embedded knowledge of
the back-end that they are meant to be executed on, and if they are not, the
translation to target language often produces inefficient code. A concrete prob-
lem is space complexity in nested data parallel (NDP) languages such as NESL
and Data Parallel Haskell, where large intermediate arrays are often allocated
during execution. This thesis presents an NDP language with a streaming based
model where the time complexity of programs is just as good as in traditional
NDP languages, but the space complexity is significantly better in many cases.
A minimal NDP language with semantics and a desirable cost model is defined,
as well as a streaming based target language, and the two languages are related
with a translation, a proof-of-concept implementation and a conjecture about
value and cost preservation.

Resumé

Effektive parallel algoritmer er ofte skrevet med indlejret viden om platfor-
men de skal køre p̊a, og hvis de ikke er, producerer oversættelsen til m̊alsprog ofte
ineffektiv kode. Et konkret problem er pladsforbruget i nestede data-parallele
(NDP) sprog s̊a som NESL og Data Parallel Haskell, hvor store midlertidige
array’s ofte allokeres under eksekvering. Dette speciale præsenterer et NDP
sprog med en strøm-baseret model hvor tidsforbuget er det samme som for tra-
ditionelle NDP sprog, men pladsforbruget er signifikant bedre i mange tilfælde.
Et minimalt NDP sprog med semantik of ønskværdig omkostning-model bliver
defineret, s̊a vel som et strøm-baseret m̊alsprog, og de to sprog sammenholdes
med en oversættelse, en proof-of-concept implementation samt en formodning
omkring værdi- og omkostnings-bevaring.

2

Contents

1 Introduction 4
1.1 Data parallelism . 4
1.2 Nested data parallelism (NDP) . 6
1.3 Problem statement . 9

2 Analysis 10
2.1 NDP language . 10
2.2 CUDA . 12

3 Source language 14
3.1 Syntax . 14
3.2 Type system . 16
3.3 Syntactic sugar . 20
3.4 Big-step semantics . 22
3.5 Cost semantics . 26
3.6 Examples . 30
3.7 Evaluation . 34

4 Streaming language 35
4.1 Syntax . 35
4.2 Type system . 36
4.3 Interpretation . 39
4.4 Derived complexities . 47
4.5 Examples . 49
4.6 Recursion . 52
4.7 Evaluation . 52

5 Transformation 53
5.1 Value representation . 53
5.2 Type transformation . 55
5.3 Expression transformation . 56
5.4 Value and cost preservation . 67

6 Implementation 68
6.1 Runtime system . 68
6.2 Compiler . 68
6.3 Back end . 69
6.4 Evaluation . 69

7 Conclusion 71

3

1 Introduction

The amount of space required to run an NDP program is often less then ideal if the
the program contains reductions, even for trivial programs. The main cause lies in
the vectorization to a flat target language, where programs are viewed as a series of
very big vector instructions, executed one at a time. This thesis proposes a different
approach where the vector instructions are connected in a directed acyclic graph, and
each instruction is allowed to execute partially and multiple times, thus creating a data-
flow network. Instead of vectors, we have streams, and instead of vector instructions,
we have stream transformers, with one additional detail - the transformers are operates
in chunks and are data parallel. To achieve such a model, we first describe a suitable
source language and a target language and we present a transformation from the former
to the latter. Both languages are given a reasonable cost model.

1.1 Data parallelism

Data parallelism is one way of approaching parallelism in programming. The data
parallel approach covers parallelism based on data, as opposed to other fundamental
entities, such as number of threads. In essence, a data parallel programming language
is able to express that some non-unit quantity of computational work can be done in
a parallel , and the actual amount of work can depend on runtime data (e.g. input
size).

It is important to note, that data parallel programming languages almost always
express work that can be done in parallel, not work that must be done in parallel.
This is because the available parallel degree, the number of available processing units,
can vary greatly from back-end to back-end, and it is usually easy for the compiler
to “chunk up” too parallel steps into several steps, whereas it would be tedious, if
not impossible, for the programmer to do so for each back-end. The amount of work
in a single step can therefore be used as a measure of potential parallel degree of a
program, and once a program is executed on a specific back-end, we can measure the
actual parallel degree of the program, which should be the same as the minimum of
the available and potential parallel degree.

Data parallelism in a programming language can be achieved simply by having
a library of parallel algorithms. A common way to introduce more expressive data
parallelism, is to introduce a new construct that essentially is a parallel foreach loop,
or a parallel map:

{e0 : x in e1}
We call it apply-to-each, and the semantic is, first e0 is evaluated to a list, and then
the body expression e1 is evaluated for each element in the list substituted for x to
produce the resulting list.

A key point is, that each evaluation of the body must be independent in order to
claim that they can be executed in parallel or out of order without unexpected results,
and it is therefore necessary that the body expression has no side-effects, that can
effect the parallel evaluations.

1.1.1 Homogeneous data parallelism

The parallel foreach loop construct and the parallel map closely resembles the notion of
single instruction multiple data (SIMD). The resemblance can be seen, by realizing that

4

an expression in a source language is translated into a series of instructions, and the
parallel foreach construct has a single body expression executed over multiple elements
of a data list. This translates into having the same series of instructions executed over
multiple data elements, where each instruction in the series of instructions is essentially
SIMD parallel.

The resemblance is not an equivalence, since it breaks in the presence of branching
where the body expression might branch to completely different instructions based
on the data element. In the case of an if-then-else we can run all the true branches
first and all the false branches afterward at the cost of increased step complexity. In
the worst case, the execution of the body branch to a different instruction for all the
elements in the list, and in this case absolutely no parallelism is exposed by translation
to a SIMD model.

Homogeneous data parallelism is data parallelism, but where parallel expressions
are homogeneous in the sense that they may only have contained branching. Contained
branching means that at most one branch have non-trivial depth. Homogeneous data
parallelism is well-suited for the SIMD model, since there is not asymptotically increase
in splitting up the execution of different branches. Considering SIMD targets for data
parallelism opens up a wide range of possible backends. One such target is general
purpose graphics processing units.

1.1.2 General purpose graphics processing unit

General purpose graphics processing units (GPGPUs) are excellent targets for data
parallel programming languages since they exhibit a large degree of available par-
allelism at a relatively low cost. A number of data parallel languages that targets
GPGPUs exists, most noteworthy CUDA [1] and OpenCL [2]. Indeed many of the
other languages targeting GPGPUs do so by first compiling to one of these two lan-
guages [3, 4]. The programming model in CUDA and OpenCL is almost identical, so
what we mention about CUDA in the following sections applies to OpenCL as well.

CUDA is a programming model created by NVIDIA that supports data parallelism
and runs on graphics cards. The language itself is basically C with the addition of a
special class of functions called kernels. The same kernel function is executed a number
of times in parallel, where each execution has its own thread and runs on the graphics
card. A kernel is executed by calling the kernel function with the special parameters
block dimension and grid dimension. The block dimension specifies how many times
the kernel is executed in a block, and the grid dimension specifies how many blocks
should be dispatched. So by multiplying the block and grid dimensions we get the
potential parallel degree of a CUDA program. Each thread executes the same code
as the other threads, and the only thing that differentiates them is a local context
holding the thread’s position in the block, and the block’s position in the grid.

CUDA deserves a special mention because it is seemingly not very declarative with
respect to parallelism, but in practice it is possible to specify a grid that is larger
than the available number of processing units. In this case, the blocks are streamed,
meaning that the CUDA runtime environment dispatches as many blocks as possible on
the graphics card, and the remaining blocks are dispatched once the currently running
blocks completes execution. In essence, CUDA takes a data parallel operation and
“chunks” it into several steps, meaning that the potential parallel degree of a CUDA
program may exceed the actual parallel degree of the running program, and the details
are left to the runtime environment instead of the programmer. Therefore, there is

5

some degree of declarative with respect to concurrency in CUDA, and although the
programmer has more control over the process of “chunking”, it is not necessary (but
possible) to exert this control per back-end. Another point is that the execution of
a CUDA program is controlled by a single thread on the host that dispatches kernel
to the GPGPU device. We therefore have a homogeneous data parallel machine with
a relatively large available parallel degree, together with a machine with practically
no available parallel degree controlling the first. The structure of this setting has
influenced the design of our target language.

1.2 Nested data parallelism (NDP)

That a programming language can express nested data parallelism means that it can
express data parallelism, and the way that data parallelism can be expressed in the
language, allows nesting, such that a parallel computation is several parallel sub-
computations all running in parallel. An example of a nested data parallel expression
is:

{{e0 : x in e1} : y in e2}

Similarly, in a functional setting

map (map f)

is an example of a nested data parallel expression. The total work in a parallel step or
potential parallel degree is the sum of the potential parallel degree of each sub-step.

Conversely, a flat data parallel programming language is a programming language
that can express data parallelism, but does not allow this kind of nesting.

As can be seen, nestedness is an inherent property of a data parallel language with
the parallel apply-to-each. Consequently, nested data parallel languages are generally
more expressive than flat parallel languages, and many common parallel algorithms
are indeed more concise and/or more parallel, when written in a nested data parallel
language [5]. At the source level, nested data parallelism is clearly more desirable than
flat data parallelism, but at the compiler level the story is the opposite.

As mentioned earlier, it is usually up to the compiler to perform “chunking” as
necessary in a data parallel language. “Chunking”is trivial if the data parallel operation
is flat since it is just a matter of doing some work in one step, and then proceed to
do the rest. In the case of nested data parallelism the process of “chunking” becomes
less obvious as each sub-computation may have a different potential parallel degree. A
common approach for NDP languages is to vectorize NDP expressions into equivalent
flat data parallel expressions first, and then compile it or interpret it using a standard
flat data parallel compiler or interpreter.

1.2.1 Vectorization

Lists are an important ingredient in data parallel languages. The elements of a list
may be lists themselves. To emphasize that a list contains sub-lists, we can call the
list a nested list. If a list it not nested, then all the elements are primitives, and we
can refer to the list as a flat list. A flat list is also called a vector. We use the word
list to refer a data structure that supports random-access.

One common way of implementing a compiler/interpreter for a nested data parallel
language, is to apply vectorization (also called flattening) at some point. Vectorization

6

is a language transformation that turns a nested data parallel language expression into
an equivalent flat data parallel expression. In the flat expression, all nested lists are
eliminated and replaced by one or more vectors, hence the name vectorization.

Vectorization was first proposed by Guy Blelloch and realized in the programming
language NESL [6–8], and has later been studied and refined by others such as Jan
Prins and Daniel Palmer with the language Proteus [9–11], and Gabriele Keller, Simon
Peyton Jones and Manual Chakravarty with the language Data Parallel Haskell [12–
14].

The main idea of vectorization is to have two versions of every primitive operation
in the language: The standard version and a lifted version, that lifts the input and
output type to list-type. E.g if (+) ∶ int ∗ int −> int, then the lifted version has type
(+∧) ∶ [[[int]]] ∗ [[[int]]] −> [[[int]]]. Apply-to-each

for (x in e0){
e1

}

is the vectorized by lifting all operations within the body e0 and simply binding e1 to
x as it is. In the case of nested data parallelism (nested apply-to-each), the operation
in the inner-most body will be lifted twice. In order to avoid having to generate lifted
versions of every operation up to an arbitrary high level, a doubly-lifted operation is
transformed into a singly-lifted operation by concatenating the input, applying the
singly-lifted operation and partitioning the output according to the shape of the origi-
nal input. This approach is made viable by a clever representation of nested lists that
allows concatenation and partitioning to be cheap.

A nested vector is represented by a flat data vector with an accompanying segment
descriptor that holds the nesting structure of the nested vector. As an example the
nested vector

v = [[1,2,3], [4], [], [5,6]]
will be represented by a flat data vector

d = [1,2,3,4,5,6]

and a segment descriptor describing the length of each sub-vector

s0 = [3,1,0,2]

This representation can be generalized to vectors of any nesting depth. For example

v = [[] , [[1,2,3], [4], [], [5,6]] , [[7], [], [8,9,10]]]

will be represented by
d = [1,2,3,4,5,6,7,8,9,10]

and

s0 = [3,1,0,2,1,0,3]
s1 = [0,4,3]

Concatenation is then achieved by simply removing the top-most segment descrip-
tor, and similarly partitioning by the shape of the original input is achieved by attach-
ing the top segment descriptor of the original input on top of the result. A general

7

property of the segment descriptors is that the sum of the elements in a segment de-
scriptor equals the length of the next segment descriptor (or data vector). Depending
on the backend, vectorization is a necessary step in order to execute nested data par-
allel programs. Vectorization also gives work balancing basically for free, since we
concatenate all sub-lists in NDP expressions.

1.2.2 Ideal cost model

Not surprisingly, data parallel programming languages seldom have any guarantees
about the structure of execution in a parallel loop, and as such, data parallelism can
be said to be declarative with respect to concurrency. The declarative nature of data
parallelism means that the actual time and space complexity of a data parallel program
may depend heavily on the architecture that the program is executed on. The time
and space costs therefore becomes more difficult to reason about at the level of the
source language.

The usual way to reason about time in parallel programs is to consider the two
extreme cases of back-ends: A single processor machine (available parallel degree =
1), and a machine with an unbounded number of processors (available parallel degree
= ∞). The time complexity on any machine between these two extremes can then
be derived from these two values. The time complexity on a sequential machine is
often called work and the time complexity on an unbounded parallel machine is often
called steps or depth. The ideal work and step complexities can be quantified in a
natural language-based cost model alongside the value semantics, providing a good
compositional mental model of the time complexity for the programmer, covering any
instantiation of target machine with some degree of available parallelism. In other
words, the cost model is fundamentally independent from the target machine, even
though the actual running time is not.

There is no usual way to reason about space in a data parallel program; the subject
is not covered as much as time complexity. Most existing data parallel languages do not
distinguish the space complexity on a sequential machine from the space complexity
on a parallel machine1, i.e. there is no space equivalence of work and steps giving a
space complexity cost model in the two extreme case of available parallel degree = 1
and available parallel degree = ∞. One of the assertions of this thesis is that we need
to make this distinction, and one of the contributions is to provide a natural language
based cost model, that sufficiently quantifies the space complexity, and derives an ideal
space cost given a concrete machine.

Vectorized data parallel programs without any space optimizations use many in-
termediate arrays, often with a size that is proportional to the degree of potential
parallelism in the program. It may be safe to assume that a program is allowed to
use space proportional to the degree of actual parallelism, but a space complexity pro-
portional to the degree of potential parallelism may be prohibitive in several common
cases. Since we do not want to punish the programmer for exposing too much paral-
lelism, the space complexity should not depend on the potential degree of parallelism,
but rather the degree of realized parallelism.

With the well-founded concepts of data parallelism, homogeneous data parallelism,

1There are some notable exception to this statement, Guy Blelloch et. al. has given a provably
space efficient scheduling for nested parallelism [15], but their work only applies to fine-grained control
parallelism.

8

NDP, vectorization and ideal cost model in hand, we proceed to present our problem
statement.

1.3 Problem statement

The main question the thesis contributes to is:

“Is it feasible in terms of space complexity to express parallel algorithms
in a high-level, platform-independent language?”

By feasible we mean comparable to hand-written low-level implementations, and by
high-level we mean a nested data parallel language without explicit concurrency. Be-
sides being feasible in terms of measurable space and time, we also want the efficiency
to be provable to give formal guarantees about the work-, step- and space complexity.
To narrow the scope we will only consider execution on homogeneous data parallel
architectures - in particular GPGPUs. Compiling nested data parallelism to GPGPU
code has already been done by John Reppy and Lars Bergstrom [3], but they do not
address the space complexity issue regarding potential versus realized degree of paral-
lelism, and they do not provide a cost model. The goal of this thesis is to present a more
space-efficient compilation by transparently sequentializing computations that are too
parallel. Additionally in contrast to existing vectorizing compilers, we will explore the
possibility of using data flow network as an internal representation of programs. This
choice will hopefully alleviate formalizing complexity models as well as proving their
preservation across multiple program transformations. The thesis will be about nested
data parallelism, and we will give novel contributions in form of sequentialization and
cost models.

As an idiomatic example, consider the following basic arithmetic expression:

l−1

∑
i=0
i2

We will use this example extensively and refer to it as the iota-square-sum example.
The expression is an instance of the common map-reduce pattern where the squaring
corresponds to a map, and the summation corresponds to a reduction. Given a con-
crete machine with available parallel degree = P , it is certainly possible to compute
this expression in O(l/P) time complexity (ignoring the logarithmic depth of sum for
simplicity), which is similar to what most existing NDP languages does. On the other
hand, it is certainly possible to compute the result using O(min(P, l)) space, but this
is unlike existing NDP languages that generally require O(l) space. We believe it is
possible to achieve a more ideal space complexity in a NDP framework.

9

2 Analysis

This section is devoted to presenting the analysis that led to the choice of using stream-
ing to perform automatic sequentialization at runtime. The analysis is based on an
investigation of efficient implementations of a simple problem in low-level languages
compared to a NDP implementation. Previous research has indicated that it is possi-
ble to obtain close to ideal work and step complexity of a data parallel language under
reasonable assumptions [11,16,17], so the focus of the analysis is the space complexity.
As described in the problem statement, NDP languages sometimes have a space com-
plexity that is worse, than an equivalent program written in a low level data parallel
language, namely in the presence of reductions. Reduction is a common occurrence in
parallel algorithms, so the problem is real.

2.1 NDP language

To see why nested data parallel languages are worse in terms of space we return to the
iota-square-sum example, and for simplicity, assume l is a power of 2, so l = 2n

l−1

∑
i=0
i2

Writing this expression in a nested data parallel language could look like:

sum({sqr(i) : i in [0..l − 1]})

, for all i in [0..l − 1], square i, and sum the result.
Vectorizing this expression yields

sum(sqr∧(iota(l)))

where iota(l generates the vector [0..l − 1], and sqr∧ is the vector version of squaring
that takes a vector of integers and squares each element. The usual interpretation is
that we first compute the vector iota(l) and only after it is computed we compute
sqr∧(x). Finally, after this has computed we sum up the result. Clearly, this approach
requires O(l) space, since we allocate the entire vector [0..l−1], followed by the entire
vector [02..(l − 1)2] before we sum the latter. Large intermediate arrays are indeed
the root of the space problem for nested data parallel languages, pin-pointed by other
researches before [3, 17], and a technique called fusion is often employed. Fusion
basically means that two primitive operators are fused into a super-operator performing
both operations without any intermediate results. In the context of GPGPUs fusion
involves generating kernels with multiple primitive operations. This solution is not
general: What if the intermediate result is used for something else? For example

let xs = [0..l − 1]

in sum(xs) + prod(xs)

In order for fusion to solve the space problem, both the product and the summation
will have to be fused with the iota operator, which is possible, but certainly complicates
kernel code generation. It is impossible to generate a single fused super-operator for
an entire program.

10

// 2^(n-BLOCK_POWER) blocks, and the size of each block is

BLOCK_POWER = 8;

BLOCK_SIZE = 1<<BLOCK_POWER; // 256

// Entry point. Calls the kernel

int iota_square_sum(int n) {

int n_blocks = 1<<(n-BLOCK_POWER) // n^2/256 = l/256

int ret = 0;

int *sum = (int *)malloc(n_blocks * sizeof(int));

int *dsum;

cudaMalloc((void**)xs, n_blocks);

kernel<<<l>>>(dsum);

cudaMemcpy(sum, dsum, n_blocks*sizeof(unsigned long)

, cudaMemcpyDeviceToHost);

for(int j = 0; j < n_blocks; ++j)

ret += sum[j];

return ret;

}

// This kernel is run on 2^n threads divided evenly amongst

__global__ void kernel(int *dsum) {

int tid = threadIdx.x;

// iota(2^n)

int i = tid + blockIdx.x * BLOCK_SIZE;

// i^2

__shared__ unsigned long res[BLOCK_SIZE];

res[tid] = i*i;

__syncthreads();

//Reduction phase

#pragma unroll

for(int i = BLOCK_POWER-1; i >= 0; --i) {

if(tid < (1<<i)) {

res[tid] = res[tid] + res[tid + (1<<i)];

__syncthreads();

}

}

if(tid == 0)

dsum[blockIdx.x] = res[0];

}

Figure 1: CUDA implementation of iota-square-sum.

11

2.2 CUDA

An implementation of iota-square-sum in CUDA is much more complicated, see figure
1. Writing such a simple program with so many lines of code is the opposite of
productivity. We will investigate if it is possible to generate similar code or provide
interpretation with similar performance, from the high level machine-independent NDP
program.

What we see is that the CUDA code consists of 1 kernel running 2n threads divided
into N_BLOCKS = 2n−BLOCK_POWER blocks of size BLOCK_SIZE = 2BLOCK_POWER. The result of
running the kernel is a vector of size N_BLOCKS that is summed on the host to obtain
a single result. There are two points to note about this kernel regarding space:

1. iota(n) is fused into the kernel. It is computed from a thread id. When this
is possible, space > realized degree of parallelism is not an issue, since CUDA
will only schedule blocks to available streaming multiprocessors, so during the
execution of the kernel, the space usage is not greater than the realized degree
of parallelism. In other words, the CUDA version requires less space, if there is
more work to be done, than processors available. This could be a hint that it is
possible to achieve better space cost semantics, using CUDA as a backend, if we
manage to fuse all computations into a single kernel. But unfortunately, fusing
an arbitrary NDP expression into a single kernel is not possible.

2. Efficient reduction in CUDA relies on shared memory identified by the __shared__
keyword. Shared memory is local to blocks. Each thread computes one instance
of pow(i), and each block reduces the results of all the threads in the block to a
single value. Once reduced, the result of the kernel is a vector of size N_BLOCKS.
The space requirements for the resulting vector (which must be allocated before
the kernel is launched) is therefore 2n−BLOCK_POWER (e.g. (2n)/256). The result of
the kernel is then reduced sequentially on the CPU. Without knowing the exact
numbers, chances are that space issue will only be a problem for very large values
of 2n, but asymptotically, the CUDA version is just as bad in space complexity
as the NDP version - unless we add a loop on the host calling the kernel several
times. What we can conclude from this is, that even though CUDA’s execution
model is based on streaming, the programmer still has to manually sequentialize
code even simple problems, and by doing so, he must be aware of the expected
size of the problem contra hardware specific parameters such as block size.

By analyzing the space complexity of a simple program, we have identified a well-
known problem with traditional NDP languages. There are positive solutions to the
problem in the context of explicit concurrency and multi-threading [15,18], but to the
knowledge of the author, there are no good solution for (homogeneous) data parallel
back-ends yet. The solutions rely on dynamic (online) scheduling, and the need to
have dynamic scheduling is further supported by the observation that we need to have
problem-size specific sequentialization. Since the architecture of GPGPUs consists of
a sequential host machine and a homogeneous data parallel device machine, it seems
natural to investigate the possibilities of performing dynamic scheduling on the host,
that schedules data parallel operations on the device, while sequentializing the prob-
lem as needed. The CUDA runtime environment already provides sequentialization
on kernels in isolation, but as we have seen, this is generally not sufficient. We need

12

the sequentialization to happen across the boundaries of each kernel call. We there-
fore propose a solution based on streaming of chunks, where the host dynamically
dispatches relatively small kernels operating on chunks. The chunk sizes should not be
too small since we want to utilize all the available parallel degree, but not too large,
since we do not want to allocate too large intermediate arrays. If it is possible to keep
the intermediate arrays in order of the chunk size, and the chunk size is in order of the
parallel degree, it should be possible to achieve ideal space and step complexity, given
the program already has ideal work complexity.

13

3 Source language

In this section we describe a reference source language syntax, semantics, types and
cost model. The reference language is a minimalistic toy language stripped of all
unnecessary features. It lies very close to a subset of NESL both in terms of syntax,
type system and ideal cost model, with one exception: The source language includes
a sequence type, which can be though of as a high level stream. Sequences resembles
lists, but unlike lists, the elements of a sequence is not expected to be available at the
same time, instead the elements arrive in blocks of constant size, and sequences are
processed left to right. Consequently, a sequence can only be used once, and every
operation that uses a sequence, must use the whole sequence.

The sequence type and associated values and operations form the foundation of
the contributions of the thesis. As we will demonstrate later, the sequences makes it
possible to automatically sequentialize too parallel expressions, resulting in more space
efficient execution, while hopefully maintaining ideal work and step complexity.

An actual front end that performs type inference and desugaring can be imagined,
but will not be described thoroughly, although we will informally describe some simple
desugaring transformations for some of the most common language constructs that we
do not include in the reference

The language has some more or less serious restrictions that makes the transfor-
mation to target language more manageable at the cost of incompleteness.

� First-order: Higher-order functions in a nested data parallel language imposes
many new challenges. We will postpone treatment of higher order function to
future work in order to keep the focus on the problem at hand.

� No user-defined function: Adding non-recursive user-defined function is trivial,
but recursive functions add many problems. This restriction is arguable the most
severe, but we will argue in section 4.6 that it is possible to introduce recursion
with minor overhead, given that recursion depth is logarithmic, which is almost
always the case for data parallel algorithms [5].

.

3.1 Syntax

The proposed language is given by the following syntax:

n ∈ Z b ∈ {t, f} x, y ∈ VarId

PVal ∋ a ∶∶= n ∣ b ∣ ⋯

Exp ∋ e ∶∶= a
∣ x
∣ let x = e in e
∣ ((())) ∣ (((e, e))) ∣ fst e ∣ snd e
∣ {e : x in e using x, . . . ,x}
∣ o e

Furthermore we use the letters i and j for indexing and k and l for lengths, where k
usually refers to small constant numbers related to expression size, and l usually refers

14

to large numbers related to data size.

i, j, l, k ∈ N

We have literal constants a, primitive operations o, let-bindings, pairs and apply-
to-each. We extend the usual notation of apply-to-each

{e0 : x in e1}

with the keyword using

{e0 : x in e1 using x1, . . . ,xk}

which can be read as “e0 evaluated for every x in the sequence e1 using the variables
x1, . . . , xk from the environment”, and the result is a sequence. In other words, we
require that the use of variables from outer scope is explicitly stated in an apply-to-
each. Such a list of variables is easily generated automatically by the front end, and
they are made explicit in order to distribute them in the transformation phase.

The construct o e is application. The primitive operations o ∈ Op is applied to
e. The language contains a small set of primitive operations similar to other nested
data parallel languages. Contrary to other nested data parallel languages, some of the
operations are defined to work on sequences instead of lists. Many of the primitive
operations are inherently polymorphic in their type signature. In order to deal with
this, we introduce ad-hoc polymorphism by syntactically annotating polymorphic op-
erations with type information such that we have infinitely many primitive operations,
but the type signature of any operation is monomorphic. We introduce three syntactic
categories on types inductively defined by:

Typ ∋ σ ∶∶= σ ∗ σ ∣ 1 ∣ {σ} ∣ τ

Typ ⊃ CTyp ∋ τ ∶∶= τ ∗ τ ∣ 1 ∣ [[[τ]]] ∣ π

CTyp ⊃ PTyp ∋ π ∶∶= int ∣ bool ∣ ⋯

PTyp is the discrete category of primitive types. CTyp is the category of concrete
types, and it introduces products τ ∗ τ and lists [[[τ]]]. Typ is the category of all types,
and it introduces the sequence type {σ}, as well as sequence products σ ∗ σ.

The syntax of operations is given below:

Op ∋ o ∶∶= listk,τ k ≥ 0
∣ appendσ
∣ iota

∣ elt[[[]]]τ ∣ len[[[]]]
τ

∣ elt{}σ ∣ len{}
σ

∣ zipσ0,σ1
∣ concatσ ∣ partσ
∣ tabτ ∣ seqτ
∣ scan⊗ ∣ reduce⊗
∣ ⊕

⊕ ∶∶= + ∣ ∗ ∣<=∣ not ∣ b2i ∣ ⋯

⊗ ∶∶= sum ∣ prod ∣ and ∣ or ∣ ⋯

15

Some operations, such as elt[[[]]]τ and elt{}σ , have a list version as well as a sequence
version. In the cases where two versions exist, the versions are distinguished by a
superscript {} for the sequence version or a [[[]]] for list versions. tabτ is the operation
that converts a sequence to a list, and in the other direction, seqτ is the operation that
converts a list to a sequence. The reason that we do not have list versions of partition,
concat, zip, iota, scan and reduce is, that they are easily obtained by tabulation.
Tabulating the other operations would break the cost model.

3.2 Type system

We use a type system to identify well-formed expressions. Well-formed expressions is
the sub category of expressions that are expected to have an well-defined interpretation.
The category of types is the same as the syntactic type category given for annotating
operations, which is recalled as:

Typ ∋ σ ∶∶= σ ∗ σ ∣ 1 ∣ {σ} ∣ τ

Typ ⊃ CTyp ∋ τ ∶∶= τ ∗ τ ∣ 1 ∣ [[[τ]]] ∣ π

CTyp ⊃ PTyp ∋ π ∶∶= int ∣ bool ∣ ⋯

Every primitive value a is assigned a primitive type π

n ∶ int
b ∶ bool
⋯

Monoids ⊗ are assigned a single primitive type π that identifies the type of the associate
operation ⊕ ∶ π ∗ π −> π and identity element of the monoid.

sum ∶ int

prod ∶ int

and ∶ bool

or ∶ bool

⋯

All the primitives operations and scalar operations are assigned a type signature of

16

the form σ0 −> σ1

∀τ∀k ≥ 0 . listk,τ ∶ τ k −> [[[τ]]]

∀σ . appendσ ∶ {σ} ∗ {σ} −> {σ}

iota ∶ int −> {int}

∀τ . elt[[[]]]τ ∶ ([[[τ]]] ∗ int) −> τ

∀τ . len[[[]]]
τ ∶ [[[τ]]] −> int

∀σ . elt{}σ ∶ {σ} ∗ int −> σ

∀σ . len{}
σ ∶ {σ} −> int

∀σ0∀σ1 . zipσ0,σ1 ∶ ({σ0} ∗ {σ1}) −> {σ0 ∗ σ1}

∀σ . concatσ ∶ {{σ}} −> {σ}

∀σ . partσ ∶ ({σ} ∗ {bool}) −> {{σ}}

∀τ . tabτ ∶ {τ} −> [[[τ]]]

∀τ . seqτ ∶ [[[τ]]] −> {τ}

∀⊗ ∶ π . scan⊗ ∶ {π} −> {π}

∀⊗ ∶ π . reduce⊗ ∶ {π} −> π

+ ∶ int ∗ int −> int

∗ ∶ int ∗ int −> int

⋯

The informal description of the primitive operations is summarized in the table 1.
The type of an expression is then given in the following inference system:

17

Operation Description Example
listk,τ Takes k arguments of type τ

and constructs a k element
list.

listk,int(((3,8,7))) = [[[3,8,7]]]

appendσ Appends two sequences. appendint ((({1,2,3},{10,20}))) =
{1,2,3,10,20}

elt[[[]]]τ Retrieves an element from a
list of type [[[τ]]].

elt
[[[]]]
int((([[[3,8,7]]], 1))) = 8

elt{}σ Retrieves an element from a
sequence of type {σ}.

elt
[[[]]]
int((({3,8,7}, 1))) = 8

concatσ Takes a sequence of se-
quences and concatenates
all sub-sequences into one
sequence.

concatint((({{3,8},{7}}))) = {3,8,7}

partσ Takes a sequence of type
{σ} and a sequence of flags
and partitions the first se-
quence into a sequence of se-
quences.

partint((({3,8,7},{f , f , t, f , t}))) =
{{3,8},{7}}

zipσ0,σ1 Combines two sequences of
equal length by pairing up
elements with the same in-
dex.

zipint,int((({3,8,7}, {0,1,1}))) =
{(((3, 0))),(((8, 1))),(((7, 1)))}

⊕ ⊕ covers all scalar opera-
tions.

5 + 4 = 9

iota The ι function known from
APL. Generates a consecu-
tive sequence of integers.

iota(((4))) = {0,1,2,3}

scan⊗ Performs an exclusive pre-
fix scan on a sequence given
some monoid ⊗.

scansum((({3,8,7}))) = {0,3,11}

reduce⊗ Performs a reduction on
a sequence given some
monoid ⊗.

reduceand((({t,t,f ,t}))) = f

tabτ Tabulates a sequence by
converting it to a list.

tabint((({1,2,3,4}))) = [[[1,2,3,4]]]

seqτ Sequences a list by convert-
ing it to a sequence.

seqint((([[[1,2,3,4]]]))) = {1,2,3,4}

Table 1: The primitive operations of the source language.

18

Γ ⊢ e ∶ σ

Γ ⊢ a ∶ π
a ∶ π (T-Lit)

Γ ⊢ x ∶ σ
Γ(x) = σ (T-Var)

Γ ⊢ e0 ∶ σ0 Γ[x↦ σ0] ⊢ e1 ∶ σ1

Γ ⊢ let x = e0 in e1 ∶ σ1

(T-Let)

Γ ⊢ e0 ∶ σ0 Γ ⊢ e1 ∶ σ1

Γ ⊢ (((e0, e1))) ∶ σ0 ∗ σ1

(T-Pair)

Γ ⊢ ((())) ∶ 1
(T-Unit)

Γ ⊢ e0 ∶ σ0

Γ ⊢ o e0 ∶ σ1

o ∶ σ0 → σ1 (T-Op)

Γ ⊢ e1 ∶ {σ1} [x↦ σ1, x1 ↦ τ1, . . . , xk ↦ τk] ⊢ e0 ∶ σ0

Γ ⊢ {e0 : x in e1 using x1, . . . ,xk} ∶ {σ0}
Γ(xi) = τi for i = 1..k

(T-Over)

The purpose of the using keyword now becomes apparent: We do not allow the
body expression of an apply-to-each to use any variables from the environment bound
to sequence types. All values from outer scope must be of concrete types τ . The
reason is that sequences must only be used once. Having a sequence from outer scope
inside an apply-to-each means that the body expression can restart the sequence a
number of times, which is not allowed. If a sequence really needs to be restarted, it
must be re-evaluated, which can be achieved by moving the expression that evaluates
to the sequence inside the apply-to-each. It would however be possible to remove
this restriction if we can infer that the length of e1 is at most 1, which is relevant
when desugaring if-then-else expressions and guarded apply-to-each. Note that we
would have to ensure that the sequence is actually used elsewhere in order to ensure
strictness.

It would also be possible to retain a list-version of apply-to-each, but such a con-
struct would be redundant since it is equivalent in terms of value and asymptotic
complexity to sequencing the qualifying list and tabulate the resulting sequence.

The given type system is not the complete story. It does not guarantee that a well-
formed expression can actually be evaluated using constant size sequences. Consider

19

the expression that grabs the element n position from the end of a sequence xs:

elt{}σ (((xs, len[[[]]]
σ (((xs − n))))))

There is no way to stream this expression using constant space without knowing either
the length of xs or the value of n in before-hand. The type system must be extended
with a notion of time frames of availability of sequence elements, if we want to guar-
antee constant size sequences, but for now, we conclude the description of the source
language. We have extended a traditional NDP language with a notion of sequences,
by extending the syntax and providing a new type system.

3.3 Syntactic sugar

The language of the front end is enriched with more constructs and operations that
does not appear in the source language. The new constructs and operations simplify
writing expressions, but provide nothing new and are easily removed by desugaring
rules. The front end language contains all constructs and operations of the source
language, but operations are not annotated with types. Their types are inferred by
type inference. Front end expressions e′ to source language expressions e by a certain
rules e′ ↝ e, and also for operations o′′ ↝ o′.

In the given rules, variables denoted with x′ are variables that are selected so that
they do not conflict with any other variable names, and is a wildcard variable that
is never used.

Pairs are easily generalized to n-ary tuples for n > 0 by representing tuples as nested
pairs:

(((e′0))) ↝ e′0
(((e′0, e′1, e′2))) ↝ ((((((e′0, e′1))), e′2)))
⋯

The following is a series of minor syntactic abbreviations:

& ↝ iota

↝ len{}

[[[e0, . . . ,ek−1]]] ↝ listk (((e0, . . . , ek−1)))
e0[[[e1]]] ↝ elt[[[]]](((e0, e1)))
e0{e1} ↝ elt{}(((e0, e1)))
e0 ⊕ e1 ↝ ⊕(((e0, e1)))
e0 ++e1 ↝ append(((e0, e1)))

The given language is complex enough to express many standard language con-
structs found in other languages.

Replication of concrete values:

repl(((e′0, e′1))) ↝ let x′ = e′0 in {x′ : in &e′1 using x′}

with the derived type
∀τ . replτ ∶ τ ∗ int −> {τ}

In the front end, we use a general notation for apply-to-each

{e′0 : x1 in e′1; . . . ; xk in e′k | e′k+1}

20

The general apply-to-each extends the normal apply-to-each with k ≥ 1 qualifiers and
an optional guard expression e′k+1. The qualifying expression e′1 to e′k must have the
same length, and the guard is evaluated for every tuple (x1, . . . , xk) in the k-ary zip
of e′1 to e′k. When the guard evaluates to t, the body expression e′0 is evaluated an
emits an element to the output sequence. Multiple qualifiers are replaced with a single
qualifier (x′ in e′′1) where e′′1 is a k-ary zip of e′1, . . . , e

′
k by inserting zip operations k−1

times, and x1 to xk are replaced in the body expression by a corresponding projection
of x′. E.g.

{e′0 : x1 in e′1; x2 in e′2 | e′3}↝
{e′0[x1 ↦ fst x′, x2 ↦ snd x′] : x′ in zip(((e′1, e′2))); | e′3}

The guard expression is desugared by generating a sequence of one or zero elements:

{e′0 : x in e′1 | e′2}↝ concat((({{e′0 : in &(((b2i(((e′2))))))} : x in e′1})))

but this rule places x outside a map where e′0 is inside, and consequently x must not
have sequence type, which in turn implies that e′ must be a stream of concrete types.
The guarded apply-to-each is therefor not completely general.

Finally, once we have an singly-qualified, unguarded apply-to-each with desugared
sub-expressions

{e0 : x in e1}

we desugar it to the source language apply-to-each, by finding the free variables of the
desugared body expression

{e0 : x in e1}→ {e0 : x in e1 using x1, . . . , xk}

where x1, . . . , xk are the free variables of e0.
The derived type of the general front end apply-to-each is then

Γ ⊢ e1 ∶ {σ1} ⋯ Γ ⊢ ek ∶ {σk} Γ′ ⊢ ek+1 ∶ bool Γ′ ⊢ e0 ∶ τ0

Γ ⊢ e0 : x1 in e1; . . . ; xk in ek | ek+1} ∶ {τ0}
(∗)

(∗) Γ′ = Γc[x1 ↦ σ1, . . . , xk ↦ σk]

where Γc is Γ restricted to the concrete types τ . I.e. all sequence types are filtered
out.

The front end also has an if-then-else construct. It can be desugared in a similar
way to desugaring guarded apply-to-each construct, by generating a sequence of length
zero or one.

if e′0 then e′1 else e′2
↝ let x′ = b2i(((e′0))) in ({e′1 : in &x′} ++{e′2 : in &(1 − (((x′))))}){0}

Using apply-to-each around the branch expressions e′1 and e′2 has the immediate im-
plication that we cannot type an if-then-else in a context where the free variables of
e′1 and e′2 have sequence type. The if-then-else construct is therefor not completely
general. The derived type is

Γ ⊢ e′0 ∶ bool Γc ⊢ e′1 ∶ σ Γc ⊢ e′2 ∶ σ
Γ ⊢ if e0 then e1 else e2 ∶ σ

21

As we observed, both if-then-else and guarded apply-to-each place unwanted re-
strictions on type contexts. These restriction could in principle be removed, if we use
the information that an apply-to-each over a sequence of 0 or 1 elements, are allowed
to use sequences from outer scope - the sequences from outer scope do not need to
be restarted since we only need them 0 or 1 time. The other way around, if we can
show that a sequence has at most B elements, where B is the block size we use for
sequences, we can allow expressions to use it in an apply-to-each over a sequence of
any length - restarting a 1-block sequence can be done by simply keeping the block in
memory. By appropriate size analysis, and by making an effort to preserve strictness,
we can therefore make the type system less restrictive, but this is left for future work.

3.4 Big-step semantics

The interpretation of an expression amounts to evaluating an expression to a value.
The discrete category PVal of primitive values a has already been defined. An intuitive
way to define the category of values is2:

Val ∋ v ∶∶= ((())) ∣ (((v, v))) ∣ {v, . . . , v} ∣ c

Val ⊃ CVal ∋ c ∶∶= ((())) ∣ (((c, c))) ∣ [[[c, . . . , c]]] ∣ a

In other words, sequence values are defined exactly the same way as list values. But
as we shall see, this definition of sequences is not very representative of what an actual
implementation could look like, but the purpose of defining the semantic and cost
model of the source language the representation given by Val is advantageous.

Since we do not have recursion in the language, we do not need to worry about
non-termination in the semantics. Consequently, there is no purpose in distinguishing
runtime error from non-termination as is necessary in some settings. Runtime error of
a well-typed expression in the big-step semantics will manifest itself as undefined. I.e.
there will be no derivations for expression with runtime error.

Just like every well-formed expression has a type, every well-formed value has a
type. We require that all list and sequences are homogeneous. The type of a value is
then given by the following small inference system:

2Note that values are not a subset of expressions, mainly due to sequence values.

22

⊢ v ∶ σ

⊢ a ∶ π
a ∶ π (TV-lit)

⊢ ((())) ∶ 1
(TV-Unit)

⊢ v0 ∶ σ0 ⊢ v1 ∶ σ1

⊢ (((v0, v1))) ∶ σ0 ∗ σ1

(TV-Pair)

⊢ c0 ∶ τ ⋯ ⊢ cl−1 ∶ τ
⊢ [[[c0, . . . , cl−1]]] ∶ [[[τ]]]

(TV-List)

⊢ v0 ∶ σ ⋯ ⊢ vl−1 ∶ σ
⊢ {v0, . . . , vl−1} ∶ {σ}

(TV-Seq)

We will now introduce meta-notation for sequences. The meta-annotation

⎧⎩Φ(i)⎫⎭
n1

i=n0

expands to the notation
Φ(n0),⋯,Φ(n1)

where Φ is notation containing the meta-notational placeholder i, and Φ(n) is the sub-

stitution of n for i. We also define the simpler form
Ð→
Φ k which expands to Φ0, . . . ,Φk−1,

i.e. subscripts.
E.g.

⎧⎩ei ↓ vi⎫⎭
2
i=0

e ↓ {Ð→v 3}
expands to

e0 ↓ v0 e1 ↓ v1 e2 ↓ v2

e ↓ {v0,v1,v2}
The semantics of the reference language is given as big-steps. The big-step seman-

tics are short and clear, and therefore provides a good point of reference for other,
more technical semantics that we will be given later. However, the big-step semantics
do not directly admit any efficient implementations.

Define a value store
ρ ∶∶= [x0 ↦ v0, . . . , xk−1 ↦ vk−1]

The value semantics of a source language expression is then given by the following
big step derivation rules:

23

ρ ⊢ e ↓ v

ρ ⊢
a ↓ a

(Lit)

[v0/x]e0 ↓ v0 ρ[x↦ v0] ⊢ e1 ↓ v1

ρ ⊢ let x = e0 in e1 ↓ v1

(Let)

ρ ⊢ ((())) ↓ ((()))
(Unit)

ρ ⊢ e0 ↓ v0 ρ ⊢ e1 ↓ v1

ρ ⊢ (((e0, e1))) ↓ (((v0, v1)))
(Pair)

ρ ⊢ e0 ↓ v0

ρ ⊢ o e0 ↓ v
JoK v0 = v (Op)

ρ ⊢ e1 ↓ {v0, . . . , vl−1} ⎧⎩(ρ ↾ {x1, . . . , xk})[x↦ vi] ⊢ e0 ↓ v′i⎫⎭
l

i=0
ρ ⊢ {e0 : x in e1 using x1, . . . , xk} ↓ {v′0, . . . , v′l−1}

(Over)

where ρ ↾X is the restriction of ρ to the variables in X.

24

Assuming type correctness, the semantics of operations are as follows:

Jlistτ,kK (((c0, . . . ,ck−1))) = [[[c0, . . . ,ck−1]]]

JiotaKn = {0, . . . ,n − 1} (n ≥ 0)
r
elt[[[]]]τ

z
((([[[Ð→c l]]], n))) = cn (≤ n < l)

r
elt{}σ

z
((({Ð→v l}, n))) = vn (≤ n < l)

r
len[[[]]]

τ

z
[[[c0, . . . ,cl−1]]] = l

r
len{}

σ

z
{v0, . . . ,vl−1} = l

JconcatσK{⎧⎪⎩{
Ð→vi li}⎫⎪⎭

l′

i=0 } = {⎧⎪⎩
Ð→vi li⎫⎪⎭

l′

i=0 }

JpartσK ((({Ð→v l}, {⎧⎪⎪⎪⎩
Ð→
f l′i,t

⎫⎪⎪⎪⎭
l′′

i=0
}))) = {

⎧⎪⎪⎪⎪⎩
{⎧⎩vk⎫⎭

∑j
i=0 l

′

i

k=∑j−1
i=0 l

′

i

}
⎫⎪⎪⎪⎪⎭

l′′

j=0
} (⋀k−1

i=0 (ni ≥ 0) ∧∑k−1
i=0 ni = l)

q
zipσ0,σ1

y
((({Ð→v l}, {Ð→v′ l′}))) = {⎧⎩(((vi, v′i)))⎫⎭

l

i=0 }

Jscan⊗K{a0, . . . ,al−1} = {⊗−1
i=0 ai, . . . ,⊗l−2

i=0 ai}

Jreduce⊗K{a0, . . . ,al−1} = ⊗l−1
i=0 ai

J+intK (((n0, n1))) = n0 + n1

JtabτK{Ð→c l} = [[[Ð→c l]]]

JseqτK [[[Ð→c l]]] = {Ð→c l}

As can be observed above, non of the primitive operation use the type annotation
their interpretation. The need to have ad-hoc polymorphism arises in the transforma-
tion to target language where the same operation with different type annotations are
transformed to different target language expressions.

3.4.1 Properties

We want to show that an interpretation of a well-formed expression produces a value
of the same type as the expression. In order to show this we need to define the type
of a typing context:

⊢ ρ ∶ Γ

⊢ v0 ∶ τ0 ⋯ ⊢ vk−1 ∶ τk−1

⊢ [x0 ↦ v0, . . . , xk−1 ↦ vk−1] ∶ [x0 ↦ τ0, . . . , xk−1 ↦ τk−1]
(T-Env)

Type preservation Evaluation of an expression results in a value of the same type
as the expression.

If Γ ⊢ e ∶ τ
and ⊢ ρ ∶ Γ

25

and ρ ⊢ e ↓ v
then ⊢ v ∶ τ .
The proof is a simple induction on the syntax of e.

3.5 Cost semantics

Since efficiency is a major concern, the meaning of a program is not confined to the
value it produces through evaluation. The time that it takes to evaluate it, and how
much space it requires is also of interest and is part of the meaning in some sense -
We want to say that two expressions are intensionally different if they produce the
same result, but one runs slower than the other or requires more space. In order to
say anything about the time and the space of an evaluation, we first have to define a
cost model, and in order for this thesis to have any value, it is important that the cost
model is acceptable.

The actual time required when executing a program written in a high-level language
is seldom possible to determine based on the program alone. Data parallelism means
that the number of available processing units in the execution environment will vastly
influence the running time. In order to give a machine-independent language-based
cost model the time is quantified as two values: Total work W and steps D (also called
depth). W is the total number of basic operations required to run a program. D is the
number of steps where each data parallel operation is assumed to happen in a single
step. Thus the work signifies the running time on a completely sequential machine,
and the depth signifies the running time on a machine with an unbounded available
parallel degree or at least as much as the potential parallel degree. This distinction is
common for parallel algorithms.

We present a novel quantification of space in a similar way. We quantify space in
two values, and we can them Step space N and work space M . N is the amount of
space required for evaluating an expression assuming an unbounded degree of available
parallelism. M is the space required assuming a completely sequential target machine.
M and N are thus the space analogous of work and steps. M is the interesting quantity
since this is the space complexity that should be obtainable by evaluating an expression
with streaming. N gives the space complexity of usual evaluation without streaming,
but at the same time, it is also the complexity in a streaming model if the available
parallel degree exceeds the potential. In the following cost model, it is easy to see that
work space M is always less then or equal to step space N , while on the other hand
work W is always equal to or greater than the number of steps D. The notations of
complexity quantities are summarized in the following table where P is the available
parallel degree.

P = 1 P = ∞
Time W ≥ D
Space M ≤ N

As demonstrated by Blelloch et. al., almost all operations can be implemented as
a combination of the scalar vector operations, scan, vector gather and vector scatter
which all have O(logP) depth complexity. It is therefore valid to assume that the step
complexity of all operations are 1 and multiply the logarithmic term afterward [19].
The actual running can be derived

T = O(W /P +D logP)

26

The actual space complexity is can be derived as

S = O(min(PM,N))
We define a complexity quadruple as

Cx ∋ ω = ⟨W,D,M,N⟩

W ∈ N D ∈ N M ∈ N N ∈ N

We also define two monoids � and ⊠ on Cx both with the identity element
⟨0,0,0,0⟩.

The first monoid �, is the sequential addition of complexities:

� ∶ Cx ×Cx→Cx

� = (+) × (+) ×max×max

Sequential addition means that the computations follows each other linearly in time.
Work and steps are therefore added, while space is maxed; we can safely assume that
the space of the first complexity is deallocated before the next.

The second monoid ⊠ is parallel addition of complexities:

⊠ ∶ Cx ×Cx→Cx

⊠ = (+) ×max×max×(+)
Parallel addition means that the computations are parallel in time. The steps are
therefore maxed, and N is added, since the space is required at the same time. Work
and M is indifferent compared to sequential addition, which is only natural considering
that there is no parallelism to exploit in a completely sequential target machine. The
definition of the two monoids complements the inverse relationship between space and
time.

We also define and add-space operation on complexities as

⊞ ∶ Cx × (N ×N) →Cx

⟨W,D,M,N⟩ ⊞ ⟨∆M,∆N⟩ = ⟨W,D,M +∆M,N +∆N⟩
The purpose is to require that a certain amount of space must be allocated.

Every value has a size defined by the size function ∣⋅∣. The size is given both in work
space and step space. Most values have the same size in work and step space, but not
sequences. The step space of sequence is large (sum), while the work space is small
(max). If there is only one processor, only one element of a sequence should reside in
memory at any given time, while if there is an unbounded number of processors, the
entire sequence is allowed to reside in memory at the same time.

∣()∣ = ⟨0,0⟩

∣a∣ = ⟨1,1⟩

∣(((v0, v1)))∣ = ⟨M0 +M1,N0 +N1⟩
where ∣v0∣ = ⟨M0,N0⟩

∣v1∣ = ⟨M1,N1⟩
∣[[[Ð→c k]]]∣ = ⟨∑k−1

i=0 Mi,∑k−1
i=0 Ni⟩

where ∣vi∣ = ⟨Mi,Ni⟩ for i ∈ {0..k − 1}
∣{Ð→v k}∣ = ⟨maxk−1

i=0 Mi,∑k−1
i=0 Ni⟩

where ∣vi∣ = ⟨Mi,Ni⟩ for i ∈ {0..k − 1}

27

The size of a value gives an asymptotic measure of how much space it requires.
We can now proceed to define a language-based cost model of the source language

along side the value semantics by the judgment

ρ ⊢ e ↓ ⟨v,ω⟩

The derivation rules are exactly the same as the big-step rules given in the previous
section for values v, but we now include the complexity ω required to evaluate v. The
space complexity in ω includes the size of the result v.

ρ ⊢ e ↓ ⟨v,ω⟩

ρ ⊢ a ↓ ⟨a, ⟨0,0,1,1⟩⟩
(C-Lit)

ρ ⊢ x ↓ ⟨v, ⟨1,1,0,0⟩⟩
ρ(x) = v (C-Var)

ρ ⊢ e0 ↓ ⟨v0, ω0⟩ ρ[x↦ v0] ⊢ e1 ↓ ⟨v1, ω1⟩
ρ ⊢ let x = e0 in e1 ↓ ⟨v1, ω0 � (ω1 ⊞ ∣v0∣)⟩

(C-Let)

ρ ⊢ ((())) ↓ ⟨((())), ⟨0,0,0,0⟩⟩
(C-Unit)

ρ ⊢ e0 ↓ ⟨v0, ω0⟩ ρ ⊢ e1 ↓ ⟨v1, ω1⟩
ρ ⊢ (((e0, e1))) ↓ ⟨(((v0, v1))), (ω0 ⊞ ∣v1∣)� (ω1 ⊞ ∣v0∣))⟩

(C-Pair)

ρ ⊢ e0 ↓ ⟨v0, ω0⟩
ρ ⊢ o e0 ↓ ⟨v,ω0 � ⟨W,1, ∣v∣, ∣v∣⟩⟩

JoK v0 = ⟨v,W ⟩ (C-Op)

ρ ⊢ e1 ↓ ⟨{Ð→v l}, ω1⟩ ⎧⎪⎩(ρ ↾
Ð→x k)[x↦ vi] ⊢ e0 ↓ ⟨v′i, ω′i⟩⎫⎪⎭

l

i=0

ρ ⊢ {e0 : x in e1 using Ð→x k}τ ↓ ⟨{v′0, . . . ,v′k−1}, ω1 � (⊠l−1

i=0(ω′i ⊞ ∣v′i∣))⟩
(C-Over)

The cost model of a let binding let x = e0 in e1 where evaluation of e0 yields
v0 with complexity ω0 = ⟨W0,D0,M0,N0⟩ and evaluation of e1 has complexity ω1 =
⟨W1,D1,M1,N1⟩ gives the total complexity

⟨W,D,M,N⟩ = ω0 � (ω1 ⊞ ∣v0∣)

28

that is,

W = W0 +W1

D = D0 +D1

M = max(M0,M1 + ∣v0∣)

N = max(N0,N1 + ∣v0∣)

In other words e0 and e1 are completely sequential as expected, and v0 is live in the
entire evaluation of e1 which is not a preposterous assumption.

Pairs are in principle parallelizable since there is not dependencies between the
two expression, but since the language is data parallel, we do not provide parallelism
through the pair construct. Instead the programmer should use the apply-to-each
construct. We define the evaluation of pairs to be completely sequential, and the cost
model of a pair (((e0, e1))) ↓ ⟨(((c0, c1))), ω⟩ is then similar to that of the let-binding, but
with a slight difference - the two sub-expressions are symmetric:

⟨W,D,M,N⟩ = (ω0 ⊞ ∣v1∣)� (ω1 ⊞ ∣v0∣)

Expanding the complexities we get

W = W0 +W1

D = D0 +D1

M = max(M0 + ∣v1∣ ,M1 + ∣v0∣)

N = max(N0 + ∣v1∣ ,N1 + ∣v0∣)

This is a slight overestimate in cases where the value v1 (or v0) may be stored in space
deallocated after evaluation of e0 (or v1), but a more precise model would be more
complicated and impose an ordering on the evaluation of pairs.

The cost model of an operation o e0 where e0 evaluates to v0 with complexity
ω0 = ⟨W0,D0,M0,N0⟩ and the meaning of the operation is JoK v0 = ⟨v1,W1⟩ is given
by:

⟨W,D,M,N⟩ = ω0 � ⟨W,1, ∣v1∣, ∣v1∣⟩
where

W = W0 +W1

D = D0 + 1

M = max(M0, ∣v1∣)

N = max(N0, ∣v1∣)

Every operation takes one step since the logarithmic term is multiplied in the
derived complexity, and every operation require no additional space internally, which
is asymptotically defensible, since either the input or output will pay for the space of
the operation. In other words, all operations use asymptotic space linear in either the
input or output size.

The cost model of an apply-to-each {e0 : x in e1 using x1, . . . , xk} where the eval-
uation of e1 yields {v′0, . . . , v′l−1} with complexity ω1 = ⟨W1,D1,M1,N1⟩ and the evalu-
ation of e0 for i = 0..l−1 with x mapped to v′i has the complexities ω′i = ⟨W ′

i ,D
′
i,M

′
i ,N

′
i ⟩

29

gives the total complexity

ω1 � (⊠l−1

i=0(ω′i ⊞ ∣v′i∣))

where

W = W1 +∑iW
′
i

D = D1 +maxiW ′
i

M = max(M1,maxi(M ′
i + ∣v′i∣))

N = max(M1,∑i(M ′
i + ∣v′i∣))

In words, the work is summed up while the steps of the different evaluations of the
body are maxed, all as expected. The more interesting part is the space complexities.
Staring with M , consider the inner max over i of M ′

i + ∣v′i∣. This is the space required
to evaluate e0 for different values of x on a sequential machine. The space is maxed
which means that each v′i is deallocated before the next v′i+1 enters memory. In order
to satisfy the cost model e1 must therefore be streamed. N is similar to M only the
inner max is turned into a sum. All the space used for the evaluation of e0 for i = 0..l−1
must be allocated at the same time.

The operation semantics

JoK v0 = ⟨v,W ⟩ (guard)

is given in the following table 2.
Notice that the work complexity on length and elt operation on sequences is l,

where l is the length of the sequence. This differs from the list versions that are
constant time operations. The reason is that we must process the entire sequence in
order to get the length, and similarly in the worst case (i = l − 1), we must process the
entire sequence to get element i.

This concludes the cost semantics of the source language. The cost model reflects
the ideal costs that we want to obtain. The purpose of the high-level cost model is to
be able to compare cost semantics of the eventual streaming execution semantics with
an ideal cost model, such that we may show that every expression asymptotically uses
the same amount of work, steps and space.

3.6 Examples

Iota-square-sum example
l−1

∑
i=0
i2

can be expressed in the front end language as

sum((({pow(((x, 2))) : x in &l})))

Desugaring this expression yields

e = reducesum((({pow(((x, 2))) : x in iota(((l))) using })))

30

o v0 guard
JoK v0 = ⟨v,W ⟩

v W

listτ,k (((c0, . . . ,ck−1))) [[[c0, . . . ,ck−1]]] k

iota n n ≥ 0 {0, . . . ,n − 1} n

elt[[[]]]τ ((([[[Ð→c l]]], n))) 0 ≤ n < l cn 1

elt{}σ ((({Ð→v l}, n))) 0 ≤ n < l vn l

len[[[]]]
τ [[[c0, . . . ,cl−1]]] l 1

len{}
σ {v0, . . . ,vl−1} l l

concatσ {⎧⎪⎩{
Ð→vi li}⎫⎪⎭

l′

i=0 } {⎧⎪⎩
Ð→vi li⎫⎪⎭

l′

i=0 } ∑k−1
i=0 li

partσ ((({Ð→v l}, {⎧⎪⎪⎪⎩
Ð→
f l′i,t

⎫⎪⎪⎪⎭
l′′

i=0
}))) ⋀k−1

i=0 (ni ≥ 0) ∧∑k−1
i=0 ni = l {

⎧⎪⎪⎪⎪⎩
{⎧⎩vk⎫⎭

∑j
i=0 l

′

i

k=∑j−1
i=0 l

′

i

}
⎫⎪⎪⎪⎪⎭

l′′

j=0
} l

zipτ0,τ1 ((({Ð→v l}, {Ð→v′ l′}))) l = l′ {⎧⎩(((vi, v′i)))⎫⎭
l

i=0 } l

scan⊗ {a0, . . . ,al−1} {⊗−1
i=0 ai, . . . ,⊗l−2

i=0 ai} l

reduce⊗ {a0, . . . ,al−1} ⊗l−1
i=0 ai l

+ (((n0, n1))) n0 + n1 1

tabτ {Ð→c l} [[[Ð→c l]]] l

seqτ [[[Ð→c l]]] {Ð→c l} l

Table 2: The primitive operation semantics and costs.

31

The type of the expression is int in the empty context [], which can be seen by
the following proof:

[] ⊢ l ∶ int

[] ⊢ iota(((l))) ∶ {int}
iota ∶ int −> {int}

T1

[x↦ int] ⊢ pow(((x, 2))) ∶ int

{pow(((x, 2))) : x in iota(((l))) using } ∶ {int}
[] ⊢ reducesum((({pow(((x, 2))) : x in iota(((l))) using }))) ∶ int

reducesum ∶ {int} −> int

where

T1 =

[x↦ int] ⊢ x ∶ int [x↦ int] ⊢ 2 ∶ int

[x↦ int] ⊢ (((x, 2))) ∶ int ∗ int

[x↦ int] ⊢ pow(((x, 2))) ∶ int
pow ∶ int ∗ int −> int

The value and cost semantics in the empty store [] are ⟨∑l−1
i=0 i

2, ⟨4l,4,3,3l⟩⟩ which
can be interpreted as: A sequential machine requires O(l) time and O(1) space, while
an unbounded parallel machine requires O(1) time and O(l) space, the derived com-
plexities for a concrete PRAM machine with P processors are

T = O(l/P + logP)

for time and
S = O(min(P, l))

for space. Which is exactly as desired. The the value and complexity is given by the
following derivation tree:

[] ⊢ l ↓ ⟨l, ⟨0,0,1,1⟩⟩
[] ⊢ iota(((l))) ↓ ⟨{0, . . . , l − 1}, ⟨l,1, l, l⟩⟩

(2)
⎧⎪⎪⎪⎪⎪⎪⎩

Ei
[x↦ i] ⊢ pow(((x, 2))) ↓ ⟨i2, ⟨2,2,2,2⟩⟩

⎫⎪⎪⎪⎪⎪⎪⎭

l−1

i=0

{pow(((x, 2))) : x in iota(((l))) using } ↓ ⟨{02, . . . (l − 1)2}, ⟨3l,3,3,3l⟩⟩
[] ⊢ reducesum((({pow(((x, 2))) : x in iota(((l))) using }))) ↓ ⟨∑l−1

i=0 i
2, ⟨4l,4,3,3l⟩⟩

(1)

Ei =

[x↦ i] ⊢ x ↓ ⟨i, ⟨1,1,0,0⟩⟩ [x↦ int] ⊢ 2 ↓ ⟨2, ⟨0,0,1,1⟩⟩
[x↦ i] ⊢ (((x, 2))) ↓ ⟨(((i, 2))), ⟨1,1,2,2⟩⟩
[x↦ i] ⊢ pow(((x, 2))) ↓ ⟨i2, ⟨2,2,2,2⟩⟩

(3)

(1) JreducesumK {0, . . . , (l − 1)2} = ⟨
l−1

∑
i=0
i2, l⟩

(2) JiotaK l = ⟨{0, . . . l − 1}, l⟩

(3) JpowK (((i, 2))) = ⟨i2,1⟩

32

Square matrix-matrix multiplication n×n square matrix-matrix multiplication
can be written in the front end as

{
{

sum((({
A[[[i]]][[[k]]] ∗ B[[[k]]][[[j]]]
∶ k in &n
})))

∶ j in &n
}

∶ i in &n
}

Desugared this becomes

{
{

sum((({
+(((elt

[[[]]]
int(((elt

[[[]]]
[[[int]]](((A, k))), i))), elt

[[[]]]
int(((elt

[[[]]]
[[[int]]](((B, j))), k))))))

∶ k in iota n using (A,B)
})))

∶ j in iota n using (A,B)
}

∶ i in iota n using (A,B)
}

The type system proves that the expression has the type {{int}} in the context

[A↦ [[[[[[int]]]]]],B ↦ [[[[[[int]]]]]]]

so the result is sequenced. We could tabulate it if we wanted to. We see that A and B
cannot be sequences since they are part of the using term. This corresponds well to
the intuition that it is not possible to stream the two matrices to form their product.
It should however be possible to stream the rows one of the matrices, and indeed, if we
reformulate the expression to map over the elements of one of the matrices, we obtain

{
{

sum((({
row[[[k]]] ∗ B[[[k]]][[[j]]]
∶ k in &n
})))

∶ j in &n;
}

∶ row in A′

}

that will type check in the context

[A′ ↦ {[[[int]]]},B ↦ [[[[[[int]]]]]]]

33

yielding the same type as before. Evaluating the first expression in a context where A
and B maps to two matrices of size n×n yields a n×n sequence for the value, and for
the complexity ω = ⟨W,D,M,N⟩ we have

W = O(n3)
D = O(1)
M = O(n)
N = O(n3)

The derived complexities using P processors are then

T = O(n3/P + logP)

S = O(min(nP,n3))

This shows that given sufficiently few available processors P or sufficiently large matri-
ces, we can compute matrix-matrix product in almost n space by streaming the rows
of A. If we tabulated the result, we would get O(n2) space. Using squared space the
obvious choice for a efficient low-level handwritten implementation, so this is fine, but
it also shows that traditional NDP languages use cubic space regardless of P , which is
definitely not fine for very large matrices.

3.7 Evaluation

We have presented a minimalistic NDP source language that is similar to traditional
NDP languages, but with the introduced concept of sequences. We have given a cost
model which in term of work and step complexities is similar to traditional NDP cost
models, but with the addition of a novel space cost model for work space and step
space, which is the space analogy of work and steps. We have tried the model on
a couple of simple examples and demonstrated that some algorithms that performs
bad in traditional NDP languages in terms of space complexity, performs good using
sequences. We have also pointed out some flaws in the generality of sequences: Some
well-typed sequence expression cannot be streamed and some sequence expression that
will not type, can actually be streamed. We believe that a more complicated type
system using size analysis and availability frames can help determine exactly what
expressions can be streamed. The remainder of this thesis is devoted to showing that
this ideal cost model is plausibly implementable.

34

4 Streaming language

The target language was originally intended to be combinator based where each primi-
tive transition is a basic combinator, and larger combinators is build using composition
○ and pair ⟨− , −⟩, i.e a Cartesian category. It is indeed possible to construct a com-
binator from a well-formed source language expression, but to provide a streaming
interpretation of such a combinator turns out to be exceedingly difficult. The main
problem is that some transitions does not consume (resp. produce) exactly the entire
input (resp. output) buffer in one step. Keeping track of partial consumed (resp. pro-
duced) buffers while preserving sharing of sub-expressions is probably possible, but no
satisfactory denotation, reduction or transition system using combinators was found.

Instead we present the proposed target language as a system of stream definitions.
It is based on buffers as values and stream transformers as primitive operations. The
stream definitions of a well-formed system forms a directed acyclic graph (DAG). A
stream definition is of the form:

s := t(s1, . . . , sk) where k ≥ 0

and it can be read as “s is defined as the stream transformation t on the input streams
s1, . . . , sk”. s are unique stream identifiers, and streaming system is essentially a series
of assignment forming a data-flow network.

4.1 Syntax

The syntax of a streaming system is given by

s ∈ SId

SSys ∋ G ∶∶= let Φ in st

PIdT ∋ st ∶∶= s ∣ () ∣ (st, st)

Eqs ∋ Φ ∶∶= φ; . . . ;φ

Eq ∋ φ ∶∶= s := t(s1, . . . , sk) k ≥ 0

Trans ∋ t ∶∶= ∣ ⊕∧
∣ flagscan⊗
∣ packπ
∣ segfetchπ
∣ flushπ
∣ flagdistπ
∣ 2flags
∣ mergek,π
∣ interleave
∣ reconstruct

VOp ∋ ⊕∧ ∶∶= +
∧ ∣ ∗∧ ∣ ⋯

A streaming system
let Φ in st

35

is a list of stream definitions Φ ∈ Eqs and a product (or tree) of stream identifiers
representing the output st ∈ PIdT streams of the system. The output is defined as a
tree in order to relate it to a high level value.

Each definition
s := t(s1, . . . , sk)

defines one primitive stream in the system, and the transformer t determines how
the stream is populated as a transformation from the input streams s1, . . . , sk. All
primitive transformers have efficient implementations on homogeneous data parallel
machines such as GPGPUs.

The target language is meant to be interpreted by a runtime system that can
perform scheduling dynamically, and dispatch the transformer of a stream definitions
multiple times to process consecutive blocks.

4.2 Type system

The primitive types of the target language consists of primitive stream types of bounded
or unbounded size:

VPTyp ∋ µ ∶∶= {π}b ∣ {π}u

where {π}b is a stream with a bounded buffer and {π}u is a stream with an unbounded
buffer. The type of a output st is then a tree of µ’s:

VTyp ∋ ν ∶∶= 1 ∣ µ ∣ ν * ν

The type of a streaming system

let Φ in st

is decomposed into the type of the definitions Φ which is a typing context

Π ∶ SId⇀VPTyp

assigning stream identifiers to primitive target types by the type system

⊢ Φ ∶ Π

and the type of the output streams st which is given a type ν ∈ VTyp in a typing
context Π by the type system

Π ⊢ st ∶ ν

36

Every primitive transition is assigned a type of the form µ1 ∗⋯ ∗ µk -> µ:

2flags ∶ {int}b -> {bool}b

∀⊗ ∶ π . flagscan⊗ ∶ {π}b * {bool}b -> {π}b

∀π . packπ ∶ {π}b * {bool}b -> {π}b

∀π . segfetchπ ∶ {π}u * {int}b
∗ {int}b -> {π}b

∀π . flushπ ∶ {π}b -> {π}u

∀π . flagdistπ ∶ {π}b * {bool}b -> {π}b

∀π . mergek,π ∶ {int}b
∗ ({π}b)k -> {π}b

interleave ∶ {bool}b
∗ {bool}b -> {bool}b

reconstruct ∶ {bool}b
∗ {bool}b -> {bool}b

∀⊕ ∶ π1 ∗⋯ ∗ πk → π . ⊕∧ ∶ {π1}
b
∗⋯ ∗ {πk}

b -> {π}b

The stream transformer are described informally in table 3. The type of an stream-
ing system derived by typing one stream definition at a time, starting from the top,
and building up the typing context Π incrementally. This ensures that no definitions
use stream identifiers below them, thereby ensuring the system is indeed a DAG.

⊢ Φ ∶ Π

⊢ ε ∶ []
(T-Sys-0)

⊢ Φ ∶ Π
⊢ (s := t(s1, . . . , sk)); Φ ∶ Π[s↦ µ]

t ∶ Π(s0) ∗⋯ ∗Π(sk−1) -> µ (T-Sys-1)

The type of the output streams st is then trivially given by looking up the type of
each s in Π

37

Transition Description Example
flagscan⊗ Performs an exclusive prefix segmented

scan on a scalar stream, given a stream
of segment flags. The dummy values in
the output stream will hold the corre-
sponding reduced results.

flagscansum
[3,1,1,_,2,_]
[f , f , f , t, f , t]

= [0,3,4,5,0,2]

packπ Packs a stream given a stream of flags. packint
[3,8,7,3,2,1]
[f , f , f , t, f , t]

= [3,1]
segftechπ Takes an unbounded stream of val-

ues, and performs a segmented fetch.
The segments are defined by two inte-
ger streams, the first defining segment
starts, and the second defining segment
lengths.

segfetchint
[10,20,30]
[0,0,2,2]
[1,3,1,1]

= [10,10,20,30,30,30]

flushπ Flushes a bounded stream by writing
the content to an unbounded stream.
Informally this is essentially an identity
function.

flushint
[1,2,3]

= [1,2,3]

flagdistπ Replicates each element of a stream
over a given flag stream. Each element
in the first stream is replicated for each
consecutive zero in the flag stream.

flagdistint
[3,8]
[f , f , f , t, f , t]

= [3,3,3,3,8,8]
2flags Converts an integer stream to an equiv-

alent unary representation encoded as
a boolean stream. This is the only op-
eration that “creates” more parallelism.
I.e. the output stream is longer then
the input stream.

2flags

[3,1]
= [f , f , f , t, f , t]

mergek,π Merges a number of streams of the
same type by interleaving the elements.
The interleaving is guided by a selector
stream of indices.

merge3,char

[0,1,2,1,2,0,2]
[a,b]
[i,j]
[x,y,z]

= [a,i,x,j,y,b,z]
interleave Merges two boolean streams by inter-

leaving segments of the form f , . . . , f , t.
interleave

[f , f , f , t, f , t]
[f , f , t, t]

= [f , f , f , t, f , f , t, f , t, t]
reconstruct Will be explained later. In short, it“un-

packs” a boolean stream to match the
length of another, in such a way that
the t’s are in the same positions.

reconstruct

[f , f , t]
[f , f , f , t, f , t]

= [f , f , f , f , f , t]

Table 3: The primitive stream transformers of the target language.

38

Π ⊢ st ∶ ν

Π ⊢ () ∶ 1
(T-ST-0)

Π ⊢ s ∶ µ
Π(s) = µ (T-ST-1)

Π ⊢ st0 ∶ ν0 Π ⊢ st1 ∶ ν1

Π ⊢ (st0, st1) ∶ ν0 * ν1

(T-ST-2)

4.3 Interpretation

The interpretation of a streaming system is a system

Φ ⊢B ⟨Σ,A,χ⟩ →s ⟨Σ′,A′, χ′⟩ ! $

which can be read as “Given the streaming definitions Φ and with a block size B, the
buffer store Σ, accumulator store A and cursor map χ steps, by firing definition s,
to the new buffer store Σ′, new accumulator store A′ and new cursor map χ′ at the
complexity costs $”.

Just like in the big-step semantics of the source language, runtime errors manifest
themselves as undefined. I.e. there will be no derivation for target expression that
results in runtime error.

We will now explain each component of this transition system in detail.

4.3.1 Buffers

A buffer is a window on a stream.

Buffer ∋ buf ∶∶= `[a0, . . . , ak−1]eos
where ` ∈ N is a cursor that indicates how far the window of the buffer is, and

EOS ∋ eos ∶∶= ✓ ∣ ∗

is and end-of-stream indicator, where ✓ marks that the window of the stream is at
the end, and ∗ marks that there is more to come.

A buffer store is then a finite map from stream identifiers to buffers

Σ ∶∶= [s0 ↦ buf 0, . . . , sk−1 ↦ buf k−1]

We first define some simple operations on buffers

Append The append operation appends the values of two buffers.

(++) ∶ Buffer ×Buffer⇀ Buffer

`[a0, . . . , ak−1]∗ ++ 0[a′0, . . . , a′k′−1]eos = `[a0, . . . , ak−1, a
′
0, . . . , a

′
k′−1]eos

39

Read The read operation reads a buffer from a given cursor to the end of the buffer.
Reading outside the window of a buffer is undefined.

[⋅] ∶ Buffer ×Cursor⇀ Buffer

`[a0, . . . , ak−1]eos[`0] = `0[a`0−`, . . . , ak−1]eos ` ≤ `0 < ` + k

Window size The window size of a buffer is defined as

∣`[a0, . . . , ak−1]eos∣ = k

this generalizes to buffer stores by summation

[s0 ↦ buf 0, . . . , sk−1 ↦ buf k−1] =
k−1

∑
i=0

∣buf i∣

End of stream check We define a predicate on buffers which is true if the stream
has ended

done(`[a0, . . . , ak−1]eos) if and only if eos = ✓

Getting the data
data ∶ Buffer→ PVal∗

data(`[a0, . . . , ak−1]eos) = a0, . . . , ak−1

Initial buffer store All buffers are initially empty, starts at position zero, and have
not ended yet, except for an initial control buffer that starts as 0[f , t]✓. The control
buffer is used to control the parallel structure during execution, and it is an entry point
for literals, as it is used to distribute them. Each f in the control stream indicates
one sub-computation, and each t delimits the sub-computations in groups. The initial
value of [f , t] can be interpreted as a single group of parallel degree of 1. The exact
usage of the control stream become more clear in the transformation section.

Given a type context Π, we can construct an initial buffer store:

Σinit ∶ (SId⇀VPTyp) → (SId⇀ Buffer)

Σinit([s0 ↦ µ0, . . . , sk−1 ↦ µk−1]) =
[sctrl ↦ 0[f , t]✓, s0 ↦ 0[]∗, . . . , sk−1 ↦ 0[]∗]

4.3.2 Accumulator store

Each stream definition has a stream transformer t. Some transformers have an accu-
mulator associated with it:

acc ∈ Acc = PVal

The accumulators are stored in a finite map from stream identifiers to accumulated
values:

A ∶ SId⇀ PVal

A ∶∶= [s0 ↦ acc0, . . . , sk−1 ↦ acck−1]

40

Not all transformers have an accumulator, so the domain of the accumulator map is
often smaller than the domain of a corresponding type context. The value of the initial
accumulator depends on the transformer. We can construct an initial accumulator map
given a list of definitions Φ like this:

Ainit ∶ SSys→ (SId⇀ PVal)

Ainit(ε) = []
Ainit(s := t(s1, . . . , sk); Φ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ainit(Φ)[s↦ 0] t = 2flags

Ainit(Φ)[s↦ a0] t = flagscan⊗ a0 is the identity element of ⊗
Ainit(Φ)[s↦ 0] t = segfetchπ

Ainit(Φ)[s↦ f] t = interleave

Ainit(Φ)[s↦ f] t = reconstruct

Ainit(Φ) otherwise

4.3.3 Cursor map

The cursor map implements precise reference counting on stream elements. Each
stream has a number of streams reading it, and each reader must have a separate
cursor to the stream that is read. The cursor map forms a sparse matrix, that is
triangular due to the DAG structure of definitions. We define it as a finite map from
pairs of stream identifiers to cursors:

χ ∶ SId × SId⇀Cursor

CursorMap ∋ χ ∶∶= [(s0, s
′
0) ↦ `0, . . . , (sk−1, s

′
k−1) ↦ `k−1]

χ(s) defines the cursors on s, and χ(s0)(s1) = ` means that s1 is defined as a
transformation of s0 and possibly other streams, and in order to fire the definition, we
must read the values in s0 at position `.

In order to keep values in the output buffers of a system, we add a phantom reader,
that will actually never read the stream. The unique stream identifier sctrl serves this
purpose.

All cursors are initially zero. We can construct an initial cursor map given a list of
definitions and a stream identifier tree:

χinit ∶ SSys ×PIdT→CursorMap

χinit(ε, st) = []
χinit(s := t(s1, . . . , sk); Φ, st) = χinit(Φ) ∪ initCursors(s,Φ, st)

initCursors ∶ SId × SSys ×PIdT→ StreamCursors

initCursors(s, ε, st) =
⎧⎪⎪⎨⎪⎪⎩

[(s, sctrl) ↦ ∞] s ∉ st
[(s, sctrl) ↦ 0] s ∈ st

initCursors(s, (s′ := t(s1, . . . , sk)); Φ, st) =
⎧⎪⎪⎨⎪⎪⎩

initCursors(Φ, st)[(s, s′) ↦ 0] ∃i ∈ 1..k . si = s
initCursors(Φ, st) otherwise

The quadratic complexity is acceptable since the construction of the initial cursor map
can happen statically.

41

4.3.4 Target complexity

The target language complexities are similar to the complexity quadruple ω ∈ Cx from
the source language, but there is no notion of step space in the target language. Target
language complexities are therefore merely triples TCx ∋$ = ⟨W,D,M⟩. In addition,
there is no high-level notion of parallel sub-computations in the low level language, so
there is no parallel composition of complexities either, and we only define a sequential
composition monoid for target language complexities

�t ∶ TCx ×TCx→ TCx

�t = + × + ×max

with identity element
⟨0,0,0⟩

4.3.5 Transformer semantics

The streaming semantics of primitive transformers are defined as a function parametrized
by B with the following type signature:

J⋅KB ∶ Trans→ TState ×Bufferk ⇀ (TState ×Buffer ×Cursork)

It takes a transformer t and defines the meaning of it JtKB (using block size B) as a
function from a an accumulator acc and k input buffer buf i to a new accumulator acc′,
an output buf update and k cursor updates `i:

JtKB acc (buf 1, . . . , buf k) = (acc′, buf , (`1, . . . , `k))

The input buffers can in principle contain any number of elements, but the output
buffer update must invariably contain at most B elements. This restriction is a neces-
sity in order to unsure that there is room in the output buffer for the update.

For all transformers, we can always infer the end-of-stream indicator from the input
buffers, and the resulting cursor updates - the output buffer update is marked as ended
✓ if and only if all the input buffers has ended ✓, and all elements were used in the
transformation. Since the resulting buffer is an update buffer, we set the cursor to 0.
We can therefore make do with a simpler semantic function:

J⋅K′B ∶ Trans→ TState × (PVal∗)k ⇀ (TState ×PVal∗ ×Cursork)

that returns a takes and output lists of primitive values PVal∗ instead of a buffers
Buffer, and we can then decorate the output list with a window:

JtKB acc (buf 1, . . . , buf k) =
let ([Ð→a l], acc′, (`1, . . . , `k)) = JtK′B acc (data(buf 1), . . . ,data(buf k))
in (0[Ð→a l]eos, acc′, (`1, . . . , `k))

where eos =
⎧⎪⎪⎨⎪⎪⎩

✓ ∣buf i∣ = `i ∧ done(buf i) for i in 1..k

∗ otherwise

Defining the real semantic function J⋅KB on buffers instead of lists of primitive values
is a technicality that allows us to use cleaner notation in the transition system.

We will now define the formal semantics of each of the transformers, and argue
that each of them has an efficient parallel implementation, that is always logarithmic
in the buffer size.

42

Vectorized scalar operations All scalar operations have semantics on the following
form.

J⊕∧K′B () ([n0, . . . , nl0−1], [m0, . . . ,ml1−1]) = ((), [n0 ⊕m0, . . . , nl−1 ⊕ nl−1], (l, l))

where l = min(B, l0, l1)

They obviously all have efficient parallel implementation, also in the context of stream-
ing.

Flag scan Flag scan is known to have an efficient parallel implementation (see [20],
or [19] page 45). The question is if it also has an efficient implementation in a streaming
model. The only difference between flag scan in this model and a regular flag scan, is
that we have an accumulator that must be the first element of the result and we must
carry a new accumulator on to the next dispatch. We can add the accumulator to the
first element (using the monoid associative operator). If its the initial accumulator
(the identity element) it does nothing, but if it is an accumulated value, the value will
propagate through the scan as we would expect. As for the new accumulator, we can
simply read it of the last element in scan. Both operations are constant time, so they
don not affect the overall performance of the algorithm.

We can describe the semantic formally as a recursive definition. We first assume a
cons notation for lists of values (a ∶ as) and [].

JflagscansumK nacc (ns, bs) = (n′acc, ns′, (`′, `′))

where (n′acc, ns′, `′) = flagscansum nacc ns bs B

flagscansum nacc ns bs k = (nacc, [],0) (ns = [] or bs = [] or k = 0)

flagscansum nacc (n ∶ ns) (f ∶ bs) k = (n′acc, nacc ∶ ns′, `′ + 1)
where (n′acc, ns′, `′) = flagscansum (n + nacc) ns bs (k − 1)

flagscansum nacc (n ∶ ns) (t ∶ bs) k = (n′acc, nacc ∶ ns′, `′ + 1)
where (n′acc, ns′, `′) = flagscansum 0 ns bs (k − 1)

Pack Pack has an efficient implementation using scans and permutation. The oper-
ation has an efficient implementation is described in [19] page 44, where the elements
that a filtered away are permuted to the back of the buffer. By counting the t’s in the
flag stream (by a reduction), we can find the exact size of the output buffer, and we can
simply clamp the buffer to that size. Pack therefore has an efficient implementation
in streaming context. The formal semantics are:

JpackπK () (as, bs) = ((), as′, (`′, `′))

where (as′, `′) = packπ as bs B

43

packπ () as bs k = ([],0) (as = [] or bs = [] or k = 0)

packπ () (a ∶ as) (f ∶ bs) k = (as′, `′ + 1)
where (as′, `′) = packπ () as bs (k − 1)

packπ () (a ∶ as) (t ∶ bs) k = (a ∶ as′, `′ + 1)
where (as′, `′) = packπ () as bs (k − 1)

To flags An example of 2flags:

2flags

[3,1,2]
= [0,0,0,1,0,1,0,0,1]

2flags can be implemented by initializing the output buffer to zeroes and writing the
1’s at the correct positions. We can get the positions by adding one to all elements of
the input buffer and performing and inclusive +-scan. In the context of streaming, we
must use an integer accumulator to carry over the number of zeroes that was generated
at the end of the output buffer.

J2flagsK nacc ns = 2flags as bs B

2flags nacc ns k = (nacc, [],0) (ns = [] or k = 0)

2flags nacc (n ∶ ns) k = (n′acc, t ∶ bs′, `′ + 1) (nacc = n)

where (n′acc, bs′, `′) = 2flags 0 ns (k − 1)

2flags nacc (n ∶ ns) k = (n′acc, f ∶ bs′, `′) (nacc ≠ n)

where (n′acc, bs′, `′) = 2flags (nacc + 1) (n ∶ ns) (k − 1)

Flag distribute Example of flag distribute

flagdistint
[3,8]
[0,0,0,1,0,1]

= [3,3,3,3,8,8]

Flag requires no accumulator to be implemented. We can figure out how much was
read from the first input buffer by a +-reduction of the second. We conclude that flag
distribute has en efficient implementation in the context of streaming, and the formal
semantics are:

JflagdistπK () (as, bs) = ((), as′, (`′0, `′1))

where (as′, `′0, `′1) = flagdistπ as bs B

44

flagdistπ () as bs k = ([],0,0) (as = [] or bs = [] or k = 0)

flagdistπ () (a ∶ as) (f ∶ bs) k = (a ∶ as′, `′0, `′1 + 1)
where (as′, `′0, `′1) = flagdistπ () (a ∶ as) bs (k − 1)

flagdistπ () (a ∶ as) (t ∶ bs) k = (a ∶ as′, `′0 + 1, `′1 + 1)
where (as′, `′0, `′1) = flagdistπ () as bs (k − 1)

Segmented fetch
segfetchint
[10,20,30]
[0,0,2,2]
[1,3,1,1]

= [10,10,20,30,30,30]

The segmented fetch is actually not a very primitive operation. It can be implemented
by 2flags, flagdist, scans, and a gather operation, but for the purpose of moving
cursors in unbounded buffers we provide this compound operation as a primitive.
During the streaming of a segmented fetch, we require as an invariant that segment
start indices arrive in monotonic increasing order. This allows us to move the cursor
to the last known segment start.

Segmented fetch must use an integer accumulator in order to handle segments
overlapping window boundaries.

For the purpose of getting an element from an arbitrary position in an unbounded
buffer we define the operations as[i] as

[a0, . . . , al−1][i] = ai 0 ≤ i < l

We can the define segfetch as

JsegfetchπK nacc (as, ns0, ns1) = (n′acc, ns′, (`′′, `′, `′))

where (n′acc, as′, `′) = segfetchπ nacc as ns0 ns1 B

segfetchπ nacc as ns0 ns1 k = (nacc, [],0) (as = [] or ns0 = [] or ns1 = [] or k = 0)

segfetchπ nacc as (n0 ∶ ns0) (n1 ∶ ns1) k = (n′acc, as′, `′ + 1) (nacc = n1)
where (n′acc, as′, `′) = segfetchπ 0 as ns0 ns1 k

segfetchπ nacc as (n0 ∶ ns0) (n1 ∶ ns1) k = (n′acc, as[n0 + nacc] ∶ as′, `′ + 1) (nacc < n1)
where (n′acc, as′, `′) = segfetchπ (nacc + 1) as (n0 ∶ ns0) (n1 ∶ ns1) (k − 1)

Flush In terms of transformer semantics, flush is (almost) simply the identity func-
tion:

JflushKB () [a0, . . . , al−1] = ((), [a0, . . . , al′−1], `′)
where `′ = min(B, `)

45

Merge Example:
merge3,char

[0,1,2,1,2,0,2]
[a,b]
[i,j]
[x,y,z]

= [a,i,x,j,y,b,z]

Merge has the following semantics:

q
mergek,π

y
() (ns, as1, . . . , ask) = ((), a′, (`′, `′1, . . . , `′k))

where (a′, `′, (`′1, . . . , `′k)) = mergek,π ns (as1, . . . , ask) B

mergek,π ns (as1, . . . , ask) = ([],0, (0, . . . ,0)) (k = 0 or ns = [] or ∃i . asi = [])

mergek,π (n ∶ ns) (as1, . . . , ask) = (an ∶ as′, `′ + 1, (`′1, . . . , `′n + 1, . . . , `′k))
where (as′, `′, (`′1, . . . , `′k)) = mergek,π (ns) (as1, . . . , as′n . . . , ask)

asn = (an ∶ as′n)

4.3.6 Transition system

The semantics of the target language is defined in a single transition rule:

Φ ⊢B ⟨Σ,A,χ⟩ →s ⟨Σ′,A′, χ′⟩ ! $

Φ ⊢B ⟨Σ,A,χ⟩ →s ⟨Σ′,A′, χ′⟩ ! ⟨∣buf ∣ ,1, ∣Σ′∣⟩
(∗) ()

(∗) 1. Φ(s) = t (s1, . . . , sk)
2. acc = A(s)
3. buf 1 = Σ(s1)[χ(s1, s)]

⋯
buf k = Σ(sk)[χ(sk, s)]

4. (acc′, buf , (`1, . . . , `k)) = JtKB acc (buf 1, . . . , buf k)

5. A′ = A[s↦ acc′]
6. χ′ = χ[(s1, s) ↦ χ(s1, s) + `1, . . . , (sk, s) ↦ χ(sk, s) + `k]
7. Σ′′ = Σ′[⎧⎩si ↦ Σ(si)[minx(χ′(si, x))]⎫⎭

k
i=1]

8. Σ′ = Σ′′[s↦ Σ(s) ++ buf]
Explanation:

1. Load the stream definition s := t(s1, . . . , sk).

2. Load the transformer accumulator for s.

46

3. Read the input buffers at the cursors of s.

4. Fire the transformer t on the accumulator and input buffers, yielding a new
accumulator, an output buffer update and k cursor updates for the input buffers.

5. Update new accumulator.

6. Update new cursors of s on s1 to sk.

7. Trim input buffer windows to the new cursors. I.e. move the window of si to the
smallest cursor on si.

8. Write output buffer update to output buffer.

A string of stream identifiers defines a schedule

ss ∶∶= ε ∣ s; ss

We can define a transitive version of the transition rule given a schedule, which corre-
sponds to evaluation a target language program:

Φ ⊢B ⟨Σ,A,χ⟩ →s s∗ ⟨Σ′,A′, χ′⟩ ! $

Φ ⊢B ⟨Σ,A,χ⟩ →s ⟨Σ′′,A′′, χ′′⟩ ! $′′ Φ ⊢B ⟨Σ′′,A′′, χ′′⟩ →∗
ss ⟨Σ′,A′, χ′⟩ ! $′

Φ ⊢B ⟨Σ,A,χ⟩ →∗
s;ss ⟨Σ′,A′, χ′⟩ ! $′′ �t $′ ()

Φ ⊢B ⟨Σ,A,χ⟩ →∗
ε ⟨Σ,A,χ⟩ ! ⟨0,0,0⟩

()

In practice, the schedule ss is determined dynamically at runtime.

4.4 Derived complexities

We will now take a closer look at the cost model. Each transition has the cost

⟨∣buf ∣ ,1, ∣Σ′∣⟩

where buf is the output update buffer produced by the transformation of the transition
and Σ′ is the resulting buffer store.

Space in the target language is explicit, we always measure the size of the buffer
store at each step. The accumulator store and cursor map only use O(1) space if we
assume the size of expressions are constant. We can therefore derive the actual space
requirements directly from M :

S = O(M)

47

The derived time complexity is the same as in the source language. We record
work and steps and assume that transformers use one step, even though most of them
are actually logarithmic, but we will then account for this in the derived time just as
in the source language:

T = O(W /P +D logP)
If we choose the block size parameter B carefully, we can do better. If we use the

invariant that output update buffers are always at most B in size, we can show by
induction on →∗

ss that:
∀Φ∀Σ∀χ .

if Φ ⊢B ⟨Σ,A,χ⟩ →∗
s;ss ⟨Σ′,A′, χ′⟩ ! ⟨W,D,M⟩

then W ≤ B ⋅D
In other words W = O(BD). If we choose a block size B = O(P), we have W =

O(PD). We can then improve the derived time complexity as:

T = O(W /P +D logP)
= O(PD/P +D logP)
= O(D +D logP)
= O(D logP)

In other words, we can completely remove the work term from the derived complexity,
since the total work is be “remembered” in the steps.

4.4.1 Representation

Given a source language type σ, we can define the high-level meaning of a product of
buffers as a representation of some source language value of type σ. More formally we
define a product on buffers as

Buffer ⊂ Places ∋ pt ∶∶= () ∣ (ps, ps) ∣ p

and a representation-of function

⟨ ⋅ ⟩
σ
∶ Places→Val∗

We assume the existence of the higher order functions zip ∶ Val∗ × Val∗ → Val∗,
map ∶ (Val → Val) → Val∗ → Val∗ and scan⊗ ∶ Val∗ → Val∗ defined in the obvius
way.

The representation-of function is then defined by induction on the type subscript
as

⟨()⟩
1
= ((()))

⟨[Ð→a]⟩
π
= [Ð→a] ai ∶ π

⟨(ps0, ps1)⟩σ0∗σ1 = zip [⟨ps0⟩σ0] [⟨ps1⟩σ1]

⟨(([Ð→n l], [Ð→ml]), ps0)⟩[[[τ]]] = mapf (zip [Ð→n l] [Ð→ml)]
where f (((n, m))) = [[[⟨ps0⟩τ [n..n +m − 1]]]]

⟨([⎧⎪⎪⎪⎩
Ð→
f l′i , t

⎫⎪⎪⎪⎭
l

i=0
], ps0)⟩{σ0} = mapf (zip (scan+ [

Ð→
l′ l]) [

Ð→
l′ l])

where f (((n, m))) = {⟨ps0⟩τ [n..n +m − q]}

48

4.5 Examples

If we return to the iota-square-sum example

l−1

∑
i=0
i2

we can implement it in the target language as the system

let Φ in s

where

Φ = s0 := constl∧(sctrl)

s1 := 2flags(s0)

s2 := const1
∧(sctrl)

s3 := const2
∧(sctrl)

s4 := flagdistint(s2, s1)

s5 := flagscansum(s4, s1)

s6 := flagdistint(s3, s1)

s7 := pow∧(s5, s6)

s8 := flagscansum(s7, s1)

s := packint(s8, s1)

which the type system proofs to have typing context

Π = [s0 ↦ {int}b

, s1 ↦ {bool}b

, s2 ↦ {int}b

, s3 ↦ {int}b

, s4 ↦ {int}b

, s5 ↦ {int}b

, s6 ↦ {int}b

, s7 ↦ {int}b

, s8 ↦ {int}b

, s↦ {int}b

]

and thus the output type Π(s) = {int}b.
First, we let the block size B = l + 1. We get the initial buffer store Σinit(Π) = Σ0,

initial accumulator store Ainit(Φ) = A0, and initial cursor map χinit(Φ) = χ0 which
expands to

A0 = [s1 ↦ 0, s5 ↦ 0, s8 ↦ 0]

49

Σ0 = [sctrl ↦ 0[0,1]✓
s0 ↦ 0[]∗
, s1 ↦ 0[]∗
, s2 ↦ 0[]∗
, s3 ↦ 0[]∗
, s4 ↦ 0[]∗
, s5 ↦ 0[]∗
, s6 ↦ 0[]∗
, s7 ↦ 0[]∗
, s8 ↦ 0[]∗
, s ↦ 0[]∗
]

χ0 s0 s1 s2 s3 s4 s5 s6 s7 s8 s sctrl
s0 − 0 − − − − − − − − ∞
s1 − − − − 0 0 0 − 0 0 ∞
s2 − − − − 0 − − − − − ∞
s3 − − − − − − 0 − − − ∞
s4 − − − − − 0 − − − − ∞
s5 − − − − − − − 0 − − ∞
s6 − − − − − − − 0 − − ∞
s7 − − − − − − − − 0 − ∞
s8 − − − − − − − − − 0 ∞
s − − − − − − − − − − 0

We can then dispatch the constant streams s0, s2 and s3 and obtain

Φ ⊢l+1 ⟨Σ0,A0, χ0⟩ →∗
s0;s2;s3 ⟨Σ1,A0, χ0⟩ ! $1

where Σ1 expands to

Σ1 = Σ0 [s0 ↦ 0[l, l]✓
, s2 ↦ 0[1,1]✓
, s3 ↦ 0[2,2]✓
]

and $1 = ⟨3,3,3⟩. We can now fire s1 yielding

Φ ⊢l+1 ⟨Σ1,A0, χ0⟩ →s1 ⟨Σ2,A0, χ2⟩ ! $2

Σ2 = Σ1[s0 ↦ 1[]✓, s1 ↦ 0[
l

³¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹µ
0, . . . ,0,1]✓]

χ2 = χ0[(s0, s1) ↦ 1)]

50

$2 = ⟨1 + l,1, l + 3⟩
This opens up the possibility to fire s4; s6:

Φ ⊢l+1 ⟨Σ2,A0, χ2⟩ →∗
s4;s6 ⟨Σ3,A0, χ3⟩ ! $3

Σ3 = Σ2 [s2 ↦ 1[]✓
s3 ↦ 1[]✓

, s4 ↦ 0[
l+1

³¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹µ
1, . . . ,1]✓

, s6 ↦ 0[
l+1

³¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹µ
2, . . . ,2]✓

]

χ3 = χ2[(s2, s4) ↦ 1, (s3, s6) ↦ 1]
$3 = ⟨2 ⋅ (l + 1),2,3l + 5⟩

We begin to see a pattern. Each transition costs O(l) work, 1 step and O(l) space,
so the constant-sized schedule s5; s7; s8; s yields the result in s with complexity $′ =
⟨W,D,M⟩

W = O(l)
D = O(1)
M = O(l)

If we have that the number of processors P = l + 1, we can derive the complexities

T = O(1 log(l + 1)) = O(log l)

S = l
We recall the cost model for this example from the high level language, we can

derive the equivalent high level complexities

T ′ = O(l/(l + 1) + log(l + 1)) = O(log l)

S′ = O(min(P, l)) = O(l)
Which are seen to be the same as the low level complexities. It is therefore, as expected,
possible to express the iota-square-sum example in the target language with ideal
complexity given more than enough processors. We now turn our attention to the
more interesting case where P = 1. We let the block size B = 1 so that B = O(P) and
try again. If we choose the right schedule we get

W = O(l)

D = O(l)
M = O(1)

as expected, but another schedule would yield

M = O(n)

which is definitely not desirable. Scheduling is crucial for the correctness of the cost
model of the source language.

51

4.6 Recursion

If we had recursion in the source language, we would need named sub-routines contain-
ing in the target language with the interpretation that we can dynamically allocate
and deallocate more buffers. We can simulate recursion in the source language by
statically unfolding the recursive function. It is almost always the case that recur-
sion depth is logarithmic for data parallel algorithms [5], and assuming this that, a
recursive function requires a logarithmic increase in the number of buffers we allocate,
which potentially increases the space complexity by a logarithmic factor. If there are
no unbounded buffer types in the sub-routine, we can quickly conclude that the space
increase is constant and therefore irrelevant.

4.7 Evaluation

We have described a target language syntax, types and semantics. Target language
expressions are a list of stream definitions, where each stream is defined as a trans-
formation of 0 or more input streams, with no cyclic definitions. All types are either
bounded or unbounded buffers of primitive values. The semantic of an expression is
a transition system on buffer stores, where each transition fires a stream transformer,
transforming blocks of the input stream to a block in the output stream. The target
language is data parallel, where the parallelism is exposed by the block size. The
semantics is augmented with a cost model, that is hopefully believable and allows the
example

l−1

∑
i=0
i2

to be expressed and interpreted with ideal space and time complexities. We therefore
deem the target language as a suitable backend for the source language, and what is
left is to provide an actual translation of source to target language expressions.

52

5 Transformation

The transformation from source language to target language given in this section
involves many technical details that are important for the correctness of the transfor-
mation, and therefore an important part of the thesis results. However, since we do
provide any proofs, it is not so important for the reader to understand all the details.
In particular the section about operation transformation may safely be skimmed when
reading the thesis as a whole.

5.1 Value representation

There are many ways to define a representation for sequences and lists. There is
no notion of nested sequences or lists in a vectorized language, so we must define an
accurate representation of high-level values as streams, before we can define an accurate
vectorization transformation on expression. This section is devoted to analyzing the
different choices and selecting the most promising ones.

The choice of value representation plays a huge part on how the rest of the trans-
formation is shaped. We cannot use the usual segment descriptor representation as
presented in section 1.2.1 in the context of sequences, since the length of a sequence
are not known until the sequence has been used.

Scalars Primitive values in the target language do not exist by themselves. They
arise as a transformation of the control stream. A scalar value is therefore represented
as a primitive stream given a bounded buffer. We call such a stream a scalar stream,
because it is the representation of one or more source language scalar values. The
scalar a in the source language will be represented as a stream s0 of a’s, which can be
visualized as:

s0 = a a a a ⋯ a

where the last element is a dummy element, the meaning of which we will explain
when we describe the representation of sequences. This is a visualization of the entire
stream. It is important to note that only a part of the entire stream is stored in
memory at any given time. We think of time as moving from left to right when
visualizing streams.

The concrete number of a’s in the stream depends on the parallel degree, defined
by the control stream. Thus if a literal a appears inside a map

{n : x in &10}

The stream of n will hold 11 n’s - 10 from the parallel degree and 1 additional dummy
value in the end.

Lists The vectorization of lists is an interesting subject on its own with many possi-
bilities, but it is not the real focus of this thesis. We use a virtually segmented repre-
sentation as defined in [16], since it facilitates provably work-preserving vectorization,
except for vectorization of the list constructor. In essence, every list is vectorized to
a pair (st0, st1) where st0 is referred to as the segment descriptor and st1 is referred
to as the data streams. st0 is itself a pair (s2, s3) where s2 is a stream of segment
starts, and s1 is a stream of segment lengths. These two streams defines a segmenta-
tion on the streams st1, which holds the actual elements of the list. This definition

53

is recursive in that st1 mast itself be a pair of segment descriptor and data vector
(st4, st5) in which case st0 defines a segmentation on the segment descriptor st4, and
st4 defines a segmentation of st5. We can visualize one of the many representation of
[[[[[[a,b]]], [[[c,d,e]]], [[[e,f,h]]]]]] as

s0 = 0
s1 = 3
s2 = 0 2 5
s3 = 2 3 3
s4 = a b c d e f g h

Since we use virtual segment descriptors, there are multiple representations of each
source language lists. This representation is said to be normalized, because the seg-
ments appear directly after each other. The structure of the streams is ((s0, s1), ((s2, s3), s4)).
(s0, s1) is the top-level segment descriptor defining a single segment starting and 0 and
with length 3. (s2, s3) is the second segment descriptors, and it defines 3 segments in
s4. In contrast to sequences, lists are always fully allocated in memory. This affects
our choice of representation of lists in that the buffers of s2, s3 and s4 are unbounded.
However, the top most segment descriptor is bounded just like scalar streams. In fact,
s2 and s3 can be thought of as scalar streams for all purposes.

The number of elements in the top-most segment descriptor must always be the
same as the number of elements in the control stream.

Sequences At the very basics, a primitive sequence {π} is simply a primitive stream.
Reading a file into a stream of characters, or generating the numbers from 0 to n are
examples of primitive streams. Because we may have multiple primitive sequences
in parallel sub-computations, we must delimit the streams they represent. For this
purpose we add a special symbol to the primitive type that represent a delimiter, so
now we need to represent a stream of π + 1. Since we do not have sum types, we can
use an equivalent representation by tagging each element in the stream with a boolean
flag indicating left or right injection, and in the case of right injection (a delimiter),
we can simply ignore the left projection. It is a dummy value. A primitive sequence is
therefore represented as a primitive stream, and a boolean stream. For example, the
value

{0,1,2}
is represented as

s0 = f f f t
s1 = 0 1 2

And in the case of parallel computations, we could for example have the following
three sequences in parallel sub-computations:

{0,1,2} {} {10,20}

which would be represented by the streams

s0 = f f f t t f f t
s1 = 0 1 2 10 20

When we have a nested sequences things get a little more complicated. Reading
a file into a stream of lines, where each line is streamed is an example of a nested

54

sequence. We need to delimit nested sequences just like we need to delimit primitive
sequences. The most intuitive way to define delimiters on nested sequences is to
delimit the delimiter stream of the sub-sequences. For instance, the two parallel nested
sequences

{{a,b},{c,d,e},{f,g,h}}
and

{{i,j,k,l},{m,n}}
could be represented as

s0 = f f f f f f f f f f t f f f f f f f t
s1 = f f t f f f t f f f _ f f f f t f f _

s3 = a b _ c d e _ f g h _ i j k l _ m n _

This representation has the nice property that it can easily be thought of as a
sequence of char + 1 + 1, but it has the unfortunate property that the sub-sequences
of a sequence of pairs, i.e. {σ0 ∗ σ1} do not necessarily share delimiters. The number
of f ’s in a segment of the form f , . . . , f , t depends on the number of elements stored
in the bottom-most stream of the stack, and the two stacks of σ0 and σ1 may be very
different. The implication is that we must lift all pair types to the top-level of the type
outside any sequence, and remember that they are actually zipped, and at what level.
Every projection will then have it’s own complete stack of delimiter streams. This
is doable, but leads to overly complex representation and subsequent vectorization of
expressions. The following is a better representation:

s′0 = f f f t f f t
s1 = f f t f f f t f f f _ f f f f t f f _

s2 = a b _ c d e _ f g h _ i j k l _ m n _

If we only stream the first f on top of each underlying segment, the delimitation is
unique no matter the size of the segments in the underlying stream stack. In this way
we can share the delimiters of {σ0∗σ1} in one boolean stream for all σ0 and σ1. Some-
times we really need the original long top-level delimiter stream that matches the size
of the one below. This is why we have the reconstruct transformer. In the example,
we can “reconstruct” s0 from s′0 and s1 by the definition s0 := reconstruct(s′0, s1):

s′0 = f f f t f f t
s1 = f f t f f f t f f f _ f f f f t f f _

s0 = f f f f f f f f f f t f f f f f t f t

5.2 Type transformation

We will begin by describing a vectorization of types.
Any given source type σ ∈ Typ can be transformed to a target language type ν by

type vectorization. Vectorization of primitive types in the source language is done by
mapping the primitive type π to a buffer type µ. If it is bounded or unbounded depends
on whether or not the primitive should be tabulated. Types should be tabulated if
they exist inside a vector type [[[τ]]]. Streams are vectorized by separately vectorizing
the element type, and attaching a boolean bounded buffer to it representing stream
delimiters. Vectors are vectorized by separately vectorizing the element type, and
attaching a pair of integer buffers to it representing virtual segmentation by segment

55

offsets and segment lengths. The integer buffers are unbounded if the type is within a
vector type, and bounded otherwise.

Vj⋅o ∶ Typ→VTyp

Vcj⋅o ∶ CTyp→VTyp

Vjσ0 ∗ σ1o = Vjσ0o * Vjσ1o

Vj1o = 1

Vj{σ}o = {bool}b * Vjσo

Vjπo = {π}b

Vj[[[τ]]]o = {int}b * {int}b * Vcjτo

Vcjτ0 ∗ τ1o = Vcjτ0o * Vcjτ1o

Vcj1o = 1

Vcjπo = [[[π]]]

Vcj[[[τ]]]o = {int}u * {int}u * Vcjτo

5.3 Expression transformation

For the purpose of translating source language expressions to streaming systems, we
define a monad for building up a lists of stream definitions compositionaly. Since we
need to generate unique stream identifiers, we take SId to be isomorphic to the natural
numbers

SId = {sn ∣ n ∈ N }

and define the length of a list of definitions

∣ε∣ = 0

∣φ; Φ∣ = 1 + ∣Φ∣

We then define a monoid on definition lists. Two lists are naturally composed by
appending the definitions of one list with the other.

ε ++Φ1 = Φ1

(φ; Φ0) ++Φ1 = φ; (Φ0 ++Φ1)

Append is clearly a monoid with identity element ε. We can now define a monad:

Gen X = Eqs→ (X ×Eqs)

where Gen X is a function from a (big) list of definitions to X and a list of new
definitions to add. We have the two natural transformations return ηGen and bind
⋆Gen defined as

ηGen ∶X →Gen X

ηGen x = λΦ.(x, ε)

56

⋆Gen ∶ Gen X → (X →Gen Y) →Gen Y

q ⋆Gen f = λΦ.let (x,Φ0) = q Φ
(y,Φ1) = f x (Φ ++Φ0)

in (y,Φ0 ++Φ1)
We can then define the function emit that adds a stream definition defining a fresh

stream identifier as, and returns the identifier for further use:

emit ∶ Trans→ SIdk →Gen SId

emit t (s0, . . . , sk−1) = λΦ.(s′, s′ := t(s0, . . . sk−1) where s′ = s∣Φ∣)

The function defsq extracts the list of definitions from the monad

defs = λΦ.(Φ, ε)

We can then build lists of definitions incrementally by repeated application of ⋆Gen,
ηGen, and emit . For example:

emit t0 () ⋆Gen (λs0.emit t1 (s0) ⋆Gen (λs1.emit t2 (s0, s1) ⋆Gen defs))

When applied to (ε,0) yields Φ where Φ is the following list of definitions:

s0 := t0();
s1 := t1(s0);
s2 := t2(s0, s1)

Writing definition lists by ⋆Gen, emit and anonymous functions is tedious, so we adopt
a notation similar to Haskell’s do notations:

do s0 ← emit t0 ();
s1 ← emit t1 (s0);
emit t2 (s0, s1)

which translates into

emit t0 () ⋆Gen (λs0.emit t1 (s0) ⋆Gen (λs1.emit t2 (s0, s1)))

The transformation from source language to target language is given by the trans-
formation function ⟨⟨ ⋅ ⟩⟩ parametrized by a source language typing context Γ. The
typing context is used when transforming apply-to-each. The promoted variables in
the using term must be distributed over the sequence. This require that we know
their type. The transformation function on expressions is defined as

⟨⟨ ⋅ ⟩⟩
Γ
∶ Exp→ SSys

⟨⟨e⟩⟩
Γ
= q (ε,0)

where q = do st ← E⟨⟨e⟩⟩
Γ
[] s

Φ ← defs
ηGen (let Φ in st)

57

The type invariant is:
If

Γ ⊢ e ∶ σ
then

⟨⟨e⟩⟩
Γ
= let Φ in st

s.t.
⊢ Φ ∶ Π

and
Π ⊢ st ∶ Vjσo

Which can be proved by induction on the syntax of e.
The function E⟨⟨ ⋅ ⟩⟩

Γ
builds up the definition list Φ and returns the resulting stream

identifier tree st, that holds the output streams of the system.

E⟨⟨ ⋅ ⟩⟩
Γ
∶ Exp→ (VarId⇀ PIdT) → SId→Q PIdT

where E⟨⟨e⟩⟩
Γ
δ sctrl = q is the transformation of e given a finite map from source

language variables to stream identifier trees to a stream identifier tree inside a Gen
monad. In other words, it may emit stream definitions.

E⟨⟨a⟩⟩
Γ
δ s = const s a

E⟨⟨o e⟩⟩
Γ
δ s = do st ← E⟨⟨e⟩⟩

Γ
δ s

O⟨⟨o⟩⟩ s st
E⟨⟨((()))⟩⟩

Γ
δ s = ηGen ()

E⟨⟨(((e0, e1)))⟩⟩Γ
δ s = do st0 ← E⟨⟨e0⟩⟩Γ

δ s

st1 ← E⟨⟨e1⟩⟩Γ
δ s

ηGen (st0, st1)

E⟨⟨fst e⟩⟩
Γ
δ s = do (st0, st1) ← E⟨⟨e⟩⟩Γ

δ s

ηGen st0

E⟨⟨snd e⟩⟩
Γ
δ s = do (st0, st1) ← E⟨⟨e⟩⟩Γ

δ s

ηGen st1

E⟨⟨let x = e0 in e1⟩⟩Γ
s = do st0 ← E⟨⟨e0⟩⟩Γ

δ s

E⟨⟨e1⟩⟩Γ
δ[x↦ st0] s

E⟨⟨{e0 : x in e1 using x1, . . . , xk}⟩⟩Γ
δ s =

do (s′, st1)← E⟨⟨e1⟩⟩Γ
δ s

st2 ← E⟨⟨e2⟩⟩Γ
s

st′1 ← dist τ1 δ(x1) s′ (Γ(x1) = τ1)
⋮

st′k ← dist τk δ(xk) s′ (Γ(xk) = τk)
st0 ← E⟨⟨e0⟩⟩Γ

δ[x↦ st1, x1 ↦ st′1, . . . , xk ↦ st′k] s′
ηGen (s′, st0)

For the purpose of generating constant literals at any parallel degree, the constant
in the target language is actually a scalar operation

⊕ ∶∶= ⋯ ∣ consta

58

with the type and semantic

∀a ∶ π1 . consta ∶ bool -> π

JconstaK = a

const is then a function that generates a constant stream distributed over to a given
control stream:

const s a = emit consta
∧ s

dist τ is a function that distributes non-delimited streams over a control stream
guided by a high-level type τ . It distributes the simple stream if τ = π, and it dis-
tributes the top-level segment descriptor streams if τ = [[[τ0]]]. Since lists are virtually
segmented, we don’t need to distribute the remainder of the list.

dist τ ∶ PIdT→ SId→W PIdT

dist τ0∗τ1 (st0, st1) s = do st′0 ← dist τ0 st0 s
st′1 ← dist τ1 st1 s
ηGen (st′0, st

′
1)

dist1 () s = ηGen ()

dist [[[τ]]] (st0, st1) s = do st′0 ← dist int∗int st0 s
ηGen (st′0, st1)

distπ s0 s = emit flagdistπ s0 s

The functions E⟨⟨ ⋅ ⟩⟩
Γ

and dist τ is only the tip of iceberg when vectorizing source
language expressions. The trickiest part is to vectorize the primitive operations Op.
Each individual operation needs to be vectorized with great care in order to main-
tain correct alignment of delimiters and data, and to avoid impossible situations with
respect to streaming. The operation vectorization function has the signature

O⟨⟨ ⋅ ⟩⟩ ∶ Op→ SId→ PIdT→Gen PIdT

and we will give its definition with explanation one operation at a time.

Primitive operations Most scalar operations are trivially vectorized to their vector-
versions

O⟨⟨ + ⟩⟩ s (s0, s1) = emit (+∧) s0 s1

O⟨⟨*⟩⟩ s (s0, s1) = emit (*∧) s0 s1

But for some scalar operations, mainly division, we must make sure not to apply the
operation on unknown dummy values. Such an application could result in unexpected
runtime failure. In order to deal with this problem, we introduce a new scalar operation
conditional write

⊕ ∶∶= ⋯ ∣ condwa

with the type and semantics

∀a ∶ π . condwa ∶ π * bool -> π

59

JcondwaK (((a0, b1))) =
⎧⎪⎪⎨⎪⎪⎩

a b1 = 1

a0 b1 = 0

We can then use this operation to write safe values to the dummy value places on a
per-operation basis. In the case of division, we must make sure to write a non-zero
value, so:

O⟨⟨div⟩⟩ s (s0, s1) = do s2 ← emit condw∧1 (s1, s)
emit (div∧) (s0, s2)

Scan and reduction The scan operation is also pretty straight-forward. Since scan
is already a primitive in the target language, we can easily define vectorization of scan
as

O⟨⟨scan⊗⟩⟩ s (s0, s1) = emit flagscan⊗ (s0, s1)

Reduction is not a primitive on the other hand, but it is easily vectorized by simply
packing the result of a scan operation at the position of the segment flags

O⟨⟨reduce⊗⟩⟩ s (s0, s1) = flagreduce⊗ (s0, s1)

where
flagreduce⊗ s0 s1 = do s2 ← emit flagscan⊗ (s0, s1)

emit packπ s2 s1 where ⊗ ∶ π
For later purposes we also define a non-segmented scan operation

scan⊗ s0 = do s1 ← const 0 s0

emit flagscanint (s0, s1)

Iota Similar to division, where we must take care not to divide with a zero when
the zero is a dummy value, for iota, we must take care not to generate arbitrary long
iota sequences from non-zero dummy values. In fact, every single dummy values must
produce a single dummy value as a result, and the only input to iota that satisfies
this property is zero, so we will write zeroes on all dummy positions. Iota itself is
vectorized into a segmented sum-scan of 1’s.

O⟨⟨iota⟩⟩ s s0 = do s1 ← emit condw∧0 (s0, s)
s2 ← emit 2flags s1

s3 ← flagiota s s2

ηGen (s2, s3)

where flagiota is a composite transition that generates an iota sequence from a flag
sequence.

flagiota s s0 = do s1 ← const 1 s
emit flagscanint (s1, s0)

Length The length of a concrete list is given by its length stream in its segment
descriptor. So

O⟨⟨len[[[]]]
τ ⟩⟩ s ((, s0),) = s0

60

The length of a sequence is given by counting zeroes in its delimiter stream. This can
be done by a segmented sum of 1’s. We can then define the vectorization of len{}

σ as

O⟨⟨len{}
σ ⟩⟩ s (s0,) = 2lens s0

where
2lens s0 = do s1 ← const1

∧ s0

flagreducesum (s1, s0)

Zip Zipping two streams is a simple matter of choosing one of the delimiter streams
and attach it two both of them:

O⟨⟨zipσ0,σ1⟩⟩ s ((s0, st0), (s1, st1)) = ηGen (s0, (st0, st1))

Of course this does not account for runtime error if the delimiters are different. In order
to catch the error we could extend the language with a primitive transition assert

that reads a stream of bools and fails if any of the elements are zero. We then feed
the vector version of scalar equality operator on s0 and s1 to this transition.

Elt We can use the segfetchπ transformer to gather elements from a vectorized list.

O⟨⟨elt[[[]]]τ ⟩⟩ s (((s0, s1), st0), s3) =
do s4 ← emit condw0

∧ s3 s
s5 ← emit (+∧) s0 s4

s6 ← const s 1
segfetchτ st0 s5 s6

segfetchπ s0 s1 s2 = emit segfetchπ (s0, s1, s2)

segfetch[[[τ]]] (st0, st1) s1 s2 = do st′0 ← segfetch int∗int st0 s1 s2

ηGen (st′0, st1)

segfetch1 () s1 s2 = ηGen ()

segfetchτ0∗τ1 (st0, st1) s1 s2 = do st′0 ← segfetchτ0 st0 s1 s2

st′1 ← segfetchτ1 st1 s1 s2

ηGen (st′0, st
′
1)

For a safer solution, we should assert that the indices in s4 are greater than zero
and element-wise less then the lengths in s1.

Element retrieval from a nested stream boils down to removing a level of delimiters
and packing the remaining stream(s). It is in some sense similar to gather, but we
must perform the pack

O⟨⟨elt{}σ ⟩⟩ s ((s0, st0), s1) =
do s2 ← emit flagdistint (s1, s0)

s3 ← flagiota s s0

s4 ← emit (= ∧) s2 s3

deeppackσ st0 s4

where

61

deeppackπ s0 s = emit packπ s0 s

deeppack [[[τ]]] (st0, st1) s = do st′0 ← deeppack int∗int st0 s
ηGen (st′0, st1)

deeppack{τ} (s0, st1) s = do st′1 ← deeppack τ st1 s
s1 ← deeppackbool s0 s
ηGen (s1, st′1)

deeppack{{σ}} (s0, (s1, st1)) s = do s′ ← emit reconstructbool s s1

st′1 ← deeppack{σ} (s1, st1) s′

s1 ← emit packbool s0 s
ηGen (s1, st′1)

deeppack1 () s = ηGen ()

deeppackσ0∗σ1 (st0, st1) s = do st′0 ← deeppackσ0 st0 s
st′1 ← deeppackσ1 st1 s
ηGen (st′0, st

′
1)

Concat and partition Concatenation is done by removing delimiters in the second
delimiter stream from the top. As an example, consider concating the stream stack

s0 = f f t f f t
s1 = f f t f t f f t f t
s2 = f f t f f f t f f f t t f f f f t f f t
s3 = a b c d e _ f g h _ _ i j k l _ m n _

Removing the t’s in s1 where there is no t’s in s0 (reconstructed), and removing s0

from the stack yields

s′1 = f f f t f f f t
s2 = f f t f f f t f f f t t f f f f t f f t
s3 = a b c d e _ f g h _ _ i j k l _ m n _

which gives the desired result. If we concat again, using the same technique we get

s′2 = f f f f f f f f t f f f f f f t
s3 = a b c d e _ f g h _ _ i j k l _ m n _

And we see that there are dangling dummy values in s3 with no corresponding flag in
the delimiter stream s2. We must therefore pack out these values.

O⟨⟨concatσ⟩⟩ s (s0, (s1, st)) = do s2 ← emit reconstructbool s0 s1

s3 ← emit xor∧ s1 s2

s4 ← emit not∧ s3

s5 ← emit packbool s0 s4

st′ ← shallowpackσ st s4

ηGen (s5, st′)

62

where

shallowpackπ s0 s = emit packπ s0 s

shallowpack [[[τ]]] (st0, st1) s = do st′0 ← shallowpack int∗int st0 s
ηGen (st′0, st1)

shallowpack{σ} st0 s = ηGen st0

shallowpack1 () s = ηGen ()

shallowpackσ0∗σ1 (st0, st1) s = do st′0 ← shallowpackσ0 st0 s
st′1 ← shallowpackσ1 st1 s
ηGen (st′0, st

′
1)

We have now packed s3. Partition should be able to reverse this process given the
correct boolean sequence. The correct boolean sequence in this case is given by the
streams s5 = s2 delimited by some stream s4 equal to s′1 reconstructed by s2:

s4 = f f f f f f f f f f t f f f f f f f f t
s5 = f f t f f f t f f f t f f f f t f f

We can partition (s′2, s3) by writing zeroes to the dummies in s5, not’ing it and flag
distribute s′3 over this stream:

flag distribute:
s′5 = t t f t t t f t t t t f t t t t f t t t
s′3 = a b c d e f g h _ i j k l m n _

yields
s′′3 = a b c c d e f f g h _ i i j k l m m n _

The new delimiter is s5 with t’s for the dummy value:

s′′5 = f f t f f f t f f f t t f f f f t f f t
s′′3 = a b _ c d e _ f g h _ _ i j k l _ m n _

Now all that is left is to attach a top-most delimiter. s4 is a good candidate, but it
needs to be converted into reconstructed form. This is done by right-shifting s′′5 , or’ing
with s4 and packing s4 with that (right shifting is necessary to make the t arrive at
the start of segments instead of the end).

Packing
s4 = f f f f f f f f f f t f f f f f f f f t

with
s′′′5 = t f f t f f f t f f t t t f f f f t f t

yields
s′4 = f f f t f f f t

which we can put on top of the stack to produce the final result.

s′4 = f f f t f f f t
s′′5 = f f t f f f t f f f t t f f f f t f f t
s′′3 = a b _ c d e _ f g h _ _ i j k l _ m n _

63

If we partition once again with the flag stream that corresponds to the original st, we
should obtain the original result

s6 = f f f f t f f f f t
s7 = f f t f f f t f

We can see that s6 is the same as the original s1, so we do not need to flag distribute it.
In fact, we just need to replace the top-most segment descriptor with the flag streams,
where we have reconstruct the delimiter stream s5 to s′5:

s′5 = f f t f f f t
s7 = f f t f f f f t f f
s′′5 = f f t f f f t f f f t t f f f f t f f t
s′′3 = a b _ c d e _ f g h _ _ i j k l _ m n _

Which is the same as the original streams:

s0 = f f t f f t
s1 = f f t f t f f t f t
s2 = f f t f f f t f f f t t f f f f t f f t
s3 = a b c d e _ f g h _ _ i j k l _ m n _

O⟨⟨partσ⟩⟩ s ((s0, st0), (s1, s2)) =
do s3 ← emit condw∧1 s2 s1

s4 ← scan>> s3

s5 ← emit or∧ s4 s1

s5 ← emit packbool s2 s5

s6 ← emit condw∧0 s2 s1

s7 ← emit not∧ s6

st1 ← shallowflagdistσ st0 s7

ηGen (s5, (s3, st1))

where
⊗ ∶∶= ⋯ ∣ >>

is the right-shift monoid on boolean streams with 1 as identity element. It has the
associative operator

x + y = y

and

shallowflagdistπ s0 s = emit flagdistπ s0 s

shallowflagdist [[[τ]]] (st0, st1) s = do st′0 ← shallowflagdist int∗int st0 s
ηGen (st′0, st1)

shallowflagdist{σ} st0 s = ηGen st0

shallowflagdist1 () s = ηGen ()

shallowflagdistσ0∗σ1 (st0, st1) s = do st′0 ← shallowflagdistσ0 st0 s
st′1 ← shallowflagdistσ1 st1 s
ηGen (st′0, st

′
1)

64

List constructor

O⟨⟨listk,τ ⟩⟩ s (st1, . . . , stk) = do s0 ← const s k
s′0 ← emit condw0

∧ s0

s1 ← scansum s′0
s2 ← emit 2flags s′0
s3 ← flagiota s s2

st′ ← listk,τ s3 (st1, . . . , stk)
ηGen ((s1, s0), st′)

normalizeτ s ((s0, s1), st) =
do s2 ← emit condw0

∧ s1 s
s3 ← emit 2flags s2

s4 ← emit flagdistint s0 s3

s5 ← flagiota s3

s6 ← emit (+∧) s4 s5

st′ ← gather τ st s6

s7 ← scansum s2

ηGen ((s7, s2), st′)

listk,1 s ((), . . . ,()) = ηGen ()

listk,π s (s1, . . . , sk) = do s′ ← emit mergek,π s (s1, . . . , sk)
emit flushπ s′

listk,τ0∗τ1 s ((st1, st
′
1), . . . ,(stk, st

′
k)) =

do st ← listk,τ0 s (st1, . . . , stk)
st′ ← listk,τ1 s (st

′
1, . . . , st

′
k)

ηGen (st, st′)

Append Appending two sequences in the high level language corresponds to in-
terleaving segments between two stream stacks in the target language. We use the
transformer interleave for his purpose

O⟨⟨appendσ⟩⟩ s ((s0, st0), (s1, st1)) =
do s2 ← emit interleave s0 s1

s3 ← emit scanxor s2

s4 ← emit b2i∧ s3

st2 ← deepmergeσ st0 st1 s4

ηGen (s2, st2)

65

deepmergeπ s0 s1 s = emit mergeπ s s0 s1

deepmerge[[[τ]]] (st0, st1) (st2, st3) s = do st′0 ← deepmerge int∗int st0 st2 s
ηGen (st′0, (st1, st2))

deepmerge{σ} (s0, st1) s = do st′1 ← deepmergeσ st1 s
s1 ← deepmergebool s0 s
ηGen (s1, st′1)

deepmerge1 () () s = ηGen ()

deepmergeσ0∗σ1 (st0, st1) (st2, st3) s = do st′0 ← deepmergeσ0 st0 st2 s
st′1 ← deepmergeσ1 st1 st3 s
ηGen (st′0, st

′
1)

where
⊗ ∶∶= ⋯ ∣ xor

is the xor monoid on boolean streams with 1 as identity element.

Tabulate and stream Tabulation is done by turning a delimiter stream into a
length stream using the 2lens function. The starts are calculated as as scan of the
lengths and the result is a virtually segmented list. We have to insert dummy values
in both the starts and the lengths to maintain our choice of representation:

O⟨⟨tabulateτ ⟩⟩ s (s0, st0, =)do s1 ← 2lens s0

s2 ← emit not∧ s
s3 ← emit b2i∧ s2

s4 ← emit flagdistint s1 s3

s5 ← flagscansum s4 s
st1 ← flushτ
ηGen ((s1, s2), st1)

where

flush1 () = ηGen ()

flushπ s = flushπ s

flushτ0∗τ1 (st0, st1) = do st2 ← flushτ0 st0
st3 ← flushτ1 st1
ηGen (st2, st3)

flush[[[τ0]]] (st0, st1) = do st2 ← flush int∗int st0
ηGen (st2, st1)

66

Streaming a tabulated vector is done by the gather function

streamτ s ((s0, s1), st) =

do s2 ← emit condw0
∧ s1 s

s3 ← emit 2flags s2

s4 ← emit flagdistint s0 s3

s5 ← flagiota s3

s6 ← emit (+∧) s4 s5

st′ ← gather τ st s6

ηGen (s3, st′)

5.4 Value and cost preservation

This concludes the description of the transformation from source language to target
language. We have provided a transformation for any well-typed source language
expression using an update monad to generate a list of stream definitions. We have
also described how we can go back, by providing an interpretation of the output
streams of a streaming system as a high-level value. We conclude this section with a
conjecture, that seems plausible based on intuition and a few examples.

Conjecture (Value and cost preservation)
∀e∀B > 0∃K > 0 such that,
if [] ⊢ e ∶ σ and [] ⊢ e ↓ ⟨v, ⟨W,D,M,N⟩⟩ and e can be streamed3 then

(i) ⟨⟨e⟩⟩ = let Φ in st

(ii) ⊢ Φ ∶ Π

(iii) ∃ss ∈ SId∗ such that

Φ ⊢B ⟨Σinit(Π),Ainit(Φ), χinit(Φ, st)⟩ →ss s
∗ ⟨Σ′,A′, χ′⟩ ! ⟨W ′,D′,M ′⟩

(iv) ⟨Σ′(st)⟩
σ
= v

(v) D′ logB ≤K ∗ (W /B +D logB) and M ′ ≤K ∗min(M,B)

3Can be streamed means that it will not get stuck. The set of expressions that can be streamed
is a non-trivial subset of all expression. An example of an expression that cannot be streamed is an
expression that adds the length of a sequence to all its elements. If an expression can be streamed or
not is supposedly discovered by appropriate static analysis, outside the scope of this thesis.

67

6 Implementation

The proposed languages and transformation have been implemented. The implemen-
tation is divided in four major parts:

� A front end with a parser and type checker for the source language.

� A runtime system for the target language.

� A compiler from source to target language.

� Primitive stream transformers written in a back-end data parallel language.

The output evaluating an expression in the implementation is the computed value, as
well as the work, step and space required as defined by the cost model. We do not an
measure the actual space and time used, and we don not expect the implementation
to run efficiently since it is merely a proof of concept.

Frontend The front end provides an interface to the programmer. We have designed
the front end as an interactive prompt embedded in Haskell, where the programmer
may write source language expressions directly or load an expression from a source
file. The expressions are parsed, desugared, compiled to the target language and
executed in the runtime system of the target language. The programmer can control
the parameter B, the block size, from the front end for experimental purposes, though
in a more realistic implementation, the block size should be solely determined by the
runtime system of the target language.

6.1 Runtime system

For simplicity, the runtime system of the target language has been written in Haskell
as well. The runtime system implements a simple scheduler that selects the next
transformer to fire by the first stream definition that has at least B elements in all it’s
input buffers and there is space to write at least B elements to it’s output buffer. This
scheduler is close to naive, since it potentially scans the entire list of definitions to find
a transformer to fire. Since we consider the size of expressions as constants, this does
not lead to asymptotically wrong performance, but it is certainly noticeable. A more
efficient scheduler would manage a set or priority queue of definitions that a known to
be fireable, so that the next definition to fire can be selected in almost constant time
with regard to the size of the expression list.

The runtime system has a debug mode with an interactive prompt where execution
pauses on each transition and dumps the content of all buffers to the prompt. Work,
steps and space as defined in the cost model of the target language is computed along
with execution.

6.2 Compiler

The transformation from source language to target language is implemented in Haskell
as described in the transformation section using a generator monad.

68

6.3 Back end

The primitive data parallel transformers are also implemented in Haskell. This implies
that they are not efficient parallel implementations as they should be, if the complexity
preservation conjecture have any chance of being correct, except for a block size of 1.

In principle, there should not be any major difficulties in replacing them with
foreign function calls to pre-compiled kernels, written in CUDA for instance.

6.4 Evaluation

The implementation has been tested by running a number of examples and checking
if they compute the correct value, and if the bounded buffers respects their bounds.
The examples includes matrix-matrix multiplication, which is a good example, since
it contains segmented reductions and three levels of nested apply-to-each constructs.
We have also positively tested more irregular examples.

We evaluate the implementation by implementing and running the iota-square-sum
example

sum({ x^2 : x in &l})

We know asymptotically how much work, steps and space it should require during
execution, namely

W = O(l)

D = O(l/P)

M = O(min(l, P))

so by running the example with different values of B and l we get the following
complexities :

Work W

l / B 1 10 102 103

10 94 90 89 89
102 859 859 810 809
103 8509 8509 8509 8010

Steps D

l / B 1 10 102 103

10 84 17 9 9
102 759 84 17 9
103 7509 759 84 17

Space M

l / B 1 10 102 103

10 17 143 1403 14003
102 17 143 1403 14003
103 17 143 1403 14003

We can see that the work grows linearly with l, the number of steps grows linearly
in l and linearly in B−1, and the space grows linearly in B:

W = O(l)

D = O(l/B)

69

M = O(B)

For the sake of comparison assume that B = O(P) for some imaginary machine with
parallel degree P . We see that our implementation almost computes the correct com-
plexities. The work and steps are identical, but the space is slightly worse, namely
O(P) instead of O(min(l, P)). The difference is subtle, and it arises because our im-
plementation allocates buffers entirely, when only a portion is needed. All in all we
conclude that the implementation behaves as expected with some minor issues.

70

7 Conclusion

While we have not been able to demonstrate without a doubt, that high-level platform-
independent can indeed be as efficient as equivalent low-level languages, the thesis
certainly sheds some light on the subject, and it indicates the possibility of a positive
answer. We have taken a traditional NDP point of view, identified a small but crucial
example program with worse than desired space complexity and searched for possible
solutions. We have argued that some form of machine-dependent and problem-size
specific sequentialization of parallelism is a necessity in order to achieve the desired
performance, and to achieve this in a high-level machine-independent language, we
have necessarily turned our attention to a target execution environment.

We have demonstrated that an execution model that combines streaming with
dynamic scheduling on a host processor and flat data parallelism on a homogeneous
collection of device processors has the potential to solve the problem. We have not
however, provided any formal guarantees as we had hoped, but we have formalized a
framework for doing so - by presenting the languages using formal syntax, types and
semantics and augmenting the semantics with cost models. We have designed the cost
models to be ideal in the sense that they give the performance one would expect from
an equivalent low-level hand-written implementation.

The contributions of the thesis that can be regarded as novel are:

1. A description and proof-of-concept implementation of a runtime environment
that combines streaming with flat data parallelism, and has an intuitive cost
model of work, steps and time.

2. A high-level concept of sequences that reflects the behavior of streamed lists.

3. A space cost model in an NDP language with sequences given in two extreme
cases analogous to work and steps, with a formula for deriving expected space
cost on a concrete machine.

4. A vectorizing transformation in this context, that presumable preserves value
and complexity semantics.

The concept of sequences and the space cost model on the source language are useful
results in themselves, as they formally capture where traditional NDP languages go
wrong. With these tools, it should now be possible to design a provably space-efficient
language, which is a big step towards answering the question if high-level machine-
independent languages can ever be as efficient as low-level languages.

The target language and transformation demonstrates an example of how such a
provably space-efficient language could be designed. They are not hard results as such,
since we have not given a theorem with a proof, but instead we have given a proof-of-
concept implementation as well as a conjecture that we believe is plausible, implicitly
delaying a potential proof to future work.

71

References

[1] “NVIDIA GPU Computing Documentation.”http://developer.nvidia.com/nvidia-
gpu-computing-documentation.

[2] “NVIDIA GPU Computing Documentation.”http://developer.nvidia.com/nvidia-
gpu-computing-documentation.

[3] L. Bergstrom and J. Reppy, “Nested data-parallelism on the GPU,” Sept. 2012.

[4] M. Chakravarty, G. Keller, S. Lee, T. McDonell, and V. Grover, “Accelerating
Haskell array codes with multicore GPUs,” in Proceedings of the Sixth Workshop
on Declarative Aspects of Multicore Programming, DAMP ’11, (New York, NY,
USA), pp. 3–14, ACM, 2011.

[5] G. E. Blelloch, “Programming parallel algorithms,” Commun. ACM, vol. 39,
pp. 85–97, March 1996.

[6] G. E. Blelloch and G. W. Sabot, “Compiling collection-oriented languages onto
massively parallel computers,” J. Parallel Distrib. Comput., vol. 8, pp. 119–134,
February 1990.

[7] G. E. Blelloch, Vector models for data-parallel computing. Cambridge, MA, USA:
MIT Press, 1990.

[8] G. Blelloch,“NESL: A nested data-parallel language (3.1),”tech. rep., 1995. CMU-
CS-95-170.

[9] J. F. Prins and D. W. Palmer, “Transforming high-level data-parallel programs
into vector operations,” in Proceedings Of The Fourth ACM Sigplan Symposium
on Principles and Practice of Parallel Programming, PPOPP ’93, (New York, N.
Y., USA), pp. 119–128, ACM, 1993.

[10] J. W. Riely, J. Prins, and S. P. Iyer, “Provably correct vectorization of nested-
parallel programs,” in Proceedings of the Conference on Programming Models for
Massively Parallel Computers, PMMP ’95, (Washington, DC, USA), pp. 213–222,
IEEE Computer Society, 1995.

[11] D. W. Palmer, J. F. Prins, and S. Westfold, “Work-efficient nested data-
parallelism,” in Proceedings of the Fifth Symposium on the Frontiers of Massively
Parallel Computation (Frontiers’95), FRONTIERS ’95, (Washington, DC, USA),
pp. 186–, IEEE Computer Society, 1995.

[12] G. Keller and M. Simons, “A calculational approach to flattening nested data par-
allelism in functional languages,” in Proceedings of the Second Asian Computing
Science Conference on Concurrency and Parallelism, Programming, Networking,
and Security, ASIAN ’96, (London, UK), pp. 234–243, Springer-Verlag, 1996.

[13] S. Peyton Jones, “Harnessing the multicores: Nested data parallelism in Haskell,”
in Proceedings of the 6th Asian Symposium on Programming Languages and Sys-
tems, APLAS ’08, (Berlin, Heidelberg), pp. 138–150, Springer-Verlag, 2008.

72

[14] M. Chakravarty, R. Leshchinskiy, S. P. Jones, G. Keller, and S. Marlow,“Data par-
allel Haskell: A status report,” in Proceedings of the 2007 Workshop on Declarative
Aspects of Multicore Programming, DAMP ’07, (New York, NY, USA), pp. 10–18,
ACM, 2007.

[15] G. E. Blelloch, P. B. Gibbons, and Y. Matias, “Provably efficient scheduling for
languages with fine-grained parallelism,” in Proceedings of the seventh annual
ACM symposium on Parallel algorithms and architectures, pp. 1–12, ACM, 1995.

[16] F. M. Madsen, “Flattening nested data parallelism.” Master’s project, February
2012.

[17] G. Keller, M. M. Chakravarty, R. Leshchinskiy, B. Lippmeier, and S. Pey-
ton Jones, “Vectorisation avoidance,” in Proceedings of the 2012 symposium on
Haskell symposium, Haskell ’12, (New York, NY, USA), pp. 37–48, ACM, 2012.

[18] D. Spoonhower, G. E. Blelloch, R. Harper, and P. B. Gibbons, Space profiling for
parallel functional programs, vol. 43. ACM, 2008.

[19] G. E. Blelloch, Vector models for data-parallel computing, vol. 75. MIT press
Cambridge, MA, 1990.

[20] S. Sengupta, M. Harris, Y. Zhang, and J. D. Owens, “Scan primitives for gpu
computing,” in SIGGRAPH/EUROGRAPHICS Conference On Graphics Hard-
ware: Proceedings of the 22 nd ACM SIGGRAPH/EUROGRAPHICS symposium
on Graphics hardware, vol. 4, pp. 97–106, 2007.

73

